Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойной слой экспериментальные методы

    Для межфазной поверхности масло — вода пе существует строгого метода определения г . Сильные электрические двойные слои возникают вследствие адсорбции анионного или катионного поверхностноактивного вещества, что доказывается явлением электрофореза или поверхностного потенциала . Однако последний плохо определим экспериментально и теоретически для поверхности М/В и, конечно, пе равен гр. Из-за отсутствия лучшего метода обычно предполагают, что -потенциал равен г1). Качественно известно, что для стабильности эмульсий требуется -потенциал (любого знака), больший 30 мв (Повис, 1914), но количественное его значение точно не установлено. Поэтому необходимо рассмотреть эту проблему детально. [c.101]


    Перед коалесценцией масляных шариков водные пленки становятся настолько тонкими, что разрываются, вызывая разрушения адсорбционного слоя эмульгатора. Скорость утончения водных пленок можно контролировать по вытеканию жидкости или по вязкости потока внутри пленок. Однако эти экспериментальные методы не всегда точны. Известно (см. гл. И), что толщина пленки онределяется расклинивающим давлением при взаимодействии электрических двойных слоев, а сжатие происходит благодаря центробежному полю и силам притяжения Ван-дер-Ваальса в тонких пленках. Поэтому, если электростатическое отталкивание уравновешивается центробежным давлением, толщина пленки должна составить —8,4 А. [c.131]

    При сравнении различных методов измерения кислотности в приэлектродном слое возникает вопрос о соответствии экспериментально определенного значения истинному, которое должно быть подставлено в кинетическое уравнение. За истинную кислотность у поверхности электрода должна быть принята концентрация ионов водорода на границе двойного и диффузионного слоев. Оптические методы и методы отбора проб дают в приэлектродном слое достаточной толщины усредненное значение кислотности, которое отличается от истинного. Измерения, проведенные методом металл-водородного электрода и методом дискового электрода с кольцом должны давать истинные значения. [c.308]

    При помощи уравнения (10.7) были впервые получены правильные значения емкости двойного слоя ( 0,2 Ф/м при дСО). Недостаток электрокапиллярного метода состоит в том, что для определения заряда, емкости двойного слоя, а также величины адсорбции требуется графическое или численное дифференцирование, что связано с довольно большими погрешностями. В последнее время для обработки экспериментальных данных по пограничному натяжению начали применять ЭВМ. Методом наименьших квадратов при помощи ЭВМ подбирают полиномы, позволяющие с большой точностью описать электро- [c.45]

    Формулы (12.7) и (12.8) лежат в основе всех экспериментальных методов определения емкости двойного слоя. Принцип этих методов сводится к тому, что задается или определенным образом изменяющееся напряжение на концах цепи и измеряется зависимость тока от времени, или, наоборот, задается определенным образом запрограммированный ток и измеряется зависимость U от t. Далее на основе полученных результатов при помоши уравнений (12.7) или (12.8) рассчитывают R и С. [c.53]


    Величина (й г/ рН) , выражающая долю емкости двойного слоя в поляризационной емкости электрода, называется изоэлектрическим сдвигом потенциала. Она может быть получена экспериментально на электроде с сильно развитой поверхностью путем замены одного раствора на другой с иным значением pH при разомкнутой цепи (метод изоэлектрических сдвигов потенциала) или же путем потенциометрического титрования в изоэлектрических условиях (при помощи дополнительного стеклянного электрода). [c.69]

    Для дальнейшего развития представлений о строении границы раздела электрод — ионная система и о кинетике процессов на этой границе необходимо усовершенствование существующих и разработка новых экспериментальных методов, более широкое применение современной электронно-вычислительной техники. Уже достигнут существенный прогресс в автоматизации электрохимических измерений и развитии разнообразных импульсных методов, позволяющих, в частности, изучать явления, которые протекают за времена порядка 10 с и менее (импульсные гальваностатические методы, метод высокочастотной рефлектометрии и др.). Далеко не исчерпаны возможности метода фотоэмиссии электронов из металла в раствор. Большой интерес представляют оптические методы изучения состояния поверхности электродов, а также воздействие на границу электрод — раствор лазерными импульсами различной длительности и частоты. Ценным дополнением к существующим методам электрохимической кинетики может служить метод изучения фарадеевских шумов — чрезвычайно слабых флуктуаций потенциала или тока, сопровождающих протекание всех электродных процессов и вызванных дискретным характером переноса электронов через границу фаз, дискретностью диффузионного потока и т. д. Использование электродов в виде очень тонких проволок или пленок, напыленных в вакууме на инертные подложки, позволяет делать выводы об адсорбционных явлениях по изменению сопротивления этих электродов. Для изучения состояния поверхности электродов и кинетики электродных процессов еще недостаточно используются такие мощные современные методы, как ЯМР, ЭПР, дифракция медленных электронов и т. п. Новые методы предварительно проверяются на ртутном электроде, на котором строение двойного слоя и кинетика многих электродных процессов исследованы с количественной стороны. По-прежнему актуальна проблема разработки методов очистки исследуемых растворов от посторонних примесей и приготовления чистых электродных поверхностей. [c.391]

    Если для определения г использовать экспериментальное заполнение поверхности анионами, то получается сдвиг т. н. з., составляющий около 200 мв при изменении концентрации на порядок, т. е. в два раза больше, чем на опыте. Это расхождение связано с тем, что О. А. Есин и В. М. Шихов рассматривали как дискретные также заряды катионов на внешней плоскости Гельмгольца, тогда как в действительности дискретность внутренней плоскости Гельмгольца проявляется значительно сильнее, чем на внешней плоскости Гельмгольца. Б. В. Эршлер впервые получил теоретически правильный результат, приняв, что заряд слоя катионов является равномерно размазанным зарядом. Расчет был выполнен при использовании метода зеркального изображения. Этот метод представляет собой математический прием, позволяющий рассчитать взаимодействие ионов с металлом и ионами внешней обкладки двойного слоя. В дальнейшем Д. Грэм распространил [c.127]

    В настоящее время разработано большое число разнообразных методов исследования двойного электрического слоя, которые основаны на изучении различных свойств заряженных межфазных границ (механических, электрических, оптических). Рассмотрим основы только трех экспериментальных методов, при помощи которых были получены самые важные сведения о строении двойного электрического слоя. [c.147]

    Итак, метод измерения емкости двойного слоя позволяет определить потенциал нулевого заряда, зависимость заряда электрода от его потенциала, с точностью до константы рассчитать серию а, -кривых и определить поверхностную концентрацию специфически адсорбированных ионов и органических молекул. Разработка и экспериментальная проверка метода измерения емкости проводились на ртутном электроде (А. И. Фрумкин и сотрудники, Д. Грэм). В дальнейшем этот метод был широко использован для изучения двойного электрического слоя на электродах из висмута, свинца, галлия, индия, сурьмы, олова, таллия, цинка, серебра, меди, золота и некоторых других металлов. [c.158]

    Изменение тока во времени в двухимпульсном гальваностатическом методе показано на рис. 83, а. Первый импульс /х длительностью 1 (порядка нескольких микросекунд) служит для заряжения двойного слоя до потенциала, соответствующего току второго импульса 2. Если высота первого импульса подобрана правильно, то регистрируемая кривая Т1 — 1 при /= 1 должна удовлетворять условию ( 1 / ),,=0 (см. сплошную кривую на рис. 83, б). Если же высота первого импульса подобрана неправильно, то при или dr[ldtQ (величина 1 занижена). Соответствующие Т1, кривые показаны на рис. 83, б пунктирными линиями. После подбора правильной высоты первого импульса х регистрируют перенапряжение т1о соответствующее = 1, и повторяют операцию при другой длительности первого импульса. В результате получают экспериментальную зависимость т)о от 1. Эта зависимость должна удовлетворять уравнению [c.195]


    Обычные электрохимические методы изучения двойного слоя не позволяют однозначно выделить из экспериментально определяемого полного заряда д свободный заряд поверхности электрода. Именно поэтому принятая в настоящее время модель двойного электрического слоя исходит из допущения, что на электродах типа ртути, свинца и висмута д=дсв- С другой стороны, на электродах из металлов платиновой группы процессы частичного или даже полного разряда ионов при их адсорбции нельзя не учитывать. Перенос заряда доказывают данные по кинетике адсорбции и обмена ионов. Так. например, адсорбционное равновесие в растворах неорганических солей на платиновом электроде устанавливается за время от нескольких минут [c.197]

    В последнее время был получен обширный экспериментальный материал по электрохимическим и химическим свойствам хемосорбционных слоев на металлах. При этом были использованы измерения адсорбционных потенциалов, применены радиоактивные индикаторы и другие методы, позволяющие определить влияние адсорбционных слоев на кинетику электродных процессов. Так, например, было установлено, что адсорбция йода на платине сопровождается значительным проникновением его в глубь металла. Поскольку связь между металлом и адсорбированными атомами имеет дипольный характер, образование атомных слоев приводит к нарушению строения двойного электрического слоя вплоть до изменения знака потенциала. Характерно также заметное снижение емкости двойного слоя, вызванное созданием адсорбционных слоев. [c.348]

    Потенциал полуэлемента зависит от потенциала двойного электрического слоя, но экспериментальных методов для его определения не существует. Поэтому находят не абсолютную ф, а относительную величину электродного потенциала, выбирая какой-либо другой полуэлемент для сравнения. В качестве электрода сравнения принят водородный электрод, состоящий из восстановленной формы — газа Нг и окисленной формы — раствора сильной кислоты, содержащего ионы Н+(Н2 5= 2Н+). Электродные потенциалы, значение которых определено по отношению к значению потенциала водородного электрода, обозначают через Е и выражают в вольтах (В). Испытываемый полуэлемент соединяют с водородным полуэлементом металлической проволокой и определяют ЭДС полученного химического источника тока. [c.182]

    Потенциал полуэлемента зависит от потенциала двойного электрического слоя, но экспериментальных методов для его [c.241]

    Современные экспериментальные методы исследования и особенно изучение электрокапиллярных явлений могут дать представление о строении двойного электрического слоя. Еще в начале прошлого века было замечено, что форма поверхности ртутной капли, находящейся в растворе, зависит от сообщенного ей заряда. Если с поверхности ртути укрепленной иглой периодически снимать заряд, то капля ртути начнет совершать сложные движения. Это явление — ртутное сердце можно объяснить, если предположить, что поверхностное натяжение ртути зависит от возникновения двойного электрического слоя на металле и, следовательно, от скачка потенциала на границе фаз ртуть — раствор. Наблюдать такую зависимость очень удобно с помощью капиллярного электрометра (рис. 34), который состоит из двух ртутных электродов, сообщающихся через разбавленный раствор серной кислоты. Один из электродов — анод (ртуть в каломельном полуэлементе 4 обладает большой поверхностью и при прохождении тока практически не поляризуется), другой же электрод находится в трубке, заканчивающейся капилляром, и имеет весьма ограниченную поверхность (ртуть в капле), которая меняется [c.204]

    Хотя теория строения двойного электрического слоя на границе электрод — электролит базируется главным образом на экспериментальных данных, полученных на ртути, все же эта теория не содержит положений, основанных на специфических свойствах ртутного электрода, поэтому нет причин для сомнений в возможности ее применения к твердым электродам. Для решения этого вопроса А. Н. Фрумкин с сотрудниками сравнил величины удельной емкости двойного слоя на ряде твердых металлов и на ртути в широкой области потенциалов в растворах различного состава. Наиболее прямым методом решения этого вопроса оказался метод измерения импеданса границы твердый электрод — электролит. Однако известны большие методические трудности при работе с твердыми электродами, поскольку на измерения влияют всевозможные электрохимические реакции, шероховатость и другие неоднородности поверхности, возрастают требования к чистоте реактивов. Каждый из этих факторов может привести к частотной зависимости комплексного сопротивления (импеданса) границы электрод — электролит, что затрудняет интерпретацию экспериментальных значений емкости. В связи с этим в настоящее время имеется мало надежных данных о емкости двойного слоя для твердых электродов. Обычно критерием надежности считается сопоставление дифференциальной емкости для исследуемых металлов и ртутного электрода, дифференциальная емкость которого хорошо согласуется с теорией двойного слоя. [c.244]

    При экспериментальном изучении строения двойного электрического слоя основной задачей становится разработка электротехнической схемы, применимой в широком диапазоне частот, а также расчет элементов этой схемы. Для идентификации схемы необходимо привлекать сведения из электрохимической кинетики с использованием экспериментальных методов исследования кинетических параметров электродных процессов. [c.319]

    Метод дифференциальной емкости позволяет экспериментально оценить толщину диффузной части двойного слоя в электролитах с различной концентрацией ионов. [c.39]

    Экспериментальные методы исследования двойного электрического слоя [c.71]

    Связь между потенциалом и зарядом поверхности играет фундаментальную роль в различного рода электрохимических системах — гальванических ваннах, аккумуляторах электрической энергии, электролитических конденсаторах, мембранах нервных клеток и т. д. Поэтому ей уделяется большое внимание в экспериментальных исследованиях прикладного и фундаментального характера. Перечень доступных для таких исследований методов ограничен. Один из них — метод электрокапиллярных кривых (подраздел 3.4.8). Согласно уравнению электрокапиллярности, первая производная от поверхностного натяжения по потенциалу равна заряду поверхности (с обратным знаком), а вторая — дифференциальной емкости заряженной поверхности / (К, имеющей слой противоионов и являющейся частью ДЭС. Следовательно, определяемая из электро-капиллярной кривой дифференциальная емкость — это емкость двойного слоя. При малом потенциале поверхности емкость ДЭС не зависит от потенциала и, следовательно, интегральная и дифференциальная емкости совпадают. В общем же случае, представленном формулами (3.5.2) и (3.5.17), не представляет труда вычисление и дифференциальной емкости. [c.599]

    Различные экспериментальные электрокапиллярные методы можно разделить на две группы, в одной из которых измеряется поверхностное натяжение при различных потенциалах, в другой — непосредственно измеряется либо заряд, либо емкость двойного слоя. [c.182]

    Перемещение электронов от адсорбента или к нему приводит к образованию заряженного двойного слоя на поверхности, и это препятствует адсорбции большего числа молекул на ней. Из простой теории запорного слоя [47, 56—58] следует, что число молекул, которое может быть хемосорбировано с истощением носителей тока, невелико если ионы в междоузлиях или вакансии не подвижны, то носители тока в поверхностных слоях оказываются быстро использованными. Расчеты показывают, что при этом заполнение поверхности при равновесии должно составлять около 1 %. Экспериментальные данные согласуются с этим фактически хемосорбция настолько мала, что чувствительность стандартных объемных или весовых методов оказывается недостаточной и для ее определения приходится применять измерения электропроводности. [c.198]

    Как было показано Ферри [37], диффузный двойной слой должен обладать временем релаксации, точно так же, как и ионная атмосфера (эффект Фалькенгагена). Соответствующие этому времени частоты недостижимы с помощью применяемых методов, и теория еще не подтверждена экспериментально. Но так как она аналогична соответствующей тщательно проверенной теории для электролитов, расчет Ферри, несомненно, удовлетворителен. Экспериментальная проверка в том случае, когда измерения в принципе возможны, может быть затруднена вследствие осложнений, вносимых релаксацией плотного слоя. Измерения Мелик-Гайказяна [38] до частоты 200 кгц показали отсутствие частотной зависимости емкости двойного слоя, и такое же заключение вытекает, по-видимому, из работ Баркера по выпрямляющему действию двойного слоя этот исследователь работал с частотами до 1,6 Мгц [39]. [c.60]

    При решении упомянутой задачи могут появиться осложнения, вызванные совместной адсорбцией веществ О и К [см. уравнение (1)] и последовательными стадиями переноса заряда, а также сопряженными химическими реакциями. Влияние совместной адсорбции будет минимальным при малых степенях заполнения, когда справедлива изотерма Генри, но сложность механизма реакции может оказаться камнем преткновения. Подробная математическая обработка поляризационных кривых в случае сложных процессов, возможно, не даст результатов, так как обратный процесс анализа экспериментальных данных редко приводит к однозначному ответу. Однако можно получить информацию относительно механизма, исследуя влияние двойного слоя (см. раздел 3), а также применяя методы, описанные в гл, VIП. [c.319]

    Чтобы понять природу двойного слоя, необходимо прежде всего усвоить концепцию идеально поляризуемого электрода и природу возникающего на таком электроде равновесия. При этом исследователи обычно сталкивались с поверхностным натяжением и электрокапиллярными кривыми и далее с уравнением адсорбции Гиббса, а также с зарядом и электрической емкостью двойного слоя. Мы введем эти понятия, делая упор скорее на физический смысл и взаимосвязь различных экспериментальных параметров, чем на строгость вывода уравнений. В разд. II, Г обсуждается модель двойного слоя по Штерну, причем особое внимание уделяется применению теории диффузного слоя к анализу экспериментальных данных. В разд. III обсуждаются экспериментальные методы. Последний раздел посвящен изучению явлений электрохимической адсорбции. [c.51]

    Уравнений (3.79) н (3.80) лежат в основе всех экспериментальных методов определения емкости двойного слоя, которые можно разделить на несколько групп. Принцип одной из групп состоит в том, что задается определенным образом запрограммированное напряжение и регистрируется получающаяся зависимость тока от временй. Во второй группе методов, наоборот, задается ток и измеряется зависимость и от I. Исходя из полученных /, 1- либо и, -зависимостей, рассчитывают Нх и Сх- [c.167]

    Наиболее быстро прогрессирующим разделом электрохимии в настоящее время является учение о кинетике и механизме электрохимических процессов. Развитие квантовой электрохимии позволило существенно прояснить проблему природы элементарного акта переноса заряда и подойти с единой точки зрения к реакциям переноса заряда в объеме раствора и на границе фаз. Своеобразие электрохимических процессов на границе электрод — раствор определяется их реализацией в области пространственного разделения зарядов, условно называемой двойным электрическим слоем. Теоретические и экспериментальные исследования строения двойного слоя составляют важный раздел современной электрохимии, новый этап в развитии которого ознаменован разработкой молекулярных моделей двойного слоя, применением прямых оптических методов in situ и мощных современных физических методов изучения поверхности ех situ (дифракция медленных электронов, рентгеновская фотоэлектронная спектроскопия, Оже-спектроскопия и др.), использованием в качестве электродов граней монокристаллов. [c.285]

    Доказать наличле двойного электрического слоя экспериментальным путем можно. Различают две группы методов экспериментального доказательства наличия двойного электрического слоя. К первой группе могут быть отнесены следующие два способа. [c.230]

    Согласно теории электрокапиллярных кривых, емкостный ток равен нулю в точках максимума этих кривых (т. е. при потенциале электрокапиллярного нуля), когда на поверхности ртути нет зарядов и двойной электрический слой отсутствует. При потенциалах, более положительных, чем потенциал электрокапиллярного нуля (его значение зависит от состава раствора и, например, в хлоридах равно —0,56 в относительно н. к. э. см. табл. 1), поверхность капли заряжена положительно, и электроны во внешней цепи проходят в направлении от капельного электрода к вспомогательному. Так возникает анодный емкостный ток, которому в полярографии приписывают отрицательное направление (знак минус). При потенциалах, более отрицательных, чем потенциал электрокапиллярного максимума, поверхность капли имеет отрицательный заряд в этом случае емкостный ток течет в противоположном направлении (знак плюс) и называется катодным емкостным током (рис. 16 и 17). На кривых зависимости среднего емкостного тока от потенциала электрода, зарегистрированных с помощью обычно применяемого в полярографии гальванометра, так же как и на кривых зависимости среднего тока, обусловленного электродной реакцией, от потенциала, имеются осцилляции. В области электрокапиллярного максимума они исчезают, так как при потенциале электрокапиллярного максимума двойной слой не образуется и ток заряжения отсутствует. По уравнению (3) можно рассчитать среднее значение емкостного тока, которое интересно сравнить с экспериментально найденными величинами. Рассмотрим конкретный пример. В 0,1 н. КС1 скорость вытекания т = = 1 мг-сек , период капания = 1 сек, а удельная емкость (измеренная другим методом) С = 20 мкф1см . При потенциале капельного электрода = — 1,56 б (н. к. э.) емкостный ток 4= 0,85-20-10 -(—1,56 + 0,56) х X (1 10 ) - з-(1) з = 1J. 10 а такое же значение получено и экспериментально. Следует подчеркнуть, что в уравнения для емкостного тока нужно подставлять потенциал, отнесенный к потенциалу электрокапиллярного нуля в данной среде (обозначается Е ). [c.48]

    В идеальном случае мы должны выбрать экспериментальные условия при исследовании изотерм, для которых электрическая часть р остается постоянной. Остановимся на некоторых вопросах этой проблемы, обсуждавщихся Парсонсом [9] и затем Дамаскиным [75]. Штерн [17] предложил рассматривать изотермы при постоянном потенциале в плоскости максимального приближения. Он не учитывал различия между внутренней и внешней плоскостями, однако его предположение, исходя из модели, предложенной Грэмом, сводится к поддержанию постоянства потенциала ф1 на внутренней плоскости. Штерн считал, что та-< КИМ методом устранялась компонента разности потенциалов фм, связанная с диффузным двойным слоем. Однако на самом деле Ф1 не постоянен, так как этот потенциал включает в себя компоненту, зависящую от заряда специфически адсорбированных во внутренней плоскости ионов (гл. IV). [c.99]

    Предлагаемая вниманию читателя книга является первым томом небольшой серии коллективных монографий, посвященной важнейшим электрохимическим методам, широко используемым в смежных дисциплинах и в многочисленных приложениях. Книги этой серии существенно отличаются от изданных на русском языке томов по современным проблемам электрохимии под редакцией Дж. Бокриса и адресованы они значительно более широкому кругу читателей. В настоящем томе в основном представлены обзоры, в которых рассматриваются методы, основанные на электродных процессах. Глава 1, написанная Р. Бейтсом, посвящена измерению обратимых электродных потенциалов. Основная ее часть - изложение термодинамических основ равновесных электродных явлений. Ясное, доступное изложение и большое количество конкретных примеров должны помочь читателю, не имеющему специальной подготовки, быстро освоить фундаменталь ные понятия и язык электрохимии. Технической стороне дела, методам измерения, приборам, подготовке эксперимента посвящена заключительная часть этого обзора. Естественным продолжением этой гла вы является глава 2, (автор Р. Пейн), в которой рассмотрены методы изучения двойного электрического слоя и адсорбции. Как и в классических руководствах, обсуждение начинается с общих термодинамических результатов, а затем рассматриваются модельные представления и экспериментальные методы. Последний раздел посвящен адсорбции, причем основное внимание во всей главе уделено границе раздела ртуть - раствор. Как и первая глава, обзор Пейна едва ли представит большой интерес для специалистов-электрохимиков, но он безусловно [c.5]


Смотреть страницы где упоминается термин Двойной слой экспериментальные методы: [c.249]    [c.166]    [c.23]    [c.79]    [c.244]   
Методы измерения в электрохимии Том1 (1977) -- [ c.79 ]




ПОИСК





Смотрите так же термины и статьи:

Слоя метод

Экспериментальные методы изучения двойного I слоя

Экспериментальные методы исследования двойного электрического слоя



© 2025 chem21.info Реклама на сайте