Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пассивность механизм возникновения

    Природа Фладе-потенциала ф (потенциала пассивации) важна для понимания механизма возникновения пассивного состояния. Фладе-потенциал соответствует потенциалу оксидного электрода, определяющемуся суммарной реакцией [c.164]

    Такие/же два подхода к объяснению явлений пассивности можно проследить и во многих других вопро сах. Прежде всего это относится к самому механизму возникновения пассивного состояния. [c.119]


    Отработка метода в производственных условиях позволила создать некоторые типовые унифицированные узлы промышленной системы анодной защиты, которые закладываются в проекты. Некоторая несогласованность между исследователями в изложении механизма возникновения пассивного состояния металлов не влияет на возможность использования этого явления в технике. [c.7]

    Глава 1. Механизм возникновения пассивного состояния. ... [c.3]

    МЕХАНИЗМ ВОЗНИКНОВЕНИЯ ПАССИВНОГО СОСТОЯНИЯ 1. АНОДНАЯ ПАССИВАЦИЯ [c.9]

    Природа потенциала пассивации фп очень важна для понимания механизма возникновения пассивного состояния. По мнению Фет-тера [13, с. 831], наиболее правдоподобно, что потенциал пассивации соответствует потенциалу окисного электрода, определяющемуся суммарной электродной реакцией [c.17]

    Явление пассивности имеет большое практическое значение, так как на нем основано создание сплавов, на поверхности которых в условиях эксплуатации возникала бы стабильная пассивирующая пленка. Изучению механизма возникновения и природы пассивного состояния металлов посвящено очень много работ русских и иностранных исследователей. Еще Фарадей высказал предположение, согласно которому пассивное состояние вызывается присутствием [c.56]

    Внутреннее управление является пассивным. Это означает, что в реально существующей системе поддержание стационарного равновесного состояния или возникновение характерных ответов системы на внешнее возмущение не требует какой-либо метаболической работы. Пассивные механизмы регуляции свойственны не только биохимическому уровню организации биосистем. Поддержание нормальной пространственной ориентации у рыб обеспечивается пассивным механизмом регуляции — центр плавучести и центр тяжести не совпадают, так что при отклонении осевой плоскости рыбы от вертикальной возникает крутящий момент, возвращающий тело в нормальное положение. [c.23]

    В теоретической биологии складывается противоположная традиция пассивные механизмы относятся к системам управления. Термин пассивная система управления введен У. Р. Эшби 259] и вошел в учебники по теории управления для биологов 130]. Пассивный характер управления в живых системах означает, что если заданы всеобщие химические и физические законы, а также компоненты и организация живой системы..., то для поддержания стационарного состояния или возникновения характерных ответов системы не требуется какой-либо метаболической работы [216, стр. 15]. [c.24]


    По второму (электрохимическому) варианту адсорбционной теории Коррозии механизм возникновения пассивности объясняется не уменьшением химической активности поверхностных атомов металла, но электрохимическим торможением анодного процесса растворения металла. При эгом варианте также пет необходимости связывать наступление пассивности с образованием обя ,ательно сплошного мономолекулярного адсорбционного слоя кислорода [23, 24]. [c.303]

    Такое представление о механизме возникновения анодной пассивности позволяет рассчитать потенциал, до которого должен быть заполяризован анод для появления термодинамической возможности пассивирования. Очевидно, это будет потенциал, необходимый для протекания анодного процесса образования окисных или гидроокисных пленок (реакций (1) или (2)). Этот потенциал может быть рассчитан из термодинамических данных. Рассмотрим для примера поведение никелевого электрода при его анодной поляризации в кислой среде. Если в кислой среде никелевый электрод находится в активном состоянии, то анодный процесс будет  [c.307]

    Таким образом, отмечается некоторая общность механизмов возникновения и поддержания пассивного состояния с механиз мом окисления металлов в газовой фазе, особенно исходя из ионно электронной теории про цесса газовой коррозии [c.312]

    Следующей причинои возможного торможения анодного проце .а в почвенном электролите является анодная пассивность. Механизм анод ного пассивирования железа в почве будет близок к анодному пассивированию в других электролитах, т е. можно полагать, что наличие активных ионов, например ионов хлора или других галоидных ионов, будет препятствовать возникновению анодной пассивности и, наоборот, наличие окислителей (в частности, хорошая аэрация поверхности металла кислородом воздуха) будет облегчать установление анодной пассивности железного электрода. По этой причине в почвах очень легких (песок) и, особенно, при относительно невысокой их влажности, т. е в условиях значительной проницаемости для кислорода воздуха, анодный процесс может в заметной степени тормозиться вследствие перехода железа в пассивное состояние. Предварительное экранирование поверхности анода за счет осаждения на анодной поверхности нерастворимых продуктов коррозии, приводящее к уменьшению активной анодной поверхности, будет облегчать последующее наступление анодной пассивности на незатянутых продуктами коррозии участках. [c.360]

    Алюминий склонен к образованию питтинга в водах, содержащих ионы С1 . Это особенно сильно проявляется в щелях или застойных зонах, где пассивность нарушается в результате образования элементов дифференциальной аэрации. Механизм питтингообразования аналогичен механизму для нержавеющих сталей, описанному в разд. 18.4.1 и в этом случае наблюдается критический потенциал, ниже которого питтинг не возникает [4, 5]. При наличии в воде следов ионов Си + (даже в количестве 0,1 мг/л) или Ре + они реагируют с алюминием, и на отдельных участках отлагаются металлическая медь или железо. Эти металлы выполняют роль катодов, сдвигая коррозионный потенциал в положительном направлении до значения критического потенциала питтингообразования. Таким образом, они стимулируют как возникновение питтинга, так и его рост под действием гальванических [c.342]

    Что такое пассивность металлов и каков механизм ее возникновения Приведите примеры металлов, склонных к пассивированию. [c.405]

    Заслуживают также внимания работы Сухотина [33] и Нова-ковского [34], в которых убедительно показано, что имеется глубокая аналогия между электрохимическими свойствами магнетита и пассивирующей пленки на железном электроде. Сходство проявляется в том, что как магнетит, так и пассивное железо растворяются по электрохимическому механизму, а выход катионов в раствор регулируется свойствами нестехиометрического слоя окисла, возникающего на магнетите [34]. В этих работах получено много доказательств в пользу того, что пассивное состояние ряда металлов обусловлено возникновением фазовых пленок. [c.26]

    Эта теория, не отрицая возможности пленочного торможения анодного процесса при возникновении явления пассивности, утверждает, что основной причиной торможения анодного процесса является более тонкий электрохимический механизм. Предполагается, что адсорбция атомов кислорода (а иногда и других атомов) ведет к такой перестройке скачка электродного потенциала двойного слоя, которая сильно затрудняет протекание анодного процесса растворения металла . [c.16]

    Необходимо указать, что пленочная и адсорбционная теория не противоречат, но лишь дополняют одна другую. По мере того, как адсорбционная пленка, постепенно утолщаясь, будет переходить в фазовую пленку, на торможение анодного процесса вследствие изменения строения двойного слоя постепенно будет накладываться также торможение этого процесса, вызванное затруднением прохождения ионов непосредственно сквозь защитную пленку. Таким образом, более правильно говорить об объединенной пленочно-адсорбционной теории пассивности металлов. Несомненно, что в зависимости от физических внешних условий окружающей среды и характера взятого металла возможны самые различные градации толщины защитных слоев. Исходя из анализа многочисленных экспериментальных исследований, можно, по-видимому, полагать, что в отдельных случаях, особенно в случае пассивирования благородных металлов, например платины, воздействие кислорода может и не завершаться образованием фазовых слоев, но останавливаться на стадии чисто адсорбционного кислородного слоя. Однако в других случаях за стадией адсорбции кислорода следует стадия образования сплошной пленки адсорбционного соединения и далее — пленки фазового окисла. При этом не обязательно, чтобы окисел, образующий пленку, был вполне иден-, тичен с существующими компактными окислами для данного ме- талла. После возникновения подобного защитного слоя (пленки) ч существенное и даже в некоторых условиях превалирующее зна-чение может иметь торможение анодного процесса, определяемое <3 пленочным механизмом. [c.17]


    Некоторые ингибиторы, не являясь непосредственно окислителями, тем не менее способствуют увеличению адсорбции растворенного в коррозионной среде кислорода и, таким образом, приводят к возникновению анодной пассивности. Такой механизм действия, в частности,предполагается у некоторых органических ингибиторов тина бензоатов и других. Торможение анодного процесса может вызываться как сокращением анодной поверхности вследствие ее экранирования или ограничения диффузионных возможностей для анодных процессов (в случае образования более толстых защитных пленок), так и путем увеличения перенапряжения протекания анодного растворения из-за уменьшения тока обмена для процессов Ме Ме + или соответствующего изменения скачка потенциала в двойном слое, что относится к образованию более тонких хемосорбционных слоев окислителя или кислорода. [c.189]

    Местные нарушения сплошности защитных пленок также являются причиной возникновения локальной коррозии. Чаще всего этот механизм реализуется на сплавах, склонных к пассивации. Нарушение по каким-либо причинам пассивного состояния на отдельном участке поверхности приводит к тому, что анодные реакции концентрируются на этом месте и протекают с относительно большой скоростью. Характерным локальным процессом такого вида является питтинговая коррозия в ее развитии играет большую роль и местное изменение объемных свойств электролита. [c.14]

    Адсорбционная теория в возникновении пассивного состояния металла главную роль отводит образованию на его поверхности более тонких адсорбционных защитных слоев молекулярного, атомарного и отрицательно ионизированного кислорода, а также гидроксильных анионов, причем адсорбированные частицы образуют монослой или долю его. Процесс образования адсорбционного пассивирующего слоя может происходить одновременно с анодным растворением металла и иметь с металлом общую стадию адсорбции гидроксила. Существует два варианта объяснения адсорбцион ного механизма пассивности — химический и электрохимический [177]. Согласно химическому варианту адсорбированный кислород насыщает активные валентности поверхностных атомов металла, уменьшая их химическую активность. Электрохимический вариант объясняет возникновение пассивности электрохимическим торможением анодного процесса растворения. Образовавшиеся на поверхности адсорбционные слои (например, из кислородных атомов), изменяя строение двойного слоя и смещая потенциал металла к положительным значениям, повышают работу выхода катиона в раствор, вследствие чего растворение металла затормаживается. Адсорбционная теория сводит пассивирующее действие адсорбированных слоев к таким изменениям электрических и химических свойств поверхности (из-за насыщения свободных валентностей металла посторонними атомами), которые ведут к энергетическим затруднениям электрохимического процесса. [c.29]

    Безактивационный механизм самодиффузии в жидкостях также основан на представлении о коллективном движении частиц в жидкости и подобен дырочному механизму диффузии в кристаллах. Предполагается, "что перемещение рассматриваемой частицы из одного положения равновесия в соседнее имеет не активный, а пассивный характер, т. е. обусловливается не случайным увеличением кинетической энергии рассматриваемой частицы при неизменном расположении окружающих, а случайным раздвиганием последних, т. е. образованием в непосредственной близости к данной микрополости (дырки), в которую она может перейти практически без всякой энергии активации, после чего дырка, оставленная ею на прежнем месте, захлопывается. С этой точки зрения, энергию активации для диффузии данной частицы следует трактовать как энергию, необходимую для возникновения в содержащей ее жидкости микрополости некоторых минимальных [c.316]

    Получены и прямые доказательства такой сложной структуры пассивирующего слоя как злектронографическими методами, так и специальными. Существуют также и несколько иные предположения относительно механизма возникновения пассивного состояния. Например, существует точка зрения, что пассивное состояние может наступать при наличии на поверхности одного гидратированного слоя РегОз 0,39Н20 или РеОСЮН. [c.165]

    Несколько иную точку зрения на механизм возникновения пассивного состояния высказал Сато с сотр. [17]. По его мнению, двухслойная структура пассивирующего окисла не обязательна. Пассивное состояние может наступать и при наличии на поверхности одного гидратированного слоя РегОз-0,39Н20. Обнаруженные же при кулонометрических исследованиях две остановки потенциала можно объяснить восстановлением гидратированного окисла до окисла более низкой валентности, а далее — до металла. [c.19]

    По второму (электрохимическому) варианту адсорбционной теории коррозии механизм возникновения пассивности объясняется не уменьшением химической активности поверхностных атомов металла, но электрохимическим то рможением анодного процесса растворения металла. При этом варианте также нет необходимости связывать наступление пассивности со сплошным мономолек> лярным адсорбированным слоем кислорода [81, 82]  [c.185]

    Аннотация Предложен молекулярно-кинетический механизм возникновения диффузного градиента концентрации в нерастворяющем слое водного раствора на границе с поверхностью твердого тела. Сущность его заключается в том, что молекулы растворенного вещества, подходя к стенке на расстояние меньшее длины их активированного скачка, стремятся активно удалиться от нее, т.к. при этом изменяется соотношение длины скачка в направлении к стенке и от нее. При этом молекулы воды испытывают такую же силу, отталкивающую их от стенки, однако, в отличие от них ведут себя как пассивная среда, которая первой стремится заполнить пространство, образовавшееся после удаления молекул растворенного вещества. Это названо эффектом отталкивания молекул от стенки. На границе лиофильной поверхности твердого тела с водным раствором существует тонкий слой жидкости толщиной в несколько молекулярных размеров, где наблюдается диффузное распределение растворенных в воде компонентов, а именно уменьшение их концентрации по направлению к этой поверхности нередко называемое отрицательной адсорбцией. Этот факт был известен еще в начале века для коллоидных систем. В дальнейшем на его основании А.В.Думанским (1937) были развиты представления о диффузном перастворяющем пограпичпом слое жидкости — лиосфере около коллоидных частичек. Б.В.Дерягиным (1986) на этой же основе развита теория о слое связанной жидкости и расклинивающем давлении тонких пограничных пленок около твердых поверхностей. [c.239]

    В определенных условиях на пассивирующихся металлах наблюдаются периодические колебания потенциала в гальваностатических условиях или колебания тока при Я=соп51. Это объясняется наличием падающей характеристики на поляризационной кривой пассивирующихся металлов, т. е. области с (д1 /дЕ)<С.О, и с закономерным переходом электрода из активного состояния в пассивное и обратно. Существует аналогия между периодическими электродными процессами и явлениями нервной проводимости. Например, активация определенного участка железной проволоки в азотной кислоте приводит к возникновению активационных волн, закон распространения которых вдоль проволоки имеет сходство с законом распространения нервного импульса (модель нервов Оствальда — Лилли). Поэтому периодические процессы при пассивации используются для моделирования механизма действия нервных клеток — нейронов. [c.371]

    Наличие фазово-выраженного оксида или другого соединения не исключает адсорбционного механизма пассивности. Вместе с тем возникновение пленок существенно изменяет условия взаиглодействия между металлом и электролитом, в том числе и адсорбционное взаимодействие. Пленка может образоваться также в результате пересыщения раствора в прианодной зоне плохо или хорошо растворимым соединением и его кристаллизации на аноде. Возможно также образование и кристаллизация гидроксида, оксида или основной соли на аноде в результате миграции ионов водорода из прианодного слоя. Так, на поверхности свинцового анода в серной кислоте во время электролиза образуются кристаллические зародыши твердой фазы РЬ804, которые разрастаются в сплошной изолирующий слой. Толщина этого слоя тем меньше, чем больше п.потность тока и концентрация серной кислоты, т. е. чем больше факторы, обусловливающие пересыщение. [c.367]

    В настоящее время полной ясности в понимании механизма растворения пассивного металла еще нет, но уже можно утверждать, что безусловно существует электрохимическое равновесие по кислороду между раствором и поверхностью пассивного металла. Это позволяет сделать вывод, что истинной причиной пассивности является понижение свободной энергии поверхностных атомов металла, которое происходит при окислении поверхности вследствие возникновения дополнительных прочных связей химического типа. Это резко повышает потенциальный барьер для ионизации металла и как бы делает металл более благородным. С этой точки зрения поверхностный слой пассивирующегося металла можно рассматривать как обратимую химическую систему металл— кислород — окисел, в которой термодинамические потенциалы каждого из компонентов могут менять- [c.440]

    Исследование механизма питтинговой коррозии показывает, что металл, на пассивной поверхности которого образуется питтйнг, во времени нестабилен [28]. Необходимым условием возникновения питтинговой коррозии являются наличие в коррозионной среде окислителя и активатора, создающих определенный окислительно-восстановительный потенциал системы. [c.166]

    Заканчивая краткий обзор теоретических представлений о механизме КР, можно заключить, что хотя еще не создана единая теория КР, большинство случаев КР в электролитах можно объяснить на основе механо-электрохимических представлений. В начальный период основную роль в возникновении первичной трещины играет хемосорбционное взаимодействие активных ионов среды на каких-то отдельных неоднородностях поверхности металла. Дальнейшее развитие трещины идет при непрерывном возрастающем влиянии активации анодного процесса механическим растяжением решетки в зоне острия трещины. Эта активация особенно велика, если исходное состояние металла соответствует пассивному состоянию, а наложение растягивающих усилий приводит к местной активации в вершине трещины. В конечный период нарастают механические разрушения и разрыв происходит при превалировании механического фактора. [c.68]

    По характеру взаимодействия с объектом различают пассивный и активный методы. Пассивный акустический метод предусматривает регистрацию упругих волн, возникающих в самом объекте. Шумы работающего механизма (особенно, если обеспечить регистрацию таких информативных параметров, как место их возникновения и амплитудно-частотная характеристика) позволяют судить о исправности или Неисправности механизма и даже о характере неисправности. Этот пассивный метод акустического контроля называют шумовибрационным. А ногие машины снабжают датчиками, регистрирующими уровень вибрации определенных узлов и прогнозирующими их работоспособность. Это вибрационный метод контроля или диагностики. [c.17]

    Ультразвуковая очистка возможна 1<ак в химически активных средах, так и в пассивных средах, не растворяю-ш,их загрязнения. В последнем случае эффект очистки несколько слабее. Механизм ультразвуковой очистки, обусловленный механическим воздействием химически пассивной среды, может быть объяснен разрушением (дроблением) пленки загрязнений, возникаюш,им в сипу появления ударной волны при аннигиляции кавитационных пузырьков вблизи места загрязнений, а также возникновением интенсивно колеблюш,ихся пузырьков, проникающих в поры, щели и зазоры между загрязнениями и твердой поверхностью очищаемой детали [177]. Такой механической очистке наиболее интенсивно подвергаются невязкие загрязнения. На очистку вязких загрязнений эффект кавитации влияет незначительно, так как в этом случае эластичная податливая пленка загрязнений растягивается и сжимается, повторяя форму возмущений поверхности колеблющихся пузырьков. [c.222]

    Существует большое число различных теорий для объяснения пассивного состояния металлов. Наиболее обоснованны и общепризнанны в настоящее время теории, объясняющие пассивное состояние на основе пленочного или адсорбционного механизма торможения анодного процесса растворения металла. Суждение М. Фарадея о механизме пассивности было сформулировано более 100 лет назад так [6] ...поверхность пассивного железа окислена или находится в таком отношении к кислороду электролита, которое эквивалентно окислению . Это определение не противоречит ни пленочному, ни адсорбционному механизму пассивности. Пленочный механизм пассивности металлов у нас последовательно развивался в работах В. А. Кистяковского [7], Н. А. Изгары-шева [8], Г. В. Акимова [9] и его школы [1, 5, 10—12], П. Д. Данкова [13], А. М. Сухотина [14] и др. за рубежом — в работах Ю. Эванса [15]. В последние годы пленочный механизм пассивности особенно был развит школой К. Бонхоффера (У. Франк, К. Феттер) [16—24] и другими исследователями [25—31]. Состояние повышенной коррозионной устойчивости объясняется ими возникновением на металле защитной пленки продуктов взаимодействия внешней среды с металлом. Обычно такая пленка очень топка и невидима. Чаще всего она представляет собой какое-то кислородное соединение металла. Таким образом, при установлении пассивного состояния физико-химические свойства металла по отношению к коррозионной среде заменяются в значительной степени свойствами этой защитной пленки. [c.15]

    Исследованию питтинговой коррозии посвящено очень много работ, в которых рассмотрен механизм питтингообразования и показано, что сплав, на пассивной поверхности которого образуется питтинг, во времени нестабилен [29—38]. Необходимым условием возникновения питтинговой коррозии является наличие в электролите окислителя и активатора, создающих определенный окислительно-восстановительный потенциал системы. [c.72]

    Таким образом, на основании рассмотренных представлений о причинах коррозионного растрескивания можно заключить, что еще не создана теория, которая бы полностью описывала процессы, происходящие при различных случаях коррозионного растрескивания. По-видимому,, больщинство случаев коррозионного растрескивания пассивных металлов и сплавов можно более исчерпывающе истолковать на основе объединенного механо-электрохимического механизма. В начальный период, основную роль в возникновении концентратора напряжений и нерерас- [c.113]

    С точки зрения термодинамики титан является очень неустойчивым металлом (его нормальный потенциал равен —1,63 в), а высокая коррозионная устойчивость титана в большинстве химических сред объясняется образованием на его поверхности заш,итных окисных пленок, исключаюш их непосредственный контакт металла с электролитом. Вследствие этого было интересно исследовать электрохимическое и коррозионное поведение титана в условиях поляризации его переменным током различной частоты, когда в катодный полупериод тока может происходить частичное или полное разрушение пассивного состояния, а в анодный полупериод — его возникновение. Подобные исследования кроме чисто научного интереса представляют, несомненно, и определенную практическую ценность, поскольку титан и его сплавы начинают все шире внедряться в технику как новый конструкционный материал с особыми свойствами и разносторонняя характеристика его коррозионных свойств в различных условиях становится необходимой. Помимо этого, можно полагать, что изучение электрохимических и коррозионных процессов путем наложения на исследуемый электрод переменного тока различной частоты и амплитуды при дальнейшем совершенствовании может явиться наиболее подходяш,им методом для исследования скоростей электродных процессов, а следовательно, и методом изучения механизма электрохимической коррозии и пассивности металлов. Цель настояш,ей работы — выяснение основных факторов, определяющих скорость коррозии титана под действием переменного тока, а также установление механизма образования и разрушения пассивирующих слоев, возникающих на поверхности титана [c.83]

    Вероятно, причина осложнений обменной реакции в случае ацетофенона связана с образованием в растворе двух форм анионов, различающихся по своей устойчивости — активной (неустойчивой), мгновенно нейтрализуемой по ходу процесса в изотопнозаме-щенный продукт [см. схему (II)] и пассивной, входящей в состав щелочноорганического соединения, в котором анионный центр настолько стабилизирован резонансом с ароматическим кольцом, что это обусловливает возникновение равновесия (А) на схеме (II) механизма реакции [c.30]


Смотреть страницы где упоминается термин Пассивность механизм возникновения: [c.88]    [c.27]    [c.221]    [c.238]    [c.315]    [c.51]    [c.130]    [c.81]   
Ингибиторы коррозии (1977) -- [ c.9 ]




ПОИСК





Смотрите так же термины и статьи:

Механизм возникновения ДЭС

Механизм пассивности

Пассивность

возникновение



© 2025 chem21.info Реклама на сайте