Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры, разрушение пластическое

    Химически стойкие органические материалы. Некоторые синтетические полимерные вещества проявляют большую стойкость по отношению к водным растворам серной кислоты. Поэтому с развитием производства высокомолекулярных органических соединений (полимеров) и пластических масс на их основе в производстве серной кислоты все шире начинают применять эти материалы для защиты поверхности металлов от разрушения (коррозии). В конструктивном отношении они имеют много преимуществ хорошо обрабатываются на станках, их можно прессовать, сваривать, штамповать, формовать, склеивать, прокатывать в листы, вытягивать в ленты и т. д. Они легче и дешевле. металлов, благодаря чему могут конкурировать не только с цветными, но и с черными металлами. Их все шире применяют как для защитных покрытий металлов, так и для изготовления самих аппаратов, всевозможных деталей, трубопроводов, вентилей и т. д. Существенным недостатком этих конструкционных материалов является пониженная устойчивость их к температуре. Большинство из них может работать при температурах не выше 100° С. [c.27]


    Длительный контакт с водой пластифицированных сложным эфиром пластических масс может вызвать омыление пластификатора. В этом случае дальнейшее разрушение пластической массы под влиянием образовавшейся кислоты, возможно, имеет автокаталитический характер. Поэтому желательно производить оценку стойкости пластификаторов, принадлежащих к группе сложных эфиров, на основании результатов, полученных после 24 ч кипячения с водой. Ниже приведены данные Фордайса и Мейера о стойкости к действию кипящей воды некоторых пластификаторов, применяемых для пластификации ацетата целлюлозы и других полимеров. Стойкость выражена количеством 1 н. раствора щелочи, необходимым для нейтрализации кислотности, образующейся при взаимодействии с водой 100 г пластификатора (мл)  [c.195]

    Необходимо выяснить также вклад в энергетику разрушения полимеров необратимых (пластических) деформаций, сопровождающих разрушение при комнатной температуре даже предельно ориентированных образцов. Измерения показали, что незначительные обратимые удлинения (от 1 до 1,5%) появляются лишь [c.209]

    Полимерные материалы являются вязкоупругими твердыми телами. Склонность последних к неупругому и пластическому деформированию убывает, когда они испытываются при высоких скоростях нагружения и (или) при низких температурах. Более низкая деформируемость вызывает у прежде вязкого или высокоэластичного полимера хрупкое разрушение. Убедительным доказательством этого факта служит хрупкое разрушение при испытании на удар натурального каучука при температуре жидкого азота. [c.268]

    Для труб из ПВХ с учетом рис. 1.4 с помощью выражения (8.21) получены следующие значения /о = 397 кДж/моль, 7 = 1740-10" м /моль и о=1,7-10 2 с (чисто формальное значение). Следует отметить, что данная группа параметров описывает долговечность ПВХ, несмотря на то что эти данные соответствуют трем различным видам разрушения. Кривые зависимости напряжения от времени неориентированных частично кристаллических полимеров (ПЭ, ПП) при больших значениях имеют участки падения прочности (хорошо известный наклон (рис. 1.5)). Плоские участки кривых (связанные преимущественно с пластическим ослаблением) могут быть представлены значениями С/о — 307 кДж/моль, у = 4390 X X 10 м /моль и 0 = 3-10- ° с, а крутые участки (ослабление путем образования трещины при ползучести)—значениями /о =181 кДж/моль, 7 = 3610-10- м /моль и о = 8-10- с. Для ориентированных частично-кристаллических полимеров Журков и др. [18] сообщают следующие значения параметров  [c.284]

    Медленный рост трещины с докритической скоростью в полимере обусловлен процессами термомеханической активации, природа которых аналогична природе однородного разрушения, описанной в предыдущей главе, т. е. растяжением цепи, пластической деформацией, раскрытием пор, распутыванием цепи и ее разрывом. Однако скорость, с которой происходят эти процессы в поле деформаций, окружающих вершину трещины, выше, чем в любом другом месте материала. [c.343]


    Рассмотренные в разд. 9.1.3 составляющие критической удельной энергии разрушения (Зхс и данные табл. 9.1 и 9.2 позволили выяснить, что поверхность разрушения, очевидно, формируется не просто путем разрыва основных и (или) вторичных связей, расположенных поперек плоскости разрушения молекулярного масштаба. У конца трещины всегда происходит пластическое деформирование, благодаря которому образуется поверхность разрушения. Следует ожидать, что степень пластического деформирования тем меньше, чем меньше сегментальная подвижность, т. е. чем ниже температура. При температуре жидкого азота большинство полимеров напоминают стекло и разрушаются как хрупкий материал. При рассмотрении поверхностей разрушения, сфотографированных без увеличения (рис. 9.16), видна макроскопическая шероховатость, но поверхности кажутся локально гладкими, хотя и не блестящими. Это свидетельствует о том, что на поверхностях имеются структурные неоднородности, размеры которых больше длины световой волны. Это относится к ПЭ, ПП, ПВХ, ПС, а также ПММА, поверхность которого, однако, оказывается очень гладкой. [c.390]

    Тогда становится ясным влияние надреза длиной а. Однако в общем случае разрушения с учетом пластического деформирования в выражении (9.29) следовало бы использовать Кс (или G с) и длину трещины с поправкой a + f rp). Все эти величины сильно зависят от степени пластического деформирования у вершины трещины, на которое в свою очередь влияют длина трещины, радиус вершины надреза и условия нагружения. В случае сильного пластического деформирования напряжение разрыва образца будет слабо зависеть от формы исходной трещины и сильно зависеть от прочности пластически деформируемого матричного материала. Поэтому возникают три вопроса, которые будут рассмотрены в дальнейшем. Какова чувствительность к надрезу у различных полимеров, когда становятся критическими геометрические размеры и параметры материала, и каково влияние длины цепи и ее подвижности  [c.405]

    Из того факта, что значительная локальная пластическая деформация имеет место даже при быстром деформировании полимера, находящегося в стеклообразном состоянии в условиях концентрации напряжений, непосредственно следует, что молекулярные свойства, которые влияют на вынужденную эластичность и текучесть материала, также оказывают влияние и на Ос, а следовательно, на ударную вязкость. Данные, собранные в табл. 9.1, демонстрируют эту зависимость Ос от температуры, скорости деформации и молекулярных свойств. Во многих упомянутых работах (например, [14, 19, 22, 24, 25, 54, 63, 64, 212—214]) указывается на возможность существования связи между процессами молекулярной релаксации и энергии разрушения поверхности полимеров. [c.409]

    При этом рассмотрении в понятие прочности входит предельное сопротивление материала либо пластической деформации, либо хрупкому разрушению, либо разрушению после пластического течения. Этот метод никакой специфики поведения полимеров не отражает. [c.293]

    Деструкция — разрушение молекул вещества. При Д. образуются обрывки молекул, обычно свободные радикалы или ионы, высокая активность которых — причина многочисленных химических процессов. При Д. наибольшее значение имеют цепные реакции. Д. имеет большое значение для полимерных материалов, пластических масс, резин, волокон и др. При Д. полимерных материалов существенно изменяется молекулярная масса полимера. [c.46]

    В предыдущем разделе рассматривалось идеально хрупкое тело и рассеяние энергии упругих волн, возникающих в нем при росте трещин. В реальных хрупких телах наблюдаются, кроме того, потери энергии, связанные с пластическими деформациями (а в случае полимеров—и с вынужденноэластическими) в местах перенапряжений, особенно в вершинах микротрещин. Таким образом, при разрушении твердых тел наблюдаются три основных типа потерь  [c.25]

    Пластическое разрушение полимеров [c.115]

    Разрушающее напряжение в случаях пластического и высокоэластического разрушения по-разному зависит от скорости деформации (рис. П.51). При пластическом разрушении характеристикой прочности является предел текучести. Какой тип разрушения реализуется в линейном полимере, зависит от того, что меньше Стр или предел текучести. Если значение предела текучести меньше значения разрушающего напряжения, то реализуется пластическое разрушение если Ор меньше предела текучести, то происходит высокоэластический разрыв. Из рис. 11.51 следует, что при скорости деформации меньше v и больше v" разрушающее напряжение меньше предела текучести. В этих областях происходит высокоэластический разрыв. В интервале скоростей от v до v" реализуется пластический разрыв. [c.116]

    Следует заметить, что наибольшее практическое значение имеет изучение механизмов разрушения полимеров в стеклообразном и высокоэластическом состояниях. Пластическое разрушение в условиях эксплуатации изделий из полимеров, по-ви-димому, встречается реже. [c.116]


    Полученные результаты показывают, что в процессе деформации и разрушения кристаллических полимеров структура может существенно изменяться. Даже в тех случаях, когда разрушение образца происходит без видимых эластических и пластических деформаций, структура в зоне разрушения существенно изменяется. На эти структурные изменения решающее влияние ока- [c.199]

    Третий тип разрушения — пластический разрыв по межмоле-кулярным связям происходит в полимерах с относительно корот-кидш молекулами и в полимерных материалах, представляюш,их собой твердые растворы полимергомологов продуктов конденсации (например, низкомолекулярные новолаки). Б качестве выражения для прочности таких веществ предлагается уравнение среды Кельвина — Фохта [c.147]

    Большинство опубликованных исследований, посвященных пластическим материалам, касалось химизма процессов их получения, обработки, применения и т. п. Значительно меньшее внима ние было уделено изучению разрушения пластических материалов под воздействием внешней среды. В зарубежной литературе деструкции полимеров посвяшены некоторые (.монографии (например, [c.7]

    В работах Ю. С. Лазуркина было показано, что в интерьале между температурами стеклования и хрупкости (т. е. ниже температуры стеклования) полимеры под действием больших внешних сил могут подвергаться значительным деформациям без разрушения. Такие деформации коренным образом отличаются от обычной пластической деформации, так как исчезают при нагревании разгруженного образца. Это явление получило название вынужденной эластичности. Оно обусловлено высокоэластической деформацией полимера, вызываемой действием больших внешних сйл при температуре ниже температуры стеклования, так как в этих условиях снижается энергия активации молекулярных перегруппировок, [c.587]

    Даже при таких малых деформациях кажущийся модуль Юнга зависит от скорости деформирования. Это указывает, что Е неоднозначно определяется энергией упругого деформирования угловых связей в цепях, длиной связей и межмолеку-лярными расстояниями, но, кроме этого, характеризуется чувствительностью ко времени смещений атомов и небольших атомных групп. В следующей области деформации (1—5%) напряжение и деформация уже не пропорциональны друг другу. Здесь происходят структурные и конформационные перестройки, которые обратимы механически, но не термодинамически. В этом случае говорят о неупругом (вязкоупругом в узком смысле), или параупругом, поведении. За пределом вынужденной эластичности начинается сильная переориентация цепей и ламеллярных кристаллов, а сам процесс обычно носит название пластическое деформирование . Под чисто пластическим деформированием можно понимать переход от одного равновесного состояния к другому без внутренних напряжений. Последнее особенно важно в связи с тем, что следующая после предела вынужденной эластичности деформация связана главным образом с механически обратимыми неупругими конфор-мационными изменениями молекул, а не с их перемещением друг за другом. До тех пор пока не достигнуто состояние равновесия с помощью соответствующей термообработки, сильно вытянутые образцы могут в значительной степени возвращаться в исходное состояние после снятия напряжения. Исходя из содержания настоящей книги, основное внимание следует уделять не процессам, вызывающим или сопровождающим молекулярную переориентацию (которая в основном понимается как эффект упрочнения), а процессам повреждения, т. е. разрыва цепи, образования пустот и течения. Последние процессы постепенно нарастают в области деформаций сразу же за пределом вынужденной эластичности вплоть до окончательного разрушения. К числу процессов, вызывающих повреждения, следует также отнести явление вынужденной эластичности при растяжении или образование трещины серебра в стеклообразных полимерах, которые будут рассмотрены в гл. 9. [c.38]

    Применение механики разрушения к вязкоупругой среде ограничивается отклонением от условия бесконечно малой деформации вследствие молекулярной анизотропии, локальной концентрации деформаций и зависимости напряжения и деформации от времени. Эта теория эффективна при исследовании распространения трещин. Аналитическое обобщение работы Гриффитса на линейные вязкоупругие материалы было предложено Уильямсом [36] и несколько раньше Кнауссом [37]. В гл. 9 будет дан более подробный расчет распространения трещины с позиций механики разрушения. Будут рассмотрены морфологические аспекты разрушения и влияние пластического деформирования, зависящего от времени, возникновения и роста трещины серебра и разрыва цепи на энергию когезионного разрушения полимеров. [c.72]

    ПА-6 в спектр кислотных радикалов Бекман и Деври установили, что 50 % всех повреждений происходят в слое толщиной менее 0,6 мкм от поверхности. Оставшиеся 50 % цепных радикалов получены на глубине до 3 мкм от поверхности. С учетом морфологии деградирующих полимеров, механики процесса измельчения и подвижности первичных свободных радикалов можно представить пространственное распределение вторичных радикалов. В данном случае с точки зрения прочности кристалла, по-видимому, маловероятно вытягивание и разрыв отдельных цепей ПА. Как уже рассматривалось в гл. 5, цепь ПА-6, уложенная в кристаллите более чем на 1,7 нм своей длины, будет скорее разрываться, чем вытягиваться из кристаллита. Вытягивание из поверхности разрушения целых микрофибрилл будет происходить с весьма большой вероятностью и сопровождаться разрушением межфибриллярных проходных цепей с образованием повреждений в поверхностном слое на глубине до 1 мкм. Это особенно важно для сильной пластической деформации материала перед растущей поверхностью разрушения. Перемещение свободных радикалов, конечно, вносит свой вклад в углубление слоя со следами повреждения. Тем не менее глубины поврежденного слоя, полученные в подобных экспериментах, действительно совпадают с нижними пределами размеров частиц, получаемых при механическом повреждении материала. Это свидетельствует о том, что повреждения могут вызываться механически вплоть до указанных выше глубин. [c.209]

    Предыдуш,ие значения удельной ударной вязкости присуш,и хрупким материалам, если < 40 кДж/м . Материалы, имею-ш,ие йп в пределах 50—90 кДж/м , обычно оказываются хрупкими, если образцы надрезаны тупым инструментом. Из полимеров, не разрушающихся при испытании по Шарнп на ненадрезанных образцах, некоторые подвергаются хрупкому разрушению, в случае если они надрезаны острым инструментом, в то время как другие даже в таком случае сохраняют пластические свойства. Поэтому Винсент [96], а также Бакнелл и др. [c.271]

    Проходящей через верщину трещины и через ее боковую сторону, оказывается ненагруженной. Во всяком случае, при увеличении а, сопровождающемся разрывом основных и (или) вторичных связей, требуется энергия В Ааус- Чтобы получить точное соответствие между В Ааус и В AaGi, необходимо, чтобы полная энергия упругой деформации, накопленная в области рабочего объема, была израсходована на разъединение связей, пересекающих площадь В Аа. Для твердых полимеров наименьшим возможным шагом был бы разрыв одной связи, т. е. щаг шириной Аа = 0,4 нм. Активационный объем разрыва связи имеет порядок = 0,008 нм Подобный элемент объема составляет лишь 0,125/п части объема яАа , и его энергия равна 0,015GiAa2. Поэтому следует заметить, что в молекулярном масштабе, даже в отсутствие пластической деформации, для распространения разрушения требуется высвобождение энергии в объеме, который по крайней мере в 60 раз больше активационного объема разрыва основных связей, пересекающих вновь образованную поверхность площадью В Аа. [c.337]

    Скибо, Херцберг и Мансон [191] изучали характеристики роста усталостной трещины в полистироле в интервале значений коэффициента интенсивности напряжений и частоты. Образцы с нанесенным односторонним надрезом и испытываемые на растяжение компактные образцы, изготовленные из листов промышленного полистирола (с молекулярной массой 2,7-10 ), были подвергнуты циклическому нагружению с постоянной амплитудой на частотах 0,1, 1, 10 и 100 Гц, что соответствовало скоростям роста усталостной трещины от 4 10 до 4Х X10 см/цикл. При заданном значении интенсивности напряжений скорость роста усталостной трещины уменьшается с увеличением частоты, причем само уменьшение скорости роста наиболее сильно выражено при больших значениях интенсивности напряжения. Чувствительность данного полимера к частоте во всем исследованном интервале значений была объяснена влиянием переменной компоненты ползучести. В макроскопическом масштабе поверхность разрушения была двух различных типов. Прп низких значениях интенсивности напряжений наблюдалась зеркальная поверхность с высокой отражательной способностью, которая с увеличением интенсивности напряжения превращалась в шероховатую матовую поверхность. Повышая частоту, сдвигали переход между этими типами поверхности разрушения в сторону более высоких значений интенсивности напряжений. Микроскопическое исследование зеркальной поверхности выявило распространение обычной трещины вдоль одной трещины серебра, в то время как исследование шероховатой поверхности выявляло рост обычной трещины через большое число трещин серебра, причем все они в среднем были перпендикулярны оси приложенного напряжения. Электронное фракто-графическое исследование зеркальной области выявило много параллельных полос, перпендикулярных направлению роста обычной трещины, каждая из которых формировалась в процессе ее прерывистого роста в ряде усталостных циклов. Размер таких полос соответствовал размеру пластической зоны у вершины трещины, рассчитанной по модели Дагдейла. При высоких значениях интенсивности напряжений была получена новая система параллельных следов в матовой области, которая соответствовала приращению длины трещины за один цикл нагружения [191]. [c.412]

    Механические свойства кристаллизующихся полимеров тесно связаны с молекулярной структурой п температурно-силовыми условиями испытаний. Основное отличие этих материалов от аморфных заключается в том, что при их растяжении (так же, как и при растяжении пластической стали) образуется шейка. Ио в отличие от пластичных металлов шейка по мере растяжения прорастает через весь образец. В шейке происходит скачкообразное, ступенчатое разрушение кристаллической структуры и образование новых вытянутых и ориентированных вдоль действия силы структур. При этом в первоначально изотропном материале возникает анизотропия — резкое различие свойств вдоль паправлепия нагрузки и во взаимно иерпепдикулярпых паправлениях. Такая картина может повторяться, если провести растяжение об- [c.50]

    Свойства полимера, в частности его пластическая деформация до разрушения, определяют оптимальное содержание волокна. Напримеру при применении полифениленсульфида и полиа-рилэфирсульфбна с боковыми кардовыми группами максимальная прочность достигается при содержании углеродных волокон 25% (объем.). Армирующий каркас из волокон уменьшает деформацию и таким образом способствует увеличению предела текучести и ударной вязкости композитов. [c.560]

    Поскольку в настоящее время имеется ряд хороших монографий, посвященных проблемам реологии и, в частности, вязкости полимеров (см., например, [38, 49]), мы ограничимся лишь кругом вопросов, касающихся механизма вязкого течения в связи со структурными и релаксационными принципами, изложенными выше. В частности, уравнение (V. 2) уже дает определенную почву для раздумий на что конкретно расходуется механическая энергия Из вполне очевидного ответа — на разрушение структуры системы — следует немедленно второй вопрос о влиянии скорости воздействия (мерой которой служит градиент у, имеющий размерность обратную времени) на это разрушение и, соответственно, на диссипацию энергии и величину вязкости. При этом выясняется, что всем полимерным системам в вязкотекучем состоянии присуща так называемая аномалия вязкости [термин неудачный, ибо отклонение от формулы (V. 1), вызванное естественными и физически легко интерпретируемыми причинами, вряд ли следует считать аномалией], проявляющаяся в зависимости эффективной (т. е. измеряемой в стандартных условиях, при фиксированных Я и -у) вязкости от Р или от у. Эта аномалия связана как с разрушением структуры системы, так и с накоплением высокоэластических деформаций в дополнение к пластическим (необратимым). Эти деформации и разрушение претерпевает суперсетка, узлы которой образованы микроблоками или, в меньшей мере, перехлестами единичных цепей. При переходе от расплава к разбавленному раствору относительный вклад последних в структуру сетки возрастает, точнее, выравниваются времена их жизни и времена жизни флуктуационных микроблоков. [c.163]

    Предельным состоянием полимера часто называют такое напряженное состояние, при котором дальнейшее повышение напряжений сопровождается усилением процесса вынужденноэластической деформации, являющегося аналогом пластической деформации в металлах. Такое определение предельного состояния неприменимо для хрупкого разрушения, которое является наиболее опасным видом разрушения. При совмещении в одном аналитическом выражении условий хрупкого разрушения и вынужденноэла- [c.284]

    Предельные состояния обычно изображаются с помощью некоторых поверхностей в пространстве главных напряжений. При монотонном изменении свойств полимера под действием внешнега воздействия происходит соответствующее мбнотонное изменение предельных поверхностей. Для получения обобщенного критерия предельного состояния чаще всего используют двойственную модель твердого деформируемого тела [11.8] с целью аналитического расчета свойств хрупкости и вынужденной эластичности проявляющихся при деформировании реальных твердых полимеров. В двойственной модели деформация представляется в виде суммы двух составляющих, обусловленных хрупкими и пластическими свойствами полимера. Таким образом, вводятся два параллельных реологических элемента, описывающих отдельно хрупкие и пластические свойства полимера. Иногда в реологическую модель включают элемент разрушения для того, чтобы связать процесс деформирования с процессом разрыва связей, что особенно существенно для полимеров. [c.285]

    Термофлуктуационный механизм осложняется тем, что релаксационные процессы проявляются в полимерах тем отчетливее, чем выше температура. Так, по мере перехода к высоким температурам в микрообъемах перенапряжения проявляется вынужденная эластическая деформация. Вначале этот релаксационный процесс приводит к высокоэластическим деформациям в местах концентрации напряжений, главным образом у вершины микротрещин (термо-флуктуационно-релаксационный ме.ханизм), а затем при более высоких температурах — к образованию трещин серебра , стенки которых связаны между собой микротяжами (релаксационный локальный механизм разрушения). Выше температуры стеклования в высокоэластическом состоянии господствующими являются релаксационные процессы и механизмы разрушения приобретают резко отличительные черты (в табл. 11.2 — вязкоупругий механизм разрушения). Здесь в местах концентраций развивается локальное вязкое течение, которое приводит к образованию так называемых надрывов , являющихся аналогами трещин в хрупком состоянии. На схеме прочностных состояний (рис. 11.4) указаны области действия различных механизмов разрушения некристаллических полимеров, а также область пластического состояния между температурой пластичности и температурой текучести Т . Разрушение в [c.289]

    Меркаптаны могут быть использованы и в других областях, например бифункциональные меркаптаны в качестве сшивающего агента при получении каучуков и других пластических масс. Добавка 0,5—10% алкилмеркаптана позволяет значительно снизить вязкость регенерируемой резины. Алкилмеркаптаны могут быть использованы в качестве антиокмщантов так, добавка 3—5% додецилмеркаптана в полиэтилен и полипропилен защищает полимер от окисления и разрушения при -облучении. Введение От 1 до 10% гексадецилмеркап-тана в смазочные масла позволяет предотвратить повышение их вязкости иод действием радиации [24]. [c.29]

    Под гомогенизацией понимают процесс перемешивания, в котором ютвуют частицы размером < 1 мкм. Ранее этим термином обычно )деляли получение однородного вещества, которое имеет во всем ме, например, равномерную температуру или другие постоянные йства. Исходя из этого, в технологии пластических масс известны удельные процессы гомогенизации на молекулярном и кристалличе-рсом уровнях, обозначаемые как разрушение геликов и рафинирование . Гелики , или включения , представляют собой отдельные ча- цы гомогенного в остальной массе полимера, трудно или вообще поддающиеся переработке при обычных условиях и приводящие й возникновению дефектов в конечном продукте. Как правило, это молекулярные группировки сетчатой структуры, пространственно сшитые кислородными мостиками, которые чаще всего возникают В полиэтилене и полипропилене. Подобные сетчатые образования / югут приобретать большие (вплоть до макроскопических) размеры. В пластифицированном поливинилхлориде (ПВХ) или пластифицированном ацетате целлюлозы гелики образуются, как правило, ]В обедненных пластификатором ороговевших местах. Под разрушением геликов в этом случае понимают уничтожение описанных частиц воздействием сдвиговых усилий. [c.9]

    Кривые растяжения линейных полимеров при низких и высоких температурах в области высокой эластичности принципиально различаются. Выше некоторо11 температуры (температуры пластичности) полимер представляет собой пластичный материал с характерной диаграммой растяжения (р 1с. 37). До точки Л полимер испытывает практически только высоко-эластическую деформацию. Напряжение с , соответствуюш,ее точке А, есть предел текуче- сти. При напряжениях, превышающих о , одновременно с вы-сокоэластической развивается пластическая деформация. Равномерное развитие остаточной деформации вдоль образца и по его сечению происходит до тех пор, пока не образуется сужение (точка 5). После этого напряжение возрастает, главным образом в сужении. Затем наступает разрыв (точка С). Разрушение на определенной стадии развития сужения наступает потому, что течение в сужении не может развиваться неограниченно, так как ориентация молекул приводит к резкому возрастанию вязкости материала в сужении. [c.75]

    Пластический разрыв полимеров внешне сходен с разрывом вязких металлов. Как и у металлов, плa тичe кий разрыв полимеров наблюдается в ограниченной области скоростей деформации или времени действия нагрузок. При малой нагрузке или малой скорости растяжения происходит переход к высокоэластическому разрыву, характерному для резин. Это объясняется тем, что при напряжениях ниже предела текучести сужений не образуется и пластический разрыв переходит в высокоэластичеокий, что как раз и объясняется наличием в каучуках пространственной сетки, образованной временными узлами. Переход через предел текучести связан с преодолением и разрушением этих узлов. [c.121]

    При температурах выше Г л (так обозначается температура, при которой предел текучести становится равным разрушающему напряжению при высокоэластическом разрыве) происходит в основном пластическая деформация, хотя частично развивается и высокоэластическая. В ходе пластической деформации образуется шейка, в которой и происходит разрушение образца. Пластическое и вьшужденноэластическое разрушение линейных полимеров отличаются друг от друга тем, что напряжение, при котором происходит пластический разрыв, обычно на несколько [c.115]

    При более детальном исследовании временной зависимости прочности кристаллических полимеров таких, например, как полиэтилен, выяснилось, что утрата эксплуатационных свойств происходит не только при хрупком разрушении (разделении на части), но и вследствие ползучести, образования шейки и других явле-—ний, объединяемых под названием пластического разрыва. В по-следнем случае разрушению предшествует ползучесть и образование шейки, рассматриваемые как начальные стадии разрушения. [c.143]


Смотреть страницы где упоминается термин Полимеры, разрушение пластическое: [c.129]    [c.129]    [c.392]    [c.318]    [c.187]    [c.200]    [c.200]    [c.360]    [c.334]    [c.352]    [c.234]   
Структура и прочность полимеров Издание третье (1978) -- [ c.115 ]




ПОИСК





Смотрите так же термины и статьи:

Пластическая



© 2024 chem21.info Реклама на сайте