Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Информация, получаемая из химических сдвигов

    Чтобы представить величины сигналов ЯМР на ядрах Н и для разных классов соединений, на рис. 9.3-20 и 9.3-21 показаны обобщенные данные. Видно, что резонансные сигналы ядер Н и в подобных соединениях сгруппированы в характеристические области. Например, сигналы ароматических протонов находятся в области й 6,5-9,0. Протоны альдегидной группы находятся в области химических сдвигов между 9 и 11. Соответствующие резонансные сигналы ядер С аренов занимают диапазон от 100 до 150, для альдегидов — от 180 до 210. Подобные эмпирические обобщения дают возможность химикам получить информацию о структуре неизвестного соединения, оценить успешность синтеза или количественно проанализировать компоненты в смеси — и это только некоторые из возможных применений ЯМР. [c.225]


    Анализ спектров не первого порядка, если они не сводятся к первому, требует специального математического аппарата и моделей для расчетов положения и интенсивности линий, а также моделирующих и итерационных программ для использоваиия ЭВМ. Когда в спиновой системе много взаимодействующих ядер, учитывают свойства симметрии с целью факторизации гамильтониана и сведения задачи к решению нескольких более простых. Так или иначе, в результате проводимого анализа сложных спектров не первого порядка получают значения химических сдвигов и констант спин-спинового взаимодействия, а иногда и важную дополнительную информацию, например, относительные знаки констант. [c.31]

    В результате взаимодействия спинов неэквивалентных протонов через валентные электроны имеет место спин-спиновое расщепление, которое также позволяет получить информацию о строении вещества. При этом вместо одного сигнала, соответствующего химическому сдвигу протона, появляется несколько сигналов. Расстояние между этими сигналами характеризует энергию спин-спинового взаимодействия и выражается в герцах. [c.66]

    Сигналы в спектре ЯМР усложнены вследствие спин-спинового взаимодействия ядер с протонами. При этом из-зз больших значений констант Усн, как правило, наблюдается пере-, крывание компонент мультиплетов различных ядер С, что затрудняет расшифровку спектра. Спин-спиновое взаимодействие 1 С— С в спектре не наблюдается, поскольку в природных образцах очень мала вероятность нахождения в молекуле двух соседних атомов С. На рис. 5.1 представлен спектр ЯМР 1 С, в котором проявляется спин-спиновое взаимодействие углеродных атомов с протонами. В принципе этот спектр позволяет получить всю возможную информацию об углеродных атомах химический сдвиг, мультиплетность сигналов, константы спин-спинового взаимодействия, относительную интенсивность сигналов. Однако из-за сложности спектральной кривой сделать это не всегда возможно. [c.136]

    Важнейшим методом исследования в органической химии вообще и в стереохимии в частности стал ядерный магнитный резонанс. Стереохимическую информацию можно получить как из величин химических сдвигов, так и из констант спин-спинового взаимодействия. [c.86]

    Очевидно, что У2 является мерой химического сдвига у сигнала и, как мне кажется, легко видеть, что переменная VI также определяет химический сдвиг сигнала V, поскольку полученная нами интерферограмма имеет осцилляции с частотой V, Итак, мы получили квадратный спектр с двумя ортогональными осями и с сигналом, имеющим в частотном представлении максимум в точке с координатами (у, у), т. е. на диагонали (рнс. 8.4). Сечением этого спектра через его центр в направлении осей VI или V2 является лоренцева линия с шириной 1/кТ2. Это наш первый двумерный ЯМР-эксперимент. Я могу согласиться, что он ие слишком впечатляющий, поскольку не содержит никакой дополнительной информации по сравнению с обычным спектром. Однако ои имеет все необходимые элементы прототипа двумерного эксперимента (рнс. 8.5), в котором сигнал модулируется как функция переменной и затем регистрируется как функция г . Все двумерные эксперименты [c.264]


    Таким образом, на сегодняшний день спектроскопия ЯМР превратилась в стандартный метод, доступный в химической лаборатории. Если принять во внимание, что химик-орга-ник в первую очередь интересуется строением углеродного скелета, то станет ясным, что с помощью спектра ЯМР С можно-получать значительно более прямую информацию о структуре органической молекулы, чем из протонного спектра. Б частности, в нем обнаруживаются сигналы четвертичных атомов углерода и атомов углерода функциональных групп (С = Ы,. С=0, С==ЫК и т. д.), что резко увеличивает объем структурной информации. Кроме того, более широкий диапазон химических сдвигов, приблизительно 250 м. д., при той же (сравнительно с ЯМР Н) ширине линии (0,3 Гц или меньше) необычайно сильно увеличивает эффективное разрешение. Поэтому метод ЯМР стал также чрезвычайно важным инструментом. [c.387]

    Ценную информацию о строении органического соединения можно получить не только на основании химических сдвигов, но из знании характера спин-спинового расщепления, которое происходит в н -.ультате взаимодействия спинов неэквивалентных протонов и )( з валентные электроны. [c.103]

    В большинстве случаев спектры ЯМР получают для определения структуры молекул. Эта информация содержится в спектральных параметрах химических сдвигах (J), константах спин-спинового взаимодействия (J) и интенсивностях сигналов. При анализе спектра и определении этих параметров наиболее важный момент — отнесение всех (или почти всех) сигналов к определенным ядрам или группам в молекуле. Тем не менее, полное отнесение невозможно на первом этапе, даже для опытного аналитика. Во многих случаях требуется дополнительная информация, которую получают либо из дополнительных экспериментов, либо из баз данных. В разд. 9.3.3 мы упомянули об эмпирических соотношениях для оценки химических сдвигов ядер и Эти правила основываются на наблюдении, что в пределах отдельного класса соединений вклад заместителей в величину химического сдвига является почти постоянной величиной. Сейчас не следует вдаваться в детали этих методов или методов, основанных на эффектах растворителя и температуры. [c.245]

    Знание химических сдвигов дает возможность расшифровывать сложные спектры больших молекул, что достигается путем простой комбинации селективного возбуждения и стробирующей развязки. При таком подходе каждый резонансный сигнал возбуждается селективно, затем устройство развязки выключается, что создает условия свободной прецессии резонансных линий мультиплетных сигналов, и Фурье-преобразование генерирует мультиплетные подспектры, соответствующие выбранному положению резонансного сигнала. Серия таких подспектров воссоздает обычный полный спектр со всей картиной связей. Дополнительную информацию относительно связности мультиплетных сигналов можно получить, используя методику селективного двойного резонанса, такую как селективный перенос населенности. Эти методы позволяют определить знаки констант спиновых связей, применяя мягкие селективные импульсы для облучения ядер, связанных с наблюдаемым ядром. [c.5]

    Метод, позволяющий получить информацию о конфигурации гликозидных связей в полисахаридах при условии, что известен их моносахаридный состав и положения моносахаридных звеньев, создан на основе спектроскопии ЯМР. Гидроксигруппы углеводных остатков превращают (преимущественно) в 0-метильные или 0-триметилсилильные для исключения из спектров сигналов гидроксигрупп. Сигналы протонов при аномерных атомах углерода находятся в более низком поле, чем сигналы остальных протонов, причем химические сдвиги сигналов экваториальных протонов выше, чем для аксиальных. Полный структурный анализ полисахаридов осуществлен на основании данных спектров ЯМР И метилированных моносахаридов и спектров ЯМР Н простых полисахаридов, таких как гликогены [56]. Методы спектроскопии ЯМР С, и Р также могут быть использованы при определении места присоединения одного моносахарида к другому, причем в двух последних методах используются такие производные полисахаридов, как [ Р]-трифторацетаты. [c.226]

    Информация о структуре и стереохимии вещества из ЯМР-спектра может быть получена путем рассмотрения интенсивности сигнала, его относительного положения в спектре, называемого химическим сдвигом, и анализа спин-спинового взаимодействия, но чаще всего из комбинации всех этих характеристик. [c.63]

    Диапазон значений химических сдвигов для ядер Н, которые экранированы лишь одним электроном, достаточно мал максимальное значение химического сдвига равно 10 м.д. Для ядер и Р сдвиг может составлять сотни м.д. Несмотря на то, что для протонов эта величина мала, химический сдвиг является важнейшим параметром ЯМР высокого разрешения этот метод позволяет наблюдать сигналы ЯМР ядер или группы ядер одного химического элемента, но в различном химическом окружении, так что из величины химического сдвига можно получить информацию о химическом окружении данного ядра. Вследствие наличия химического сдвига уже в одном из первых спектров (см. рис. 1.1) можно было достаточно просто различить сигналы от протонов СНз-, СНг- и ОН-групп в этаноле. Однако химический сдвиг не является единственным параметром, определяющим вид спектра ЯМР. Спектр каждого атомного ядра также отражает взаимодействие магнитных моментов соседних ядер. [c.28]


    В последующих разделах данной главы будет показано, как разделять химические сдвиги и скалярные взаимодействия в изотропных средах. Заметим, что такое разделение непосредственно осуществляется лишь для слабо связанных гомо- и гетероядерных систем, а при наличии сильного взаимодействия необходимо проводить более тщательный анализ. Для ориентированных сред, в частности для порошков, неподвижных или вращающихся под магическим углом к внешнему полю, разделение дипольных взаимодействий и химических сдвигов, включая анизотропные, дает такую структурную информацию, которая не может быть получена простым образом из 1М-спектров порошков. И наконец, можно получать спектры твердых тел, в которых изотропные химические сдвиги и компоненты анизотропного химического сдвига откладываются по двум частотным осям. [c.430]

    В результате использования спектров ЯМР химик получает информацию об исследуемом веществе. Эта информация может быть таблицей химических сдвигов и констант спин-спинового взаимодействия, распечаткой частот и интенсивностей линий или просто спектром ЯМР. Обычно химик использует понятие информации интуитивно, однако существуют методы количественной оценки информации, которые заимствуются из теории информации. [c.229]

    Резонанс переменного магнитного поля с магнитным полем ядра, изменяющего спиновое состояние, обусловливает химический сдвиг (O), который откладывается на оси абсцисс записывающего устройства площадь сигнала пропорциональна числу ядер в образце, резонирующих при данной частоте. Помимо двух типов информации (6 и площадь сигнала) можно получить данные о расщеплении сигналов, которые, как будет показано ниже, дают дополнительные данные о структуре соединения. [c.157]

    Для структурных определений методом спектроскопии ЯМР- С можно получить информацию из данных о химических сдвигах, а также о мультиплетности и интенсивности сигналов. [c.502]

    Очевидно, что можно получить аналогичную информацию о механизме роста цепи метакрилатных мономеров, поскольку, как мы видели (см. разд. 3.3), имеется большое различие в химических сдвигах сигналов син- и анти-протонов. В этом случае отнесение сигналов син- и анты-протонов не было сделано, а предполагалось таким же, как для полиакрилатов, на том основании (не очень строгом), что для обоих типов полимеров определяющее влияние на химические сдвиги оказывает анизотропия эфирной карбонильной группы. Наиболее обширное исследование было выполнено для этил-г мс- 1-метакрилата [52]  [c.188]

    Обсуждение анализа спектров ЯМР (гл. V) показало, чт искомая информация о химических сдвигах и константах спи спинового взаимодействия может быть получена очень просто том случае, если спектр можно проанализировать как спектр nef вого порядка. Поскольку химический сдвиг зависит от пол (а константы спин-спинового взаимодействия от поля не зав сят), сложные спектры часто можно упростить, проводя эк перименты при более высокой напряженности поля, когда о ношение 7/voo становится достаточно малым. Кроме того, да в отсутствие спин-спинового взаимодействия наблюдается знг чительное улучшение разрешения, поскольку становится во можным различать группы близкой структуры с меньшими ра ностями химических сдвигов. Таким образом, спектр позволяе получить больше информации. Наконец, увеличение во npnBOAF [c.300]

    В рентгеноэлектронной спектроскопии определяют химический двиг А св, который показ1Ывает различие между са в изучаемом оединении и стандартном образце, например, в кремнии для сое-шнений кремния. Величина сдвига пропорциональна эффективному заряду изучаемого атома, который в свою очередь зависит от степени окисления атома, вида соседних атомов, геометрической структуры соединения, что и позволяет получать о них информацию. Положительный химический сдвиг указывает на положительный эффективный заряд атома в изучаемом соединении, отрицательный — на отрицательный заряд. [c.217]

    Спектры ЯМР Н существенно упрощаются, если один нли несколько атомов водорода исследуемого соединения замещены на дейтерий. Разумеется, спектр дейтерированного аналога не содержит -информации о химических сдвигах замещенного протона и о константах спин-спинового взаимодействия с эти1у4 протоно1У4. Замена протона на дейтерий приводит не только к исчезновению соответствующих сигналов в спектре ЯМР Н, но и к Слабому смещению сигналов геминальных протонов в сильные ЦоЛя (примерно на 0,002 м. д.). Эти смещения получили название притонных изотопных сдвигов. Кроме того, константы /нн для замещаемого протона заменяются на константы /не, причем /нс= = (1/6,5)/нн- При наличии одного дейтерия спектр геминального протона представляет собой триплет (1 1 1) с расщеплением около 2 Гц при константе /нн. равной примерно 12 Гц (гл. 3, 5). При наличии двух дейтериев спектр геминального протона (например, для фрагмента СНОг) выглядит как квинтет с относительными интенсивностями (1 2 3 2 1). Вицинальные константы /нн, равные 6—7Гц, и более далекие константы, как правило, не обнаруживаются в спектрах, так как линии спектра ЯМР Н дейтерированных соединений обычно содержат уширение из-за скалярной релаксации. Для снятия этих уширений эффективно используется гетероядерный двойной резонанс Н— 0 . [c.191]

    Изменим условия эксперимента, сдвинув несущую частоту импульса Уо в область более низких частот по сравнению с частотой резонанса ядер VI (см. рис, 5.39, в, г). В результате воздействия ВЧ-импульса вектор М вновь отклонится к оси у, так как в широкой полосе возбуждения присутствует и частота VI. Во вращающейся системе координат отдельные вектора намагниченности начнут вращаться вокруг оси /, поскольку частоты и VI теперь не совпадают. Одновременно будет происходить рассыпание векторов в веер, как в предыдущем случае. Фиксируя суммарную намагниченность вдоль оси у, мы получим экспоненциально затухающую синусоиду с периодом 1/(У1—Уд). Она содержит информацию как о частоте VI (т.е. фактически о химическом сдвиге), так и о форме линии. Для многоспиновых систем спад индуцированного сигнала (СИС) выглядит как сложная интерферограмма многих спадающих по экспонентам синусоидальных колебаний. СИС содержит всю информацию о химических сдвигах, расщеплении сигналов и их интенсивности, т.е. является одной из форм ЯМР-спектра-спектра во времен- [c.325]

    Использование метода ЯМР для определения характеристик молекулярных комплексов основано на изменении параметров спектра ЯМР, таких, как ХС, константа спин-спинового взаимодействия, время Т и Т%ъ процессе комплексообразования, а также на большой чувствительности метода к временным процессам в системах ассоциирующих веществ. Основным экспериментальным параметром в исследованпн процессов самоассоциа-ции и ассоциации молекул в методе ЯМР является химический сдвиг. Рассмотрим, как нз данных измерений величин химических сдвигов ядер взаимодействующих молекул может быть получена информация о строении и характеристиках молекулярных комплексов в растворах. [c.99]

    Кроме химического сдвига ценную информацию о структуре органических соединений можно получить, изучая спин-спиновое взаимодействие ядер. Это явление в спектроскопии ЯМР обусловлено магнитным взаимодействием химически неэквивалентных ядер, которое осуществляется через электронные облака атомных связей н приводит к дополнительному расщеплению сигналов в спектре. Одиако это взаимодействие быстро исчезает с увеличением расстояния. Это взаимодействие лучше разобрать на примере 1,1,2-трнх-лорэтана  [c.89]

    СПЕКТРЫ ЯДЕГ1ЮГ0 МЛГШ1Т1ЮГ0 РЕЗОНАНСА. Амины тина алкил —МИг и (алкил)2—N11 обычно дают сигнал, обусловленный нрото-нами, связанными с азотом, в области 0,5—3,5 б. Амины тина арил —NIl , арил—N11—алкил и (арил)2—N11 дают сигналы в области 2,9—4,8 б. К сожалению, эти области перекрываются. Кроме того, химические сдвиги этих грунн в известной степени зависят от концентрации амина и от природы растворителя, в котором снимается спектр. Поэтому нелегко получить информацию о строении амина из его ЯМР-спектра. [c.242]

    Первые эксперименты, в которых удалось наблюдать сигнал ядерного резонанса в конденсированных средах, были проведены в 1945 г. независимо Блохом и Парселлом [1.1, 1,2 ]. Следующим важным шагом было открытие химического сдвига - величины, которая характеризует электронное окружение рассматриваемого ядра. В металлах это явление (изменение резонансной частоты) впервые наблюдал Найт [1.3], а в жидкостях —Арнольд [1.4]. Это открытие оказало колоссальное влияние на развитие не только метода ядерного резонанса, но и других областей физики. Информация о частоте сигнала ЯМР дает возможность получить представление об электронном окружении ядра и о структуре химических соединений. На рис. 1.1 приведен спектр ЯМР на ядрах Н этанола [1.4 ], Этим спектром была открыта область исследований, известнаякак ЯМР высокого разрешения в жидкостях, К этой области относится подавляющее большинство всех экспериментов по ЯМР, проводимых в химии, биологии и медицине. Получение изображений с помощью ЯМР (ЯМР-томография) основано на этом явлении в жидкостях. Однако в данном случае химический сдвиг рассматривается как мешающий фактор, поэтому разрабатываются разнообразные методы, направленные на уменьшение различия в его значениях. Строго говоря, высокое разрешение может быть достигнуто лишь в жидкостях, но с помощью специальных экспериментальных методик может быть получена разнообразная полезная информация и для твердых тел. Недостатком этого метода является его низкая чувствительность. Этот недостаток частично был устранен введением Рихардом Эрнстом в 1966 г. [1,5 ] фурье-спектроскопии и появлением приборов со сверхпроводящим магнитом. Наибольшие успехи в применении метода ЯМР были достигнуты в исследованиях биологических макромолекул, что стало [c.12]

    До сих пор мы занимались только гомоядерным ЯЭО и упомянули гетероядерный эффект только как источник повьппения чувствительностн на ядрах со спином 1/2 и малым у, ЯЭО между протоном и гетероядром может быть информативен и в селективных экспериментах, позволяя преодолеть некоторые технические трудности. Возьмем, к примеру, С. Релаксация протонированного углерода происходит в основном за счет непосредственно связанных с ним протонов, и в этом случае ЯЭО не будет интересен-информацию легче получить с помощью развязки илн двумерной гетероядерной корреляции химических сдвигов. Очень интересный момент состоит в том, что часто можно избежать создания прямого ЯЭО, поскольку он получается прн насыщении не основного протонного сигнала, а его С-сателлитов. На практике обычно удается облучать центральную С-линию, не задевая сателлитов, поскольку прямые константы протон-углеродного взаимодействия довольно велики, В Этом случае мы должны увидеть ЯЭО только на четвертичных углеродах, связанных с тем атомом углерода, протоны которого облучались. Этот эксперимент может дать совершенио необычную стерео-химнческую информацию. [c.186]

    В отличие от колебательной и оптической спектроскопии йзменения при образовании комплексов в водных растворах ширины линий, величины ССВ, химического сдвига в спектрах ЯМР (выраженные в Гц) часто оказываются соизмеримы со скоростями обмена комплекса со свободными катионом и лигандом. Процессы, происходящие со скоростями большими, чем АЯ, I или о (где АЯ — ширина линии, —константа ССВ, о — изменение химического сдвига катиона или лиганда при комплексообразовании в отсутствие обмена), называются быстрыми в шкале времени ЯМР, а соответствующие комплексы — лабильными в шкале времени ЯМР. Напротив, к медленным процессам и соответственно нелабильным в шкале времени ЯМР комплексам относят такие, скорость обмена которых ниже, чем изменения соответствующих параметров спектра ЯМР. Лабильность в шкале времени ЯМР отличается от лабильности, определение которой дано Таубе [805], и в зависимости от выбора ядра и измеряемого параметра ЯМР может колебаться от микросекунд до нескольких часов При медленном переходе молекул из одного состояния в другое метод ЯМР регистрирует исследуемую систему со всеми тонкими деталями, позволяющими судить о строении молекул в каждом из этих состояний. При очень быстром обмене наблюдается одна узкая линия, положение которой является средневзвешенным от положений линий исходных компонентов при отсутствии обмена с учетом их молярных долей Состояние быстрого обмена, безусловно, обедняет структурную информативность метода ЯМР. Вместе с тем наблюдение и последующая обработка спектров при переходе от медленного обмена к быстрому позволяют получать уникальную информацию о кинетике процессов с участием комплексонов. Например, в нормальном комплексе свинца и ЦГДТА константа ССВ металл—углерод карбоксильной группы /(М— СОО) составляет соответственно 12,7 и [c.419]

    Двумерная (2D) спектроскопия ЯМР 5шляется новым поколением экспериментов ЯМР. В то время как одномерный спектр имеет одну частотную ось, абсциссу, и интенсивности, отложенные по ординате, в двумерном спектре обе оси, абсцисса и ордината, являются частотными, а интенсивности отложены по аппликате. Далее мы сначала обсудим 20-спектры, в которых химические сдвиги протонов по обеим осям коррелируют друг с другом. Этот метод известен как H,H- OSY (из корреляционной спектроскопии). Ниже мы узнаем о видах информации, которые можно получить из 2В-спектров, в которых коррелируют химические сдвиги ядер Н и С это метод гетероядерной Н, С-корреляционной спектроскопии, или H, - OSY. Не вдаваясь в теорию, мы можем сравнить результаты, получаемые в обоих методах, и понять, как нужно анализировать эти спектры. [c.249]

    В конформационном анализе многое зависит от изменения относительных количеств различных конформеров молекулы. Если измерения проводятся при различных температурах, то можно установить не только, какая конформация является более устойчивой, но и насколько она устойчивее, определив Л/, Л/У с Д5 (ра д. 18.11). Можно получить такую информацию из данных ЯМР тремя иутями а) из площадей пиков, б) из химических сдвигов и в) из констант спин-спинового взаимодействия. [c.431]

    В некоторых 2М-экспериментах получают спектры, пики которых не занимают всю имеющуюся частотную область. Такая ситуация показана на рис. 6.6.1 разность частот ыЙ - ограничена, вследствие чего все сигналы расположены внутри полосы вблизи диагонали, в то время как сами частоты и могут принимать произвольные значения. Такая ситуация является типичной для гомоядерных корреляционных спектров (разд. 8.3.1) при отсутствии взаимодействий между ядрами с большой разностью химических сдвигов. Зонную структуру имеют также 2М 7-спектры, полученные с помощью импульсной последовательности тг/2 - Ь - тг - 2 (т. е. без периода рефокусировки [6.43]), и двухквантовые спектры двухспиновых систем [6.9, 6.44]. В таких случаях есть способ уменьшения ширины спектра по переменной ыь который позволяет избежать потери информации из-за эффектов наложения. [c.403]

    Интерпретация ЯМР-спектров жидкостей и твердых тел нередко затрудняется из-за перекрывания резонансных сигналов сложной формы. Если гамильтониан составлен из членов, учитывающих взаимодействия различной физической природы, такие, как химический сдвиг, дипольные или скалярные спин-спиновые взаимодействия, то, рассматривая эти взаимодействия по взаимно-ортогональным частотным осям, можно получить спектр, более удобный для восприятия. При этом в отличие от экспериментов со спиновой развязкой упрощение спектра не приводит к потере информации. Переход к двумерному представлению сохраняет число линий в спектре постоянным. Главное преимущество 2М-спектроскопии заключается в возможности расщифровки перекрывающихся сигналов. [c.428]

    Сосредоточим свое внимание на двухквантовых слагаемых и исключим нульквантовые когерентности с помощью фазового циклирования, хотя их эволюция в некоторых случаях может представлять интерес [8.66]. Двухквантовые члены 2QT (к, /) у и (2QT (/, т) ]у аналогичны обнаруженным в двухспиновых системах. Третий член в выражении (8.4.14) дает информацию, которая не может быть получена с помощью одноквантовых методов. Его эволюция определяется суммой химических сдвигов двух удаленных спинов и У-взаимодейст-вием с центральным спином h  [c.544]

    Наряду с величинами химического сдвига и квадрупольного расщепления информацию о строении комплексов может дать анализ ширины компонентов дублета. Сравнение ширины правой и левой компоненты квадрупольных дублетов (Гз и Г1) позволяет охарактеризовать однородность образца/ которая связана также с симметрией дублетов. Асимметрия их проявляется в расширении правой компоненты (Г2) по отношению к левой (Г1). В этом случае наблюдаемый дублет представляет собой суперпозицию по крайней мере двух и более дублетов. Левые компоненты их почти совпадают, но величины химического сдвига и квадрупольного расщепления различаются. Одной из причин разницы форм компонент дублета может быть одновременное образование разных модификаций комплексного соединения. Следовательно, сравнение таких параметров ЯГР-спектров, как химический сдвиг, квад-рупольное расщепление, ширина компоненты, форма спектров, позволяет получить ценную информацию о твердофазовых превращениях комплексов, содержащих мессбауэровский атом. [c.29]


Смотреть страницы где упоминается термин Информация, получаемая из химических сдвигов: [c.334]    [c.334]    [c.270]    [c.63]    [c.4]    [c.149]    [c.13]    [c.247]    [c.227]    [c.476]    [c.607]    [c.227]    [c.334]    [c.135]   
Смотреть главы в:

Аналитическая химия Том 2 -> Информация, получаемая из химических сдвигов




ПОИСК





Смотрите так же термины и статьи:

Информация

Химический сдвиг



© 2025 chem21.info Реклама на сайте