Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутилен переработка

    Для производства синтетических каучуков применяют соединения с сопряженной системой двойных связей дивинил (1,3-бутадиен), изопрен, хлоропрен и с одной двойной связью изобутилен, стирол, а-метилстирол, нитрил акриловой кислоты и др. Большинство из этих соединений образуется дегидрированием соответствующих углеводородов, содержащихся в промышленных нефтяных газах, попутных газах, газовом бензине, некоторых фракциях переработки нефти, а также синтетически (например, этилбензол и изопропилбензол). Получение дивинила осуществляется контактным разложением этилового спирта, а также дегидрированием бутана и бутиленов в одну или две стадии. Но наиболее экономичным методом получения бутадиена является его выделение из газов пиролиза нефтяного сырья. [c.174]


    В нефтях крайне редко и в незначительных количествах встречаются олефины. Они были обнаружены, например, в бакинской, пенсильванской, галицийской, эльзасской и некоторых других нефтях. Большое количество олефинов и некоторых других непредельных углеводородов появляется в продуктах деструктивной переработки нефти. Эти углеводороды отличаются высокой реакционной способностью и поэтому легко полимеризуются, осмоляются, что приводит к снижению срока службы и хранения нефтепродуктов. Непредельные углеводороды являются нежелательными компонентами моторных топлив и смазочных масел. Многие непредельные углеводороды — ацетилен, этилен, пропилен, бутилен, бутадиен — получили широкое применение в производстве полиэтилена, полипропилена, синтетического спирта и каучука, пластических масс и других продуктов. [c.24]

    При крупных масштабах производства жидкие продукты пиролиза, ранее считавшиеся отходами, превратились в целевые их переработка позволяет получить целую гамму ценных для народного хозяйства продуктов. Например, на установке мощностью 300 тыс. т этилена в год наряду с этиленом получается 130—140 тыс. т пропилена 40—45 тыс. т бутадиена, 45—50 тыс. т бутиленов, 110—120 тыс. т бензола, 8—10 тыс. т циклопентадиена, 5—7 тыс. т изопрена, 16—18 тыс. т нефтеполимерных смол и 40— 45 тыс. т сырья для производства технического углерода [11 ]. Поэтому пиролиз рассматривается не только как источник производства этилена и пропилена, но и как способ получения бутадиена, изопрена, циклопентадиена, стирола, бензола, нафталина и других продуктов, конкурентноспособный по отношению к традиционным методам их синтеза. [c.32]

    Как правило, не все количество фракции С может быть присоединено к одновременно получаемому бензину каталитического крекинга для изготовления моторного топлива с нормированной упругостью паров. Избыточные количества фракции С4 обычно направляют или на установки каталитического алкилирования (для производства алкилата из изобутана и бутиленов), или на установки каталитической полимеризации (для приготовления полимер-бензина). Часто не менее двух третей бутан-бутиленовой фракции каталитического крекинга являются избыточными и подлежащими переработке в полиме .>-бензин или в алкилат. [c.233]

    Бутилены. Основным применением бутиленов является переработка их при помощи алкилпрования и полимеризации в компоненты моторных топлив. Из бутиленов получают также растворители. Значительная часть бутиленов перерабатывается в бутадиен. Из бутилена получают вторичный бутиловый спирт и метил- [c.78]


    При любом из двух разобранных вариантов переработки нефти следует предусматривать процессы по производству сырья для нефтехимической промышленности этилена, пропилена, бутиленов, бен- юла, толуола, ксилолов и др. Из гоДа в год увеличивается доля нефти, используемой как сырье для нефтехимической промышленности. [c.152]

    Пиролиз бензина. Последними исследованиями ряда институтов и лабораторий было показано, что наиболее ценные продукты для химической переработки получаются при пиролизе прямогонных бензиновых фракций, атакже газоконденсатного и газового бензинов. При этом, наряду с этиленом и пропиленом, получается значительное количество бутиленов, дивинила и ароматических углеводородов. Разработан процесс каталитического облагораживания легкого масла из смол пиролиза, позволяющий получить значительные количества ароматических углеводородов, кроме того, смолы пиролиза можно переработать в высококачественные полимерные соединения, находящие применение в производстве облицовочных плит и других строительных материалов. [c.314]

    Один из наиболее ранних промышленных процессов переработки газа — получение изооктана методом каталитической полимеризации бутиленов и последующего гидрирования октиленов. Установки этого типа строили на базе процесса термического крекинга в середине 30-х годов, несколько позднее, по мере развития процесса каталитического крекинга, они стали уступать место установкам каталитического алкилирования. [c.17]

    Переработка бутиленов и дивинила—из выделяемой фракции извлекается дивинил и изобутилен н-бутилены дегидрируются в дивинил, таким образом вся фракция перерабатывается в дивинил и изобутилен, являющиеся исходными мономерами для производства синтетического каучука. [c.316]

    Оптимальной температурой полимеризации бутиленов является 170—180° С совместная полимеризация углеводородов j —С, осуществляется при несколько более высоком температурном режиме и, наконец для переработки пропан-пропиленовой фракции требуется температура 220—230° С. Указанные температуры могут несколько колебаться, в зависимости от принятого в системе давления, активности катализатора и заданной глубины превраи ения. Повышение температуры утяжеляет фракционный состав полимербензина. [c.324]

    Увеличение производства дивинила из бутана и максимальная утилизация пиролизной бутилен-дивинильной фракции позволит отказаться от процесса контактного разложения спирта в дивинил и высвободить значительные количества этилового спирта, а в случае уменьшения спроса на него направить этилен на выработку других ценных продуктов—полиэтилена, окиси этилена и продуктов ее переработки. [c.367]

    Исходные вещества — простые углеводороды метан, этилен, пропилен, бутилен, ацетилен, бензол, толуол и др., являющиеся основным сырьем органического синтеза, получаются при химической переработке газообразных, жидких и твердых видов топлива. В настоящее время многие из перечисленных исходных веществ выпускаются десятками и сотнями тысяч тонн. [c.160]

    Каталитический крекинг сыграл выдающуюся роль во время второй мировой войны — иа базе бензина каталитического крекинга было налажено массовое производство высокооктанового авиационного топлива. В этот же период часть установок работала на режиме глубокого превращения сырья с целью получения больших выходов газа, богатого бутиленом, который использовался для производства бутадиенового каучука. В качестве сырья применяли керосино-газойлевые фракции. По окончании войны, когда потребность в авиационном бензине упала, а спрос на керосино-газойлевые дизельные фракции возрос, установки каталитического крекинга перевели на режим переработки утяжеленного сырья с целью получения в качестве основного продукта высокооктанового автомобильного бензина. В настоящее время в отечественной и зарубежной [c.16]

    В газе термического крекинга содержатся предельные (от метана до бутана) и непредельные (от этилена до бутиленов) углеводороды, водород и серово.дород. Соотношение компонентов газа зависит от температуры и давления процесса. Состав газа термического крекинга приведен в табл. 15 (см. гл. УП1). Газ термического крекинга направляется для дальнейшей переработки на газофракционирующую установку. [c.184]

    Для производства полимерных материалов необходимы следующие непредельные углеводороды этилен, пропилен, бутилен, пентен, ацетилен, пропин, пропа-диен, бутадиен и др., а также синтез-газ (окись углерода и водород) и чистый водород. Исходными веществами являются природные и попутные газы, нефть, твердые горючие ископаемые и продукты их переработки. [c.7]

    Газ, отделившийся от крекинг-бензина в газоотделителе 11, смешивается с газом, идущим из первого газоотделителя 7, и поступает в нижнюю часть абсорбера 12. На верхнюю тарелку абсорбера насосом 38 подается в качестве абсорбента охлажденная флегма, которая извлекает из газа бензиновые углеводороды. Сухой газ из абсорбера направляют в газовую сеть через регулятор давления, поддерживающий требуемое давление во всей системе. Газ с крекинг-установок поступает для дальнейшей переработки на газофракционирующие установки, где из него выделяют фракции, содержащие наиболее ценные высокооктановые углеводороды изобутап, нормальный бутилен, изобутилен и. др. Газ, лишенный ценных компонентов, используют как топливо. [c.244]


    Предложен нефтехимический вариант процесса нефтепереработки [14], обеспечивающий максимальные выходы основных продуктов нефтехимического сырья олефинов (47,4—52,2%) и ароматических углеводородов (9,8—10,9%), сырья для производства сажи и игольчатого кокса (смесь пиролизной смолы и тяжелого дистиллята каталитического крекинг-мазута). Строго говоря, этот вариант нельзя отнести к процессам переработки тяжелых нефтяных остатков, это скорее процесс безостаточной комплексной переработки нефти, как бы в обход процессов, ведущих к созданию тяжелых остатков. В основе его лежит несколько модифицированных технологических процессов, широко применяемых в современной нефтеперерабатывающей промышленности. Конечный (хвостовой) продукт процесса прямой перегонки пефти (мазут) становится сырьем для второго процесса — процесса каталитического крекинга. Продукты прямой атмосферной перегонки, выкипающие до 343° С, подвергаются пиролизу для получения олефинов. Прямогонный (60%-ный) мазут подвергается каталитическому крекингу на цеолитном катализаторе с резко выраженной крекирующей (и слабее — дегидрирующей) активностью. Обычно в качестве сырья для каталитического крекинга берут дистиллятные фракции нефти, чтобы избежать интенсивного закоксовывания катализатора, обусловленного наличием в сырье смолисто-асфальтеновых веществ нефти. Здесь не боятся интенсивно протекающего процесса коксования, так как выжиг кокса служит источником энергии для компенсации затрат энергии на осуществление процесса крекинга, а также для производства технологического пара. Кроме того, интенсивно протекающий процесс коксования в сильной степени освобождает сырье от асфальтенов и конституционно связанных с ним атомов металлов (V и N1). Процесс крекинга мазута осуществляется в системе флюид. Он характеризуется высокими выходами пропилена и бутиленов, а также легких и средних дистиллятных фракций, которые после гидроочистки и освобождения от содержащихся в них ароматических углеводородов поступают на пиролиз. Тяжелые дистилляты могут быть использованы как ко- [c.251]

    Производство малеинового а нгидрида окислением бутилена.. Как известно, малеиновый ангидрид в настоящее время получают окислением бензола кислородом воздуха в присутствии катализатора—пятиокиси ванадия, аналогично получению фталевого ангидрида окислением нафталина. Процесс этот весьма сложен и идет с низкими выходами порядка 50% от теоретического. В последнее время исследована возможность получения малеинового ангидрида окислением бутилене. В создаваемом комплексе нефтехимических производств намечается осуществить синтез малеинового ангидрида из бутилена. Дальнейшая переработка его будет вестись путем совместной конденсации с ( алевым ангидридом и дизтиленгликолем. [c.372]

    Если же включить в состав завода установки коксования, каталитического крекинга, каталитического риформинга, алкилирования изобутана бутиленами и полимеризации пропиленовой фракции крекинг-газов, то можно получить автомобильный бензин (до 205° С) с октановым числом 72, а выход его составит 30,5% на нефть. При этом же варианте переработки нефти на заводе получится около 6,4% на нефть ценных углеводородных газов, которые можно использовать как сырье для химической промышленности (не считая 0,6% сероводорода для производства элементарной серы или серной кислоты). [c.12]

    В отличие от попутного нефтяного газа газы крекинга содержат значительное количество (до 40% об.) алкенов от этилена до бутиленов. Разделение крекинг-газа на фракции совмещается с процессом стабилизации крекинг-бензина, то есть процессом извлечения из него растворенных газообразных углеводородов. Подобная переработка крекинг-газа и крекинг-бензи-на осуществляется на газофракционирующих установках (ГФУ) конденсационно-компрессионного или абсорбционного типа. На рис. 9.4 представлена принципиальная схема этого процесса, а на рис. 9.5 приведена технологическая схема ГФУ [c.200]

    Характерно, что отношение констант образования бензина и разложения сырья незначительно изменяется при изменении состава сырья и практически не зависит от скорости образования кокса [21]. В процессе переработки малосернистого сырья с низким отношением А Н образуется меньше кокса и это позволяет на промышленных установках применять более жесткие режимы и получать больше бензина лучшего качества (с более высоким октановым числом), больше бутиленов при одинаковом углеводородном составе сырья. [c.43]

    Промышленность химической переработки нефти зародилась в США в 1919—1920 гг. своим возникновением она обязана исследовательским работам, проведенным во время первой мировой войны. В двадцатых-тридцатых годах в этой промышленности развивались главным образом методы производства и использования простейших олефинов — этилена, пропилена и бутиленов. Этилен получали прямым крекингом жидких нефтяных фракций или пропана. Пропилен и бутилены получали либо одновременно с этиленом при этих прямых крекинг-процессах, либо выделяли как побочные продукты из газов при переработке нефти, в особенности после того, как внедрение термического риформинга, а позднее каталитического крекинга и каталитического риформинга приблизило химические процессы нефтепереработки к их промышленному осуществлению. [c.19]

    Начиная приблизительно с 1930 г. другая американская фирма стала выпускать на рынок продукты переработки бутиленов. [c.20]

    Широкое применение находят следующие схемы комплекс-ной переработки нефти, нефтепродуктов и газа комплексная переработка нефти в моторное топливо и масла, а также этилен, пропилен, бутилен и т. д., на основе которых получают полиэтилен, этиловый спирт, оксид этилена и др. комплексная переработка попутных нефтяных газов в топливный газ с химической переработкой продуктов отбензинивания и стабилизации также в нефтехимические продукты, что и при переработке нефти. [c.55]

    Изомеризация лежит в основе некоторых важных процессов переработки нсфтепрода ктов получение изобутана из нормального бутана и изобутнленов из бутиленов, изомеризация жидких парафи -нов и олефинов с целью улучшения детонационной стойкости моторных топлив, из01,1е 1изация нафтенов для увеличения ресурсов ароматических углеводородов и др. [c.61]

    Нефтезаводские газы образуются при термических и каталитиче ских процессах переработки продуктов перегонки нефти. Из них наиболее часто встречаются газы термического и каталитического крекинга, пиролиза и коксования тяжелых нефтепродуктов. Эти газы отличаются сравнительно высоким содержанием непредельных углеводородов этилена, пропилена и бутиленов, суммарное содержание которых достигает в отдельных случаях 40%. Искусственные газы, получаемые в результате термической переработки углей и сланцев, содержат водород, метан, окись углерода, непредельные углеводо-, роды (от этилена до бутиленов), а также двуокись углерода, кислород и азот. Эти газы, различные по калорийности, используются главным образом в качестве топлива. [c.15]

    Обычно жирный газ с установки каталитического крекинга поступает на абсорбционно-газофракционирующую установку, откуда отдельные фракции направляются на последующую переработку. Большей частью бутан-бутиленовая фракция является сырьем установки алкилирования, где из бутиленов и изобутана олучают алкил—бензиз — ценный компонент авиабензина. [c.62]

    Использование бутадиена. Достижения последних лет в производстве бутадиена, в особенности, на базе бутана и бутиленов, делают этот мономер (используемый в настоящее время в основном для производства синтетических каучуков) доступным для проведения многочисленных реакций с получением исходных продуктов для v v тeзa высокомолекулярных соединений (полимеров). ПриводV м некоторые направления переработки дивинила. [c.31]

    Низшие олефины. Олефиновые углеводороды от этилена до бутиленов при обычных условиях являются газами, амилены С5Н10— низкокипящими бесцветными жидкостями. Некоторые свойства этих углеводородов приведены в табл. 3. Из данных по критической температуре ясно, что этилен можно превратить в жидкость только при низких температурах и высоких давлениях, охладив, например, кипящим аммиаком. Другие газообразные олефины сл<ижаются под давлением уже при охлаждении водой. При сравнении олефинов с соответствующими парафинами видно, что этилен кигит ниже этана на 15°С, а пропилен — ниже пропана на 5,5 С (см. табл. 1, стр. 24). Это очень важно для процессов переработки, когда этилен (и с большей трудностью — пропилен) отделяют от соответствующих парафинов ректификацией. Температуры кипения бутиленов и бутанов очень близки, и для их разделения простая ректификация не пригодна. [c.33]

    Аналогично изопропиловому спирту прямой гидратацией н-бутиленов можно получать вгор-бутиловый сиирт. Существует н способ прямой гидратации изобутилена па еульфокатиопите, являющийся составной частью переработки С4-фракций и служащий для извлечения изобутилена. [c.194]

    Переработке ка компоненты моторных топлив и на продукты нефтехимического синтеза подвергаются большей частью относительно у жие фракции газа. Так, на установки каталитического алкилирования поступают фракции — изобутана, бутиленов и -бутана для получе1щя кумола бензол ал-килируют фракцией -j крекипг-га-(ов и т. д. В зависимости от процесса последующей переработки углеводородов газа, к четкости их вы-делеиия из исходной смеси предъявляются различные требования. [c.305]

    В присутствии уже рассмотренных катализаторов изобутан можно алкилировать пропиленом, пентенами и даже олефиновыми углеводородами с большим молекулярным весом /22/. Процесс проводится в тех же самых условиях в первую очередь потому, что эти алкены обычно смешиваются с бутиленами и полученная смесь перерабатывается на установках, предназначенных для переработки бутиленов. При этом неиз- бежно возрастает расход катализатора /увеличивается вклад реакции (6)/ и падает октановое число продуктов /24/. Около 10% пропилена уходит на взаимодействие с изобутаном. [c.144]

    Относительно мягкий технологический режим работы установок 43-102 в первый период внедрения цеолитсддержащего катализатора привел к снижению выхода бутиленов в среднем в 1,2 раза по сравнению с аморфным катализатором при переработке тяжелого сернистого сырья (рис. 6.4). Однако по мере оптимизации условий крекинга на цеолитсодержащем катализаторе выход -бутиленов при переработке тяжелого сернистого сырья, как видно из рис. 6.4, непрерывно возрастает. На установке 43-102, перера--батывающей малосернистую керосино-газойлевую фракцию, иссле- [c.225]

    В то же время группа ученых под руководством профессора Б. В. Бызова предложила другой путь синтеза мономера— дегидрирование на специальном катализаторе н-бутиленов, вьвде-ляемых из газов крекинга нефтяного сырья. Это был красивый, чисто нефтехимический, но по тем временам преждевременный путь. Задачей же конкурса бьио выбрать метод, который позволил бы начать немедленное строительство крупных заводов. Главным был вьгагрыш времени, ликвидация кабальной зависимости от капиталистов. А состояние переработки нефти в СССР в то время не позволяло обеспечить газовым сырьем производство каучука в необходимых масштабах. [c.123]

    За крупнотоннажным производством продуктов химической переработки этилена вскоре последовало промышленное использование в качестве химического сырья пропилена и бутиленов. Эти олефинь[ подвергали гидратации по тому же методу, что и этилен, а полученные спирты переводили в кетоны, которые вместе с их производными также нашли себе применение в автомобильной и лакокрасочной отраслях промышленности. [c.20]

    На рис. 5.8 - 5.11 приведены схеиы получения, переработки и использования этилена, пропилена, бутиленов, амиленов, ацетилена, ароматических углеводородов и их производных. [c.128]

    АО Салаватнефтеоргсинтез (бывший Салаватский нефтехимкомбинат) является крупным производителем нефтехимического сырья (этилен, пентан, изопентан, бутан, бутилен-дивиниловая и пентан-изопентановая фракции, бензол, толуол, смола пиролиза и другие) и нефтехимических продуктов (полиэтилен, полистирол, гликоли, спирты и другие). Салаватский комплекс выпускает и традиционный набор топлив (бензин, керосины, дизельное масло, мазут), имея мощность установок по первичной перегонке нефти 11.5 млн. т/год, глубину переработки нефти — 79.1% (один из лучших показателей среди российских заводов). [c.31]

    Сжиженные газы состоят в основном из пропана и бутана (пзобутана и п-бутана). При получении этих продуктов из попутных газов, газов копденсатцых месторождений и некоторых других источников в качестве примесей могут находиться небольшие количества этана, пентана п других предельных углеводородов. В том случае если сжиженные газы получаются из газов термической и термокаталитической переработкой жидкого и твердого топлива (крекинг, пиролиз, коксование и др.), они в небольших количествах могут содержать непредельные углеводороды алифатического ряда (этилен, пропилен, бутилен и др.). [c.5]

    Дальнейшая интенсификация действующих производств бутадиена предусматривается за счет перехода на более эффективные катализаторы на первой и второй стадиях, а рост выпуска бутадиена будет обеспечиваться самым экономичным путем — переработкой бутилен-бутадиеновой фракции пиролиза бензина в этилен. Б связи с организацией производства сополимерных каучуков озникла необходимость создания крупнотоннажного производства стирола, а-метилстирола, нитрила акриловой кислоты. В последнее время все возрастающее значение приобретают мономеры для синтеза каучуков специального назначения. [c.10]

    МНОГО этиленовых углеводородов получается при крекинге и пиролизе углеводородов нефти и содержится в крекинг-бензинах (стр. 61). Важным источником этилена, пропилена и бутиленов служат получающиеся при этом газы (газы крекинга) в табл. 8 приведены данные о содерхонии в них непредельных углеводородов в зависимости от вида переработки нефтепродуктов. [c.75]

    Путем крекинга в настоящее время получают более половины всего мирового производства бензина. Не меньшее значение имекя и простейшие алкены (этилен, пропилен, бутилен), входящие в состав продуктов крекинга. О составе углеводородных газов, образующихся при различных способах переработки нефти, дает представление таблица 9. [c.136]


Смотреть страницы где упоминается термин Бутилен переработка: [c.22]    [c.261]    [c.355]    [c.61]    [c.4]    [c.107]    [c.8]    [c.21]    [c.78]    [c.63]   
Основы технологии нефтехимического синтеза (1965) -- [ c.28 ]




ПОИСК





Смотрите так же термины и статьи:

Бутилен



© 2025 chem21.info Реклама на сайте