Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пропан окисление. в спирты

    Каталитическое окисление в жидкой фазе имеет то преимущество перед газофазным процессом, что позволяет более точно регулировать состав конечных продуктов [60]. Та1 , при окислепии н-бутана в жидкой фазе образуется в первую очередь уксусная кислота при полном отсутствии формальдегида. При окислепии же пропана в газовой фазе, напротив, образуются главным образом пропионовый альдегид, пропиловый спирт, ацетон, уксусный альдегид, уксусная кислота, формальдегид, метиловый спирт, окись пропилена, окись этилена. При окислении н-гексана теоретически можно получить около 60 различных продуктов окисления, не считая вторичных продуктов, образующихся за счет дальнейших реакций кислородсодержащих компонентов. Метан и этан не только содержатся в значительно больших количествах в природном газе, чем пропан или бутан, но они представляют интерес и для применения в качестве исходного сырья, так как нри окислении дают продукты более простого состава. Именно сложный состав продуктов газофазного окисления был причиной того, что внедрение этого процесса в промышленную практику сильно задержалось. [c.151]


    Окисление легких алканов. В промышленности окисляют главным образом метан, пропан и бутан. С корость окисления возрастает от метана к бутану. Трудность регулирования процесса связана с тем, что продукты окисления (спирты, альдегиды и кетоны) окисляются легче, чем исходное сырье. [c.273]

    Идентично идут реакции прямого окисления пропана и бутана до метилового спирта. При атмосферном давлении и температуре 650 °С окисление пропана может быть заторможено быстрой закалкой с 25 % конверсией его в пропилен изобутан дегидрогенизируется аналогично с последующим крекингом при 650 °С, нормальный бутан — при 608 °С, нормальный пентан при 604 °С, изопентан — при 580 °С. При низких температурах (190 °С) пропан в присутствии следов НВг как катализатора может быть окислен до ацетона изобутан при 160°С образует третичный [c.39]

    Реакции глубокого окисления органических веществ катализируются переходными металлами и их окислами. Наиболее активны металлы платиновой группы и окислы железа, меди, хрома и других металлов. Отличительной особенностью процессов термокаталитической очистки яв ляется отсутствие системности в свойствах катализаторов и окисляемых веществ, поэтому можно рассматривать лишь некоторые их харак-те]шые тенденции. В частности, к наиболее трудно окисляемым органическим примесям относятся предельные углеводороды, при этом увеличение молекулярной массы этих веществ позволяет проводить процесс окисления при более низких температурах так, скорость окисления бутана на оксидных катализаторах в 10 раз выше, чем скорость окисления метана [11]. Значительно легче окисляются непредельные и ароматические углеводороды, например в присутствии двуокиси марганца пропилен при 300 °С окисляется в 10 раз, а пропан - почти в 10 раз медленнее, чем ацетилен [12]. При окислении кислородсодержащих органических веществ легче других соединений окисляются спирты, затем следуют альдегиды, кетоны, эфиры, кислоты [13-16]. [c.10]

    Пропан, бутан, н- и изопентан, выделенные из природных газов и газов стабилизации бензинов, могут быть использованы в нефтехимической промышленности для получения пропилена и бутиленов, а также спиртов, альдегидов и кислот (при окислении) с тем же или меньшим числом углеродных атомов. [c.48]

    Окисление спиртов диоксидом хлора (/) изучено на примере пропан-2-ола (2), 2-метилпропан-1-ола (5), бутан-1-ола 4), бутан-2-ола (5), 3-метилпентан-1-ола (6), гептан-4-ола (7), декан-2-ола 8), циклогексанола (9), борнеола 10). [c.5]


    Возможно также получение ацетона как побочного продукта при гомогенном окислении пропана и бутана. Ацетон образуется также при каталитическом окислении бутана воздухом по способу, используемому на заводе в г. Пампа (Тексас, США) [172, 173]. Сырьем служит 95%-ный н-бутан, содержащий 2,5% изобутана, 2,5% углеводородов с пятью атомами углерода и выше, а также пропан. Бутан окисляют воздухом в жидкой фазе под давлением 60 ат в уксуснокислой среде в присутствии ацетатов кобальта, марганца, никеля. Температура процесса ниже 400°. В числе продуктов реакции упоминаются уксусная кислота (основной продукт), ацетальдегид, метиловый спирт, ацетон и метилэтилкетон. Продукты реакции проходят через воздушный холодильник, в котором отводится до 80% тепла, выделяющегося при реакции, водяные холодильники и сепаратор, где отделяются азот и другие газы. Углеводороды возвращают в процесс, а сжатым азотом приводят в движение газовые турбины. После отгонки ацетальдегида, ацетона и метилового спирта уксусную кислоту передают на установку по получению уксусного ангидрида. Мощность завода в г. Пампа 42 500 т гсд уксусной кислоты. [c.322]

    Основными способами получения -пропилового спирта в настоящее время можно считать выделение его из отходов производства этилового спирта ферментативным брожением, выделение из побочных продуктов синтеза метанола гидрированием окиси углерода или из продуктов изосинтеза, а также окислением пропан-бутано-вой фракции. Однако наиболее перспективным и экономически целесообразным способом получения нормального пропанола является, очевидно, каталитическое гидрирование пропионового альдегида, получаемого по реакции оксосинтеза путем карбонилирования этилена. [c.57]

    Из этилового спирта Окисление пропан-бутано вой фракции Окисление этилена 67.0 22.0 11,0 37.0 28.0 35,0 е/д н/д н/д 34,0 10.6 55,4 25,0 7,0 68 0 - [c.25]

    Пропан и бутан непосредственно окисляют воздухом в смесь кислородсодержащих соединений, состоящую главным образом из формальдегида, метилового спирта, ацетальдегида и уксусной кислоты. Этот процесс явился результатом исследовательских работ, начатых в тридцатых годах, хотя окисление такого типа было впервые испытано в США в 1926 г. [c.22]

    Широко исследовано применение для окисления алканов окислителей на основе переходных металлов. Обзоры по механизмам реакции с использованием в качестве окислителей марганца(VII), хрома(VI), ванадия (V), кобальта(III), марганца (III), церия (IV) и свинца (IV) опубликованы Стюартом [138] и Вибергом [139]. Окисление насыщенных углеводородов неорганическими окислителями идет в довольно жестких условиях поскольку первоначальные продукты реакции обычно более склонны к окислению, чем сами алканы, образуются значительные количества продуктов вторичного окисления. Трудно, например, окислить метиленовую группу во вторичную спиртовую группу без дальнейшего окисления в кетонную группировку в некоторых случаях условия окисления настолько жесткие, что происходит расщепление С—С-связи. Обычно удается превратить С—Н-группы в третичные спиртовые группы, однако поскольку многие третичные спирты легко дегидратируются, то, их, как правило, нельзя получить с хорошим выходом. Виберг и Фостер нашли, что окисление 3-метилгептана дихромат-ионом дает З-метилгептанол-3 с выходом 10% [140]. Низшие алканы ( i — С4) окисляются до спиртов кислородом в ацетонитриле при комнатной температуре в присутствии хлорида олова(II) при этом метан значительно менее реакционноспособен, чем этан, пропан и бутан. Использование солей Со(1П) для каталитического окисления бутана в уксусную кислоту представляет промышленный интерес. Окисление н-пентана также дает уксусную кислоту в качестве главного продукта в состав минорных продуктов входят пропановая, бутановая и пентановая кислоты. [c.155]

    Пропан-1,3-диол НО—СН2—СНг—СНг—ОН — диол, обладающий всеми химическими реакциями, характерными для первичных спиртов. В отличие от вицинальных диолов в реакцию окисления под действием йодной кислоты или тетраацетата свинца не вступает. [c.82]

    Основной особенностью радиационно-химического окисления следует считать громадное разнообразие продуктов радиолиза. Так, например, при облучении смеси СН4 и 0% Оа при 25° С 7-излучением Со в реакционной смеси идентифицировано семнадцать соединений, среди них углеводороды — этилен, этан, ацетилен, пропан формальдегид и ацетальдегид метиловый и этиловый спирты, различные простые эфиры, гидроперекиси, ацетон и т. п. [c.207]

    Выход формальдегида несколько возрастает при замене воздуха чистым кислородом (табл. 21) одновременно увеличивается количество и других продуктов окисления. Доля формальдегида, образующегося при окислении бутана, несколько выше по сравнению с пропаном и изобутаном. Более высокая реакционная способность позволяет проводить реакцию при значительно более низких температурах, как правило, не выше 400—480°С. В результате этого удается в значительной мере избежать образования продуктов полного окисления, т. е. оксида и диоксида углерода. Однако селективность образования формальдегида мало отличается от окисления метанола, поскольку в силу самого строения молекул углеводородов Сг—С4 при их окислительной конверсии образуется практически весь ассортимент соответствующих альдегидов, кетонов, спиртов и т. д. Для преимущественного образования соединений того или иного класса успешно применяют различные многофункциональные катализаторы. [c.72]


    Радикал СНз—СН—О—О—СНз распадается на ацетальдегид СНз — СНО и радикал метилового спирта СНз—О . Распад и изомеризация радикала метилового спирта маловероятны прп температурах окисления, и он реагирует с углеводородом КН (в данном случае с пропаном), отрывая атом Н и восстанавливая изопропильный радикал, например [c.89]

    Для производства спиртов, альдегидов и кислот пропан, бутан или смесь этих двух углеводородов подвергаются окислению кислородом концентрацией не менее 95 % (остальное азот). Соотношение углеводород кислород колеблется от 0,3 1 до 0,6 1 для бутана оптимальное соотношение равно 0,5 1. [c.35]

    По этому методу пропан или бутан в соотношении с кислородом 2 1 смешивается с циркулирующим газом, реакционная смесь при давлении 7—10 ат подогревается до 350—370° С и поступает в реактор, где поддерживается температура 430—450° С. Охлажденные продукты реакции отмываются в скрубберах, в результате чего образуется водный раствор формальдегида-сырца, содержащий 20—25% формальдегида и 10—25% других продуктов окисления, среди которых ацетальдегид, ацетон, спирты и др. После ректификации выделяются 35—40%-ный формальдегид и другие продукты окисления. На 1 г пропана получается 0,384 т формальдегида, 0,433 т ацетальдегида, 0,333 т метанола и 0,270 т других продуктов окисления [4]. [c.291]

    Сгптрты можио рассматривать, как продукты окис.тения углеводородов. Особенно важное свойство спиртов — это способность их к дальнейшему окислению. Этан, пропан и другие предельные углеводороды вполне устойчивы против действия смеси хромовой кислоты с уксусной кислотой, двухромовокислого калия или 1марганцовокислого калия с серной кислотой и других окислителей, а соответствующие спирты легко окисляются. Дальнейшее окисление происходит именно при том углеродном атоме, где оно уже началось. Так при окислении первичных спиртов образуются соответствукицие альдегиды, а затем — карбоновые кислоты. [c.192]

    В США применяются три способа производства ацетальдегида на основе этилена и пропан-бутан вого сырья. Из этилена его получают двумя методами прямым окислением этилена и через этиловый спирт. [c.15]

    Значительно большее число производных на пути многостадийного окисления дает пропан. Не останавливаясь на всех стадиях процесса, отметим только, что он может образовать 5 различных спиртов  [c.57]

    Описана [25] методика определения продуктов окисления пропана с помощью обратного изотопного разбавленпя. Окисляемый образец был обогащен пропаном, меченным С. Среди продуктов найдено значительное количество активного 2-пропанола. К смеси продуктов добавляли отмеренное количество неактивного 2-пропанола и каким-либо подходящим методом извлекали часть спирта. Получены следующие данные (мкКи— микрокюри, единица измерения активности)  [c.526]

    Изучены формально-кинетические закономерности окисления спиртов пропан-2-ола, 2-метилпропан-1ола, бутан-1-ола, бутан-2-ола, 3-метилпен- [c.21]

    Условия газофазного некаталитического окисления пропана и бутана на принадлежащих фирме Силениз Корнорейшн установках в Бишопе (Тексас, США) и Эдмонтоне (Канада) приблизительно следующие смесь, состоящая примерно из 7 объемов газа циркуляции, 1 объема свежего газа и 2 объемов воздуха под давлением 7 ат, проходит через нагретую до 370° печь, где в результате экзотермической реакции температура повышается до 450°. Горячие газы поступают затем в орошаемый водой абсорбер, где быстро охлаждаются до 90°, причем образуется водный раствор формальдегида, обогащаемый затем до концентрации порядка 12—14%. Выходящие из этого абсорбера газы промываются водой вторично. Из газов извлекаются ацетальдегид, метиловый спирт, ацетон и т. д., а углеводороды и азот остаются в газообразном состоянии. Приблизительно 75% отходящего газа как газ циркуляции возвращается в печь, где он смешивается с исходным углеводородным газом и воздухом и подвергается повторному окислению. ]Иеньшая часть (25%) выходящего из последнего абсорбера газа подается на специальную установку, где пропан и бутан отделяются от азота и низкокипящих [c.152]

    Аналогичный метод описан в американском патенте [69]. Пропилен и смесь пропилена с пропаном окисляли при 340 °С (затем температура повышалась до 450—510 °С) получали 8—11,5 мол. % окиси пропилена наряду с пропионовым альдегидом, акролеином и гидроксиацетоном. В качестве разбавителя предложено исполь- зовать для окисления водяной пар [70], что дает при 215—260 19,7% смеси окиси пропилена и пропиленгликоля. Радиационное облучение повышает выход спиртов, альдегидов и окиси пропилена при окислении пропилена воздухом [71]. Окись пропилена наряду с другими продуктами получается также и при окислении пропана [72]. На фирме I I (Англия) работает опытная установка по прямому окислению пропилена [73]. [c.82]

    Пропан и бутан. Указанные углеводороды за рубежом широко применяются в промышленности как сырье для процессов неполного окисления. В результате некаталитического парофазного окисления пропана при умеренных давлениях и температуре 250— 350° получается сложная смесь различных продуктов окисления ацетальдегид, формальдегид, метанол, пропиональдегйд, пропа-нолы, ацетон, окиси пропилена и этилена, этиловый спирт, уксусная И муравьиная кислоты, окись п двуокись углерода и др. [c.84]

    В настоящее время фирма Ситиз сервис , по-видимому, также проводит окисление пропана и бутана по процессу, аналогичному методу фирмы Силениз корпорейшн оф Америка . Эта последняя фирма осуществляет некаталитическое (термическое) окисление пропана и бутана воздухом при 350—450° и давлении 3—20 ата углеводород берут в избытке. Бутан реагирует легче, чем пропан, и им предпочитают пользоваться как исходным сырьем. Продукты реакции разделяют на конденсат, состоящий из водного раствора органических кислородных соединений, и на неконденсирую-щиеся отходящие газы, которые возвращают в процесс. Часть отходящих газов выводят из системы, чтобы предотвратить накопление в ней инертных примесей однако из этих сбрасываемых газов выделяют пропан и бутан, возвращаемые в систему. Превращение углеводородов составляет 100%i. Не менее 15—20% углеводородов сгорает до окислов углерода и воды. Получаемая смесь органических соединений имеет сложный состав в нее входят формальдегид, метиловый спирт, ацетальдегид, уксусная кислота, н-пропиловый спирт, метилэтилкетон и окиси этилена, пропилена и бутилена. По этому методу работают заводы в г. Бишопе (шт. Техас) и г. Эдмонтоне (Канада). [c.72]

    На заводах синтетического этилового спирта, работающих сернокислотным способом, возможно использование этилена в виде этан-этиленовой фракции с относительно широким интервалом концентрации этилена (35—95%). После извлечения этилена серной кислотой этан возвращается на пиролиз. В этом случае применяется одна колонна с небольшим числом тарелок для отгонки этан-этиленовой фракции, а кубовый продукт, содержащий этан, пропан, пропилен и высшие, возвращается на пиролиз. При получении синтетического этилового спирта. методом прямой гидратации требуется применение фракции Сг с содержанием этилена 1не менее 95%об. В ряде других производств (алкилирова-ние бензола с целью получения этилбензола, прямое окисление в окись этилена, получение хлорпроизводных) достаточно иметь газ с 90—95% содержанием этилена. На полимеразицию под высоким давлением и другими методами направляется этилен с концентрацией 99,9%. Применение высококонцептрированного этилена, выделение которого требует значительных затрат, в ряде случаев выгодно с технологической точки зрения, т. к. облегчается освобождение от других примесей, являющихся ядами катализаторов, отпадает необходимость ректификации при рециркуляции непрореагировавшего этилена. [c.68]

    М. Б. Нейман, А. Ф. Луковников и Г. И. Феклисов [11] при исследовании окисления углеводородов, содержащих атом установили точно механизм холоднопламенного окисления. Они нашли, что меченые пропан,, бутан и пентан дают сравнительно большие количества СН2О и СНдСНО, а также а-окси- и а-кетоаль-дегиды. Авторы пришли к заключению, что полученные результаты лучше всего объясняются с точки зрения радикально-цепной теории Семенова [6]. Различные радикалы, сталкиваясь с молекулами кислорода, образуют перекисные радикалы, которые, распадаясь далее, дают альдегиды и алкоксигруппы (радикалы спиртов), например  [c.186]

    В работе было псследова.но также влияние состава исходной смеси на окисление нропана прп выссжом давлении. Из полученных данных, приведенных в табл. 12, следует, что обогащение смеси пропаном вызывает увеличение выхода ( в процентах на прореагировавший пропан) спиртов и ацетона и снижение выхода СО и СОз- Выход альдегидов и кислот меняется мало. Резко растет выход кoндeп иpyo п,IX продуктов. [c.27]

    При нижнетемпературном окислении (рис. 44) выход ацетилена, пропилена, метана и высших альдегидов (в процентах на сгоревший пропан) по ходу реакции падает, выход же СО и формальдегида — растет. Выход перекисей по ходу реакции растет до максимума, затем падает. При этом максимум перекисей достигается значительно позже, чем максимум высших альдегидов. Странным является отсутствие спиртов. [c.156]

    В газовой фазе хемилюминесценция сопровождает реакции окисления различных органических веществ молекулярным кислородом. Наибольшее число хемилюминесцентных реакций описано в работах Перкина [49] и Преттра [50—55]. В их опытах свечение наблюдалось визуально при пропускании через нагретую трубку смеси окисляемого вещества с кислородом или воздухом в реакциях окисления насыщенных углеводородов (пропан, н. пен-тан, н.гексан, н.гептан, н.октан) ненасыщенных углеводородов (этилен, пентен, циклогексен) алициклических и ароматических углеводородов (циклогексан, бензол, толуол) спиртов (метиловый, этиловый, н.пропиловый, н.амиловый и изоамиловый, н.гепти ловый) эфиров (диэтиловый) альдегидов (уксусный, масляный) [c.8]

    Окисление гомологов метана. При окислении этана и пропана в относительно мягких условиях получаются сложные смеси кисло-родсодерн ащих продуктов. Этан образует формальдегид, метанол, муравьиную кислоту, уксусный альдегид, этиловый спирт и уксусную кислоту пропан — названные продукты, а также ацетон и изоиропиловый спирт. [c.321]

    Бромистый водород использовали как инициатор жидкофазного окисления н.декана [37]. Кислород, содержащий 17% НВг, продували в декан при 110° С. По сравнению с неинициированным окислением воздействие НВг сильно ускоряет процесс. Накопление кислот и кетонов происходит с одинаковой скоростью как при инициировании в течение 10 мин., так и при непрерывном. Спирты и эфиры при непрерывном инициировании накапливаются быстрее, чем при начальном кратковременном инициировании. Концентрация гидроперекиси при начальном инициировании быстро достигает предельного значения 2,4% при непрерывном инициировании концентрация гидроперекиси проходит через максимум и в ходе реакции уменьшается до постоянной величины 0,6%. Если в реакциях газофазного окисления НВг обладает селективным действием (например, пропан окисляется в ацетон), то при жидкофазном окислении НВг такой селективности не обнаруживает. Инициирующее действие НВг на реакцию окисления связано как с непосредственным иницииро- ванием цепей по реакции  [c.203]

    Меркаптаны энергично реагируют с концентрированной азотной кислотой, образуя в качестве конечных продуктов реакции соответствующие сульфокислоты. Этим путем получено значительное количество сульфокислот, включая этан- [13], пропан-1-[14], пропан-2-[15], бутан-1-[16], -бутан-2- [17], 2-мотилпропан-1-[14, 18], пентан-2- [19], З-метилбутан-1- [20], гексан-1- [19, 21], гексан-2- [19], 2-метилпентан-2- [22а] и октан-2-супьфокиспоты [226]. В патентной литературе описано получение и других сульфокислот [23]. Для всех этих реакций данные о выходах отсутствуют, за исключением одного случая [166]. Найдено [24], что при окислении азотной Кислотой меркаптаны дают более низкие выходы, чем их свинцовые соли. Для ряда сульфокислот с нормальной цепью, содержащих от 9 до 14 углеродных атомов, выход свинцовых солей сульфокислот составляет обычно более 60% от теоретической величины. Свинцовые соли сульфокислот можно легко превратить в свободные кислоты действием хлористого водорода в среде изопропилового спирта  [c.108]


Смотреть страницы где упоминается термин Пропан окисление. в спирты: [c.290]    [c.187]    [c.81]    [c.128]    [c.70]    [c.239]    [c.239]    [c.27]    [c.494]    [c.180]    [c.15]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.1064 ]




ПОИСК





Смотрите так же термины и статьи:

Окисление спиртов

Пропан

Пропан окисление

Пропанои



© 2025 chem21.info Реклама на сайте