Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициенты косвенные

    Однако объективно все работы, в которых изучались механизмы органических реакций при помощи измерения температурных коэффициентов, косвенно помогли созданию общей картины действия температуры на ход органических реакций. [c.73]

    Приведенные матричные элементы С в (20.18), (20.19) определяются формулами (14.77), (14.78). Из этих формул видно, что коэффициенты Д rie зависят от / и однозначно определяются величинами уу. Эти коэффициенты, в частности, одинаковы для взаимодействия электронов пр Z n pz пр г гГd г, пр Z п d ь п nd Z п f и т. д. 2 2 2 22 2 2 2 в формулу для /, / также явным образом не входят. Однако эти коэффициенты косвенным образов зависят от /, /, так как двум [c.221]


    Путем определения коэффициента теплотворности косвенно контролируется теплота сгорания. [c.20]

    Коэффициент а косвенно характеризует движущую силу процесса перегонки применительно к разделяемому сырью. Сырье, у которого а>>1, значительно легче разделить на компоненты, чем при его значении, близком к единице. [c.165]

    В других случаях также установлено, что найденные косвенным путем физические величины, подобные Сц, представляют собой не только феноменологические коэффициенты, но также важные безразмерные числа. Так, соотношения, устанавливающие условия для начала транспорта твердых частиц по горизонтальным трубам или для минимальной скорости мешалки, обеспечивающей суспендирование твердых частиц, становятся проще, если в качестве безразмерного числа в уравнение равновесия действующих сил (инерционных, гравитационных и вязкост-ных) ввести Сц. [c.382]

    Разумеется, при этом вносится известная погрешность в описание реального явления на самом деле включения перемещаются относительно несущей среды, существуют мелкомасштабные течения вокруг них, включения могут дробиться, коалесцировать и т. п. Однако принятое допущение (3.11) не исключает возможности косвенного учета перечисленных факторов, например путем введения эффективных коэффициентов переноса, учета распределения элементов фаз по размерам и времени пребывания в аппарате и т. п. Кроме того, допущение (3.11) по своему смыслу приводит к заниженным оценкам скоростей массо- и теплопередачи, что обусловливает расчет технологического оборудования с запасом. [c.142]

    Характеристический фактор связан также с вязкостью, анилиновой точкой, относительной молекулярной массой, критической температурой, составом и т. д. Тот факт, что он косвенным образом связан также и с ЭМР, имеет большое значение, так как ЭМР, в свою очередь, можно рассчитать с помощью уравнения (25), зная коэффициент рефракции. Поэтому приведенный на рис. 28 график и соотношение (31) могут оказаться полезными при оценке величины ЭМР. [c.42]

    К косвенным гидравлическим показателям фильтрующего материала относится его воздухопроницаемость, выражаемая количеством воздуха, прошедшего через единицу поверхности материала за единицу времени. Обычно воздухопроницаемость материала бывает прямо пропорциональна его удельной пропускной способности при фильтровании масел, однако единого корреляционного коэффициента, позволяющего переходить от одного показателя к другому независимо от структуры [c.203]

    Более строго определены, например, границы применимости формулы (7.35), поскольку кроме ограничений для обобщенных переменных и параметров потока, указанных выше, введено дополнительное ограничение на линейную скорость потока т 7 м/с, а также указано, что паросодержание не оказывает влияния или влияет слабо на коэффициент теплоотдачи в области, где объемное расходное паросодержание р 0,7. В отмеченных границах формула (7.35) позволяет рассчитывать значение коэффициента теплоотдачи при развитом пузырьковом кипении жидкости при организованном движении потока в трубах. Это совпадение данных, полученных при развитом пузырьковом кипении жидкости в большом объеме и в организованных потоках, косвенно свидетельствует [c.242]


    Поскольку непосредственное определение межмолекулярных сил из данных по вириальным коэффициентам оказывается невозможным, рассмотрим косвенный метод их определения. Согласно этому методу, на основе модельных представлений о вза- [c.170]

    Поэтому для вычисления т используют различные модели кипящего слоя, учитывающие особенности массопередачи, главным образом перемешивание и прохождение газа через взвешенный слой в виде пузырей. Многие модели очень сложны и при этом не гарантируют правильность. Простейшим, хотя и не самым надежным, является метод, основанный на введении в кинетические уравнения для неподвижного слоя коэффициента снижения скорости т). Для расчета коэффициента снижения движущей силы процесса предложены различные уравнения, прямо или косвенно учитывающие кинетику процесса в кипящем слое. Этот метод нагляден, относительно несложен и, поэтому, сравнительно часто используется. [c.259]

    По первому методу кинетика процесса выражается через коэффициенты массопередачи, а движущая сила рассчитывается по разности концентраций пли косвенно с помощью числа единиц переноса. [c.671]

    Если реакция проходит при невысокой температуре (производство соды), а контакт продукта с топочными газами нежелателен, барабан обогревают снаружи, для чего его помещают внутрь кирпичной кладки (косвенный обогрев). При этом барабан изготовляют из жаропрочной стали с более толстыми стенками и не снабжают футеровкой. Скорость газа в барабане не более 6 м/с (для уменьшения уноса пыли). Коэффициент заполнения барабана твердым материалом близок к 0,1. [c.280]

    Косвенный метод определения коэффициента теплоотдачи с одной стороны сводится к изменению скорости течения теплоносителя с этой стороны при фиксированной скорости с другой. Этот метод особенно эффективен, если применять его для теплообменника, у которого тепловая проводимость с одной стороны существенно меньше, чем с другой, и с его помощью находить коэффициент теплоотдачи с той стороны, где проводимость меньше, например, со стороны воздуха в теплообменнике типа вода — воздух. [c.315]

    Рассмотрим частный случай уравнения (1.18), когда функциональная зависимость между косвенно и непосредственно измеряемыми величинами выражается формулой Q = ка Ь с , где к - постоянный числовой коэффициент. В этом случае формула (1.18) примет следующий вид [c.83]

    В промышленных аппаратах поверхность теплообмена обычно покрыта слоем окислов, накипи, осадков, пригара или других загрязнений, создающих дополнительные термические сопротивления. При вычислении коэффициента теплопередачи К наибольшие трудности возникают в определении термического сопротивления указанных загрязнений (/ з = бз/Лз), так как толщина и коэффициент теплопроводности слоя загрязнений обычно не известны. В связи с этим в расчетной практике нашел применение способ косвенного учета влияния загрязнений введением коэффициента использования поверхности теплообмена ф. [c.151]

    В дальнейшем изложении для таких массообменных аппаратов, как ректификационные, абсорбционные и экстракционные колонны, описываются методы расчета, основанные на понятиях идеальной (теоретической) тарелки и обшего коэффициента полезного действия тарелок. Эти методы детально разработаны, наглядны, относительно несложны и поэтому нашли широкое распространение. Однако коэффициент полезного действия тарелок лишь косвенно учитывает кинетику процесса, что является известным недостатком таких методов расчета. [c.314]

    Иногда влияние загрязнений учитывают другим, косвенным методом — путем введения коэффициента использования поверхности теплообмена [64]. [c.468]

    Учет всех этих факторов требует проведения большой серии специальных экспериментов, поэтому в нашей методике расчета они учитываются косвенным образом через выполнение численных методов анализа экспериментальных кривых и получение эмпирических зависимостей, коэффициенты которых приближают расчетные значения параметров к экспериментальным. [c.284]

    Как видно, предлагаемое уравнение непосредственно или косвенно учитывает практически все факторы, влияющие на процесс образования парафиноотложений. Из уравнения (2.16) однозначное ускорение процесса образования отложений будет наблюдаться при повышении коэффициента диффузии и числа соударений частиц с поверхностью отложения. Оба эти параметра увеличиваются при уменьшении размера частиц дисперсной фазы и снижении вязкости среды. Преимущественное формирование отложе-1ШЙ из наиболее мелких частиц дисперсной фазы наблюдали на практике многократно /22, 30/. Было также показано /24/, что нефть, имеющая вязкость более 0,2 Стив которой диффузия затруднена, не образует отло>. ений парафина при транспортировке по трубопроводу даже газонефтяных смесей. [c.85]

    Параметр определяется методами сопротивления материалов, теории упругости, механики трещин и др. и включает в себя компоненты тензора напряжений, зависящие от геометрических характеристик конструкции, внешних силовых нагрузок, упругих свойств материала и др. Коэффициент запаса прочности характеризует уровень напряжений при эксплуатации изделия и устанавливается в зависимости от условий работы на основании статистических данных о работоспособности подобных конструкций. Параметр п косвенно оценивает качество технологии изготовления, расчетов на прочность, материала и др. [c.25]


    Большой практический интерес представляет оценка динамики изменения свойств металла в процессе эксплуатации оборудования. Кроме механических и коррозионных факторов повреждаемости в процессе эксплу атации конструкций возможны проявления динамического старения (при циклических нагрузках), термофлуктуационных процессов накопления повреждений и др. В связи с этим в лаборатории физико-механических исследований металлов ВНИИСПТнефть проведены механические испытания металла труб нефтепроводов после различного срока эксплуатации. Независимо от срока эксплуатации нефтепроводов основные механические характеристики не ниже таковых, регламентированных в соответствующих нормативных материалах [219]. При испытаниях обнаруживаются эффекты деформационного старения, в частности, для многих сталей появляется площадка текучести, несколько снижается коэффициент деформационного упрочнения. Однако, эти изменения незначительны. По данным работы [185] в процессе изготовления труб пластические деформации в металле могут достигать порядка 5% и более. Причем, пластические деформации распределяются по периметру трубы крайне неравномерно. Следовательно, при оценке свойств трубных сталей, кроме флуктуации состава и структуры, следует учитывать изменение механических свойств за счет различия степени проявления эффекта деформационного старения. В целом, разброс механических свойств эксплуатированных нефтепроводов не выходит за пределы оценок, полученных на основе результатов испытаний искусственно-состаренных сталей. Кроме того, эти данные косвенно подтверждают зависимости индексов [c.156]

    Следует отметить, что число опубликованных работ по определению коэффициентов диффузии ПЛВ весьма ограничено. Причем практически все сведения относятся к водным растворам. В литературе отсутствует также описание методов прямого определения количества ПАВ, продиффундировавшего из водного раствора в нефть. Обычно ограничиваются лишь косвенной оценкой количества ПАВ, продиффундировавшего из водного раствора в нефть, по изменению межфазного натяжения нефти на границе с дистиллированной водой [10]. Но такой способ отличается некоторой условностью. Дело в том, что неионогенные ПАВ, применяемые в нефтяной промышленности, состоят из фракций, отличающихся друг от друга молекулярной массой, поверхностной активностью и диффузионными свойствами [4]. При контакте водного раствора с нефтью молекулы таких ПАВ диффундируют неодинаково, и распределение их по фракциям н нефти становится иным, чем в исходном водном растворе. Все это отразится на точности определения количества продиффундировавшего в нефть ПАВ по калибровочному графику, построенному для ПАВ исходного состава. [c.12]

    Следует отметить, что замеры коэффициента продуктивности промысловыми методами осуществляются, как правило, в части скважин, включающих несколько проницаемых пропластков. Поэтому большой практический интерес представляет возможность прогнозирования коэффициента продуктивности по косвенным данным как для объектов разработки в целом, так и для каждого проницаемого прослоя. [c.83]

    Величину коэффициента продуктивности по косвенным данным можно определять с помощью метода многомерного регрессионного анализа по комплексу геолого-промысловых данных, учитьшающих петрографические, литологические, фильтрационно-емкостные, геофизические и гидродинамические характеристики продуктивных пластов. [c.83]

    Коэффициенты а Ь являются случайными величинами. Их расчет по формулам (2.30), (2.3 ) можно рассматривать как расчет результатов косвенных измерений. Ввиду этого необходима оценка доверительных интервалов констант а н Ь, которая выполняется на основании значений стандартного отклоне-< ния свободного члена За и стандартного отклонения коэффициента регрессии 5.  [c.39]

    Все методы, используемые для определения коэффициентов активности, можно разделить на прямые и косвенные. Прямые методы основаны на измерении равновесных физических величин, позволяющих непосредственно рассчитывать значения коэффициентов активности. К ним относятся методы измерения давления пара, коэффициентов распределения веществ между двумя несмешивающимися жидкостями, ЭДС в электрохимических элементах и т. д. В косвенных методах коэффициент активности одного компонента смеси рассчитывают через известные коэффициенты активности других компонентов путем интегрирования уравнения Гиббса—Дюгема. В настоящем разделе будут приведены некоторые примеры методов измерения коэффициентов активности. [c.218]

    Косвенные методы определения коэффициентов активности [c.220]

    Рассмотрим ограничения, накладываемые на выполнение формулы аддитивности, более подробно. Выполнение условия равновесия (4.5) на границе раздела фаз у большинства исследователей не вызьшает сомнения, поскольку процессы, протекающие на поверхности раздела фаз при физической абсорбции и экстракции — сольватация, десольватация, изомеризация и т. п., имеют скорости, значительно превышающие скорость массообмена. Однако в ряде работ по массообмену в аппаратах с плоской границей раздела фаз и с механическим перемешиванием в каждой из фаз авторы обнаружили отклонение от формулы аддитивности, обусловленное, как они предположили, поверхностным сопротивлением. В работе [221] приведен критический обзор основньгх исследований, в которых, по мнению авторов, было обнаружено поверхностное сопротивление в системах жидкость - жидкость. В этих работах частные коэффициенты массоотдачи определялись косвенным методом с погрешностью, большей чем отклонение от формулы аддитивности. Кроме того, в некоторых работах обнаружены методические ошибки. Для проверки формулы аддитивности требуются более точные методы определения частных коэффициентов массоотдачи (см. раздел 4.4). Поверхностное сопротивление массотеплообмена мало изучено. Одним из возможных механизмов является экранирование поверхности поверхностно-активными веществами (ПАВ) [222-224]. К обсуждению роли поверхностного сопротивления мы будем возвращаться в последующем изложении. [c.171]

    Некоторые из первых попыток интерпретации СТВ были связаны с ароматическими радикалами, в которых неспаренный спин находится в гг-системе, как, например, в СбН5Н02 . Расчет осуществлялся по методу Хюкке.гтя, и для определения величины плотности неспаренного электрона у различных атомов углерода использовались квадраты р -коэффициентов углерода в МО, на которой находится неспаренный электрон. Экспфиментально наблюдаемое сверхтонкое расщепление обусловлено протонами цикла, которые ортогональны я-системе. Непосредственно на них плотность неспаренного электрона находиться не могла, но плотность неспаренного спина тем не менее на них ощущалась из-за так называемой спин-пол.чризации, или косвенного механизма. Мы попытаемся дать предельно простое представление этого эффекта, используя метод валентных схем. Рассмотрим две резонансные формы, представленные на рис. 9.15 для связи С — Н в такой систе.ме, в которой неспаренный электрон находится на р -орбитали углерода. В отсутствие взаимодействия между л- и а-системой (так называе.мое приближение идеального спаривания) мы можем записать волновые функции связывающей и разрыхляющей а-орбиталей, используя метод валентных схем  [c.24]

    Известные опытные данные 6, 8, 10, 13, 15] по проницаемости метана в сополимере тетрафторэтилена и гексафторпропи-лена, диоксида углерода, бромистого метила, изобутилена и других паров органических веществ в полиэтилене свидетельствуют о росте проницаемости с давлением. Это объясняется косвенным влиянием давления, за счет сильной концентрационной зависимости коэффициента диффузии при высокой растворимости указанных веществ. [c.99]

    Параме1р а определяется методами сопротивления материалов, теории упругости, механики трещин и др. и включает в себя компоненты тензора напряжений, зависящие от геометрических характеристик конструкции, внешних силовых нагрузок, упругих свойств материала и др. Коэффициент запаса прочности характеризует уровень напряжений при эксплуатации изделия и устанавливается в зависимости от условий работы на основании статистических данных о работоспособности подобных конструкций. Параметр п косвенно оценивает качество технологии изготовления, расчетов на прочность, материала и др. За предельное напряжение а р принимается одно из значений компонентов тензора напряжений или их определенное сочетание, при котором наступает текучесть, разрушение или нарушение первоначальной формы изделия. Обычно в условиях статического нагруж ения за величину стпр принимают либо предел текучести СТт, либо временное [c.98]

    Большая часть работ посвящена изучению несвязанных форм исг опаемых порфиринов. Однако показано, что часть из них ассоциирована либо химически связана как с другими компонентами, органического вещества осадочных пород, так и между собой. Гель-хроматография позволила выявить в смеси порфиринов нефтяных сланцев и нефтей соединения с мол. весом от 2000 до 20 ООО" и более [821]. Эти соединения, по мнению авторов [821], представляют собою продукты неоднородной радикальной полимеризации порфиринов или их металлокомплексов с асфальтосмолистыми компонентами органического вещества осадочных пород. В работе [822] выявлен ряд косвенных признаков, указывающих на присутствие в нефтяных сланцах димеров ванадилпорфиринов. Имея высокий молекулярный вес ( 1000), эти соединения тем не менее обладают малой хроматографической подвижностью, низ- КИМ соотношением интегральной интенсивности полос поглощения в области валентных колебаний С — Н (2880—3000 см ) и V = = О (980—1010 см ), а также высоким коэффициентом экстинцик в электронном спектре поглощения (табл. 5.1). Постоянство положения полосы колебания V = О во всех фракциях, полученных ТСХ на силикагеле, исключало возможность димеризации ванадилпорфиринов по связи V — О — V. Поэтому было высказано-предположение, что димеризация порфириновых ядер происходиг [c.145]

    Математическая модель ФХС, состоящая только из уравнений баланса массы и тепла (1.76)—(1.79), естественно, незамкнута и требует для своего замыкания постановки специальных экспериментов как с целью восполнения недостающей информации о системе (например, поля скоростей), так и с целью определения численных значений входящих в нее параметров (например, коэффициентов переноса субстанций в фазах и между фазами). Замыкание системы уравнений модели, состоящей из уравнений сохранения массы и тепла, производится путем использования косвенных ( интегральных ) характеристик, являющихся следствием конкретного динамического поведения системы. Среди таких характеристик наиболее важной (с точки зрения задач физикохимической переработки массы) является функция распределения элементов фаз по времени пребывания в аппарате (функция РВП). Эта характеристика отражает стохастические свойства системы и сравнительно просто определяется экспериментально (см. 4.2). Использование функции РВП в уравнениях баланса массы и тепла позволяет косвенно учесть динамическое поведение системы и построить математическое описание ФХС в достаточно простой форме, отражающей ее двойственную (детерминированно-стохастическую) природу. [c.135]

    В течение многих лет р—V—Г-измерения при низких давлениях выполнялись для газовой термометрии и для определения атомных весов газов. Уитлоу-Грей [18] в 1950 г. сделал обзор, касающийся последнего вопроса. В обоих указанных случаях не-идеальность газа была скорее помехой, чем источником полезной информации. Результаты этих работ получены для идеального газа путем экстраполяции к нулевым значениям давления и плотности. Правда, при этом получалась косвенная информация по вириальным коэффициентам. В настоящее время положение совершенно изменилось. Поправка на неидеаль-ность газа в газовых термометрах вносится на основе независимых измерений вириальных коэффициентов [3, 4], а атомные веса почти всегда определяются масс-спектрометрическими методами. В соответствии с докладом Международной комиссии по атомным весам от 1961 г. только атомный вес неона был определен на основе измерений плотности. [c.81]

    В более поздней работе Ван Стралена [10] дано объяснение многих явлений, указанных выше. Ван Стрален показал, что в бинарных смесях часто наблюдается максимум критического теплового потока, соответствующий наименьшей скорости роста пузыря и наибольшей величине 1г/ — х1. Низкая скорость роста пузыря значительно снижает коэффициент теплоотдачи от поверхности нагрева к кипящей жидкости при существенном росте перегрева стенки. Критический тепловой поток можно рассматривать как сумму двух членов, один из которых обусловлен прямым парообразованием на поверхности нагрева, а второй — конвекцией горячей жидкости от поверхности нагрева, связанной с косвенным испарением в пузырь на расстоянии от поверхности нагрева. В [16, 17] предполагается, что даже для чистых жидкостей второй член существен. В [17] изучалось влияние характеристики /, которая названа параметром конвекции и представляет собой баланс сил инерции, поверхностного натяжения и вязкости  [c.417]

    С помощью колориметрических методов определения цвета (прибор КНС, хромометр Сейболта), широко применяющихся в нефтепереработке, в стандартных условиях устанавливается степень очистки нефтепродукта, косвенно характеризующая суммарное содержание окрашивающих примесей [1]. Получение спектральных характеристик (коэффициент пропускания - на колориметре фотоэлектрическом концентрационном (КФК), аналогичном прибору ФОУ [2], более удобно при проведении лабораторных исследований и может с успехом применяться как достаточно чувствительный и универсальный экспресс-метод. Цветовые характеристики, снятые на приборах КНС и КФК для образцов, полученных в процессе контактной очистки (перемешивания очищаемого продукта с мелкодисперсным адсорбентом при повышенных темпе[ 1атурах) твердых парафинов куганакской глиной при разных температурах в течение 60 минут, соответствуютдруг другу (рис. 1). [c.114]

    Например, применение керамических горелок (горелок инфракрасного излучения), в которых сжигание высококалорийного топлива высокой степени очистки осуществляется внутри пористой керамики или в тончайшем газовом слое вблизи поверхности керамики. Целые панели из таких горелок могут заменять собой футеровку, являясь мощным излучателем, обеспечивающим интенсивную теплоотдачу на поверхность нагрева. Собственное излучение тонкого слоя газов в сторону поверхности нагрева незначительно. В данном случае, мы имеем дело с типичным предельным случаем косвенного направленного теплообмена, при котором весь теплообмен обеспечивается излучением кладки. В таких печах отвод газов осуществляется вблизи поверхности нагрева, т. е. в самой холодной части печи, что и обеспечивает высокое значение коэффициента исп.ользования топлива. Применение обычных беспламенных горелок с- керамическим туннелем и направлением продуктов сгорания тонким слоем на футеровку печи также позволяет организовать теплообмен, приближающийся к предельному случаю косвенного направленного теплообмена. В рассмотренных случаях, очевидно, преимущества имеют те виды топлива, которые не склонны в процессе сжигания к сажеобразованию, т. е. топлива, не содержащие в том или ином виде тяжелых углеводородов. [c.76]

    Скорость изменения интенсивности отражения (004) с изменением температуры нагрева нятяипмяя для анизотропных коксов и наименьшая для изотропных. Введено понятие коэффициента термического изменения интенсивности, которое косвенно отражает анизотропность термического расяшрения кристалдической решетки и позволяет оценивать характер структуры кокса, его эксплуатационную пригодность. Для определения коэффициента термического изменения интенсивности растертый образец кокса помещается в камеру высокотемпературной приставки УВД-2000, нагревается до 1800°С со скоростью 20°С/мнн, выдерживается в течение I ч и ступенчато охлаждается до комнатной температуры. По мере охлаждения через каждые 100 или 200 - С при вдентичных условиях снимаются дифрактограммы и измеряется интенсивность отражения (004). Б выбранном интервале температур по ш-менению интенсивности отражения (004) методом наименьших ква, ) -тов рассчитывается уравнение [c.80]


Смотреть страницы где упоминается термин Коэффициенты косвенные: [c.617]    [c.59]    [c.283]    [c.104]    [c.435]    [c.197]    [c.19]    [c.121]    [c.218]    [c.85]   
Электрохимия растворов издание второе (1966) -- [ c.53 , c.60 , c.71 ]




ПОИСК





Смотрите так же термины и статьи:

Косвенные методы определения коэффициентов активности

Косвенные методы определения коэффициентов активности. Определение по давлению пара растворителя

Некоторые косвенные методы определения коэффициента турбулентного обмена тепла



© 2025 chem21.info Реклама на сайте