Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий в присутствии хрома

    Из ряда работ следует вывод о снижении стойкости алюминия, содержащего церий, платину, серебро, торий и ванадий. Присутствие хрома, олова, кадмия и молибдена в зависимости от их содержания и природы коррозионной среды может быть как благоприятным, так и отрицательным. Висмут в одних случаях приводит к повышению стойкости, в других — ои, как и бор, нейтрален. Сурьма в общем обладает защитным действием. [c.509]


    В ЭТИХ условиях мешает хром (VI), который также восстанавливается железом (II). Если наряду с ванадием присутствует хром, то его восстанавливают железом (II) до трехвалентного, а ванадий до четырехвалентного. Затем на холоду окисляют ванадий перманганатом калия до пятивалентного. Избыток введенного перманганата калия разрушают нитритом натрия, избыток которого в свою очередь устраняют добавлением мочевины, которая разрушает нитраты и нитриты до азота и воды, окисляясь при этом до азота и двуокиси углерода. [c.161]

    Третью группу составляют ванадий, молибден, хром, свинец, железо. При большой концентрации они вызывают увеличение коксообразования, так же, как и металлы второй группы, но в мень-шей степени. Так, при содержании их в катализаторе 0,5—0,7% коксообразование возрастает лишь в 1,3—1,5 раза. Влияние этих металлов на коксообразование при крекинге примерно одинаковое. Весьма характерная особенность металлов этой группы — при небольшом их содержании в катализаторе образование кокса в процессе крекинга уменьшается. Так, при концентрации ванадия 0,02—0,003 вес. % выход кокса в 1,25 раза меньше, чем в присутствии исходного катализатора. < [c.163]

    Легированные стали маркируют буквами и цифрами. Двузначные цифры в начале марки указывают среднее содержание углерода в сотых долях процента, буквы справа от цифры — легирующие элементы А — азот, Б — ниобий, В — вольфрам, Г — марганец, Д — медь, Е — селен, К — кобальт, М — молибден, Н — никель, П — фосфор, Р — бор, С — кремний, Т — титан, Ф — ванадий, X — хром, Ц — цирконий, Ю — алюминий. Цифры после букв указывают ориентировочное содержание легирующего элемента в целых процентах отсутствие цифры свидетельствует о том, что элемент присутствует в количестве не более 1,5%. [c.328]

    В золе девонских прикамских нефтей содержание окислов кремния, алюминия относительно невелико, окислов железа мало в золе среднедевонской нефти и в несколько раз больше — в золе верхнедевонской. Все девонские нефти сильно обогащены ванадием и никелем, в некоторых нефтях эти два элемента в виде окислов составляют 44 -54% золы, В золе нефтей палеозоя, кроме обычных элементов. Присутствуют стронций, барий, ванадий, никель, хром, марганец, медь в золе нефтей карбона и нефти — в небольших количествах титан. Таким образом, в резервуары НПЗ поступает уже [c.24]

    В рассматриваемом аспекте для химизма, механизма, кинетики и термодинамики процесса карбонизации большое значение имеет присутствие в нефтяном сырье различных функциональных групп, содержащих кислород, серу и азот, и их термическая стабильность (химическая активность), металлов, их соединений и комплексов, обладающих каталитическим действием на реакции распада, дегидрирования, полимеризации, конденсации и другие. С этой точки зрения,особо следует отметить такие металлы, как ванадий, никель, хром, молибден, кобальт, алюминий, железо и другие. [c.11]


    В присутствии хрома и ванадия растворяют сталь вышеописанным способом [c.160]

    Она образуется при смешивании водного раствора солей двухвалентного кобальта с водным раствором цианата калия. Реакция лучше удается при добавлении к исследуемому раствору сухого цианата калия. Чувствительность обнаружения возрастает при добавлении ацетона (можно обнаружить 0,02 мг Со) или при экстракции окрашенного соединения изоамиловым спиртом. Цианат позволяет обнаруживать кобальт в присутствии ионов трехвалентного железа, которые не дают окрашенных соединений с реагентом. Не влияют на чувствительность обнаружения ионы ртути, мышьяка, сурьмы, олова, золота, родия,, палладия, осмия, платины, селена, теллура, молибдена, вольфрама, ванадия, алюминия, хрома, урана, титана, бериллия, цинка, марганца, рения, никеля, щелочных и щелочноземельных металлов. Несколько затрудняют обнаружение кобальта большие количества ионов с собственной окраской— меди, ванадия, хрома, платины. Ионы серебра, свинца, висмута, кадмия, редкоземельных элементов, церия, циркония и тория образуют осадки белого цвета. [c.49]

    Ванадий и хром определяют объемными методами. Один из них, описанный на стр. 106, применим для анализа титана, содержащего, помимо прочих примесей, в допустимых количествах только хром или только ванадий. Однако метод неприменим при совместном присутствии указанных элементов. [c.105]

    Второй метод, описанный на стр. 107, можно использовать при одновременном присутствии ванадия и хрома в титане. [c.105]

    Если определяют не только ванадий и хром, но и марганец, то окисление проводят сперва персульфатом в присутствии нитрата серебра, как указано выше (хлорид в этом случае добавлять не следует), и титруют охлажденный раствор солью Мора, определяя таким образом сумму всех трех металлов. Затем снова окисляют персульфатом, далее поступают, как указано выше, и титруют сумму хрома и ванадия. После этого окисляют ванадий перманганатом и титруют только ванадий. Хром и марганец определяют по разности. [c.182]

    Кроме того, в присутствии некоторых из таких элементов, в том числе железа(1И), ванадия(У), хрома(У1), молиб-дена(У1), урана(У1), меди(П), восстановление рения(УП) не начинается до тех пор, пока не закончится восстановление указанных элементов, поскольку они окисляют рений в низших валентных состояниях снова до ре-ния(УП). Мешающее влияние элементов, восстанавливающихся до низших валентных состояний и сильно поглощающих при 281 нм, нельзя устранить, поэтому их необходимо предварительно отделять. [c.66]

    При определении содержания ванадия, никеля, железа, цинка, хрома и меди в нефтяных и других жидких органических продуктах [46, 47] 1—10 г пробы смешивают с равным количеством концентрированной серной кислоты и нагревают до полного испарения кислоты. Кокс дожигают в муфельной печи при 500—600 °С, а полученную золу растворяют в нескольких каплях водного раствора серной кислоты (1 1 по объему). Раствор выпаривают досуха, сухой остаток растворяют в 1 жл водного раствора, содержащего 5 объемн. % серной кислоты, 0,5% хлористого натрия (буфер) и 0,005% кобальта (внутренний стандарт). Если в образце присутствует хром, то для его перевода в растворимое состояние золу сплавляют с 20—30 мг пиросернокислого калия. Эталоны готовят растворением в воде сернокислых солей соответствующих металлов. Ванадий и хром вводят в форме ванадата аммония и двухромовокислого калия. Все эталоны содержат по 5 объемн.% серной кислоты, 0,5% хлористого натрия и 0,005% кобальта. По три капли раствора наносят на плоский торец графитового электрода особой чистоты марки В-3 и жидкую часть испаряют при нагреве на электроплитке. [c.160]

    Если первоначальный щелочной фильтрат окрашен в желтый цвет,, то можно считать вероятным присутствие хрома или урана, особенно при исследовании горных пород, и вести анализ дальше, исходя из предположения, что окрашивание вызвано хромом. С возможностью того, что желтое окрашивание происходит от органических веществ, извлеченных из фильтра, считаться не приходится, если фильтр был перед фильтрованием хорошо промыт горячим раствором щелочи. Если окрашивание слабое, то хром определяют колориметрически (стр. 595) и сохраняют раствор для определения ванадия. Действительное присутствие хрома или урана может быть впоследствии проверено после отделения фосфора, но лучше это делать непосредственно, определяя эти элементы из отдельной большой навески (стр. 596). Если окраска раствора слишком интенсивна для колориметрического определения хрома, то кипятят щелочной раствор, пока вся перекись водорода не разложится, подкисляют серной. [c.120]

    Первый метод вполне удовлетворителен и может применяться в присутствии хрома и ванадия. Восстановление двуокиси марганца титрованным раствором восстановителя, прибавленным в избытке, с последующим титрованием перманганатом не проходит точно по уравнению реакции. Поэтому приходится пользоваться эмпирическим титром раствора перманганата, установленным по, известному количеству марганца, обработанному таким же способом. Эмпирическим титром приходится пользоваться и при применении метода Фольгарда , кроме того, при титровании по Фольгарду трудно определить конечную точку. [c.503]


    Наиболее удовлетворительный метод определения больших и малых количеств ванадия заключается в восстановлении его сернистым ангидридом и титровании горячего раствора перманганатом после вытеснения избытка сернистого ангидрида двуокисью углерода. Восстановленное соединение ванадия вполне устойчиво в соляно- и сернокислых растворах Число элементов, мешающих определению, как, например, железо, мышьяк, сурьма, невелико и они обычно легко отделяются. Присутствие хрома нежелательно, так как в горячих растворах он частично окисляется перманганатом, вследствие чего приходится вводить поправку а в холодных растворах окисление ванадия протекает медленно и конечная точка титрования недостаточно резка. Платину следует отделять, так как в ее присутствии получаются повышенные результаты за счет образования соединений платины (II) и, кроме того, она препятствует полному удалению сернистого ангидрида. Если для осаждения платины или других металлов применяют сероводород, его необходимо затем полностью удалить кипячением и для разрушения политионовых соединений раствор обработать перманганатом до появления розовой окраски. Как указано в некоторых работах, сульфат натрия на определение не влияет. [c.513]

    Применение соляной кислоты. Содержимое тигля переносят в высокий стакан, содержащий небольшое количество воды. Зеленая окраска раствора плава указывает на присутствие марганца, а желтая — на присутствие хрома. Покрывают стакан часовым стеклом и через носик стакана, не снимая стекла, постепенно прибавляют разбавленную (1 1) соляную кислоту, вводя ее в избытке. Если появляется быстро исчезающая розовая окраска, это указывает на присутствие марганца, а интенсивность окраски показывает приблизительно, как велико его содержание. Ставят стакан на паровую баню и ускоряют распадение кусочков, надавливая оплавленным концом стеклянной палочки. Когда все растворится, за исключением хлопьевидной кремнекислоты, содержимое стакана переводят в большую чашку и выпаривают на бане досуха. Можно обойтись без стакана и провести всю операцию сразу в чашке. Обычно применяют платиновую чашку, но если минерал содержит марганец, хром или ванадий в количествах больших, чем те, какие обычно встречаются в породах, то нужно брать фарфоровую чашку, потому что при сплавлении эти элементы окисляются соответственно до манганатов, хроматов и ванадатов, выделяющих хлор нз соляной кислоты. Фарфоровую чашку следует [c.940]

    Применение метода в присутствии сравнительно большого количества хрома. В описанной выше простейшей форме метод применим при одном условии содержание хрома не должно превышать определенной умеренной величины. Это ограничение вытекает из того, что при титровании в горячем растворе, как это рекомендуется для определения ванадия (стр. 513), в присутствии хрома отчетливое изменение окраски раствора наступает лишь при прибавлении слишком большого количества перманганата. В холодном растворе, содержащем сульфат хрома, требуется значительно меньше перманганата для получения своеобразной темной окраски без следов зеленоватого оттенка эта окраска ясно указывает на наличие избытка перманганата. При нагревании, особенно при температуре кипения, хром сам настолько быстро окисляется, что надо прибавить значительный избыток перманганата, чтобы получить отчетливое изменение окраски. [c.984]

    Определение ванадия в присутствии хрома [c.985]

    Процесс окислительного аммонолиза осуществляется при атмосферном давлении, температуре 350—480 и в присутствии различных катализаторов, содержащих окислы ванадия, олова и титана [51], ванадия и хрома [50] и др. [c.70]

    Основную массу отходов производства резинотехнических изделий вывозят на свалки или сжигают. Это приводит к загрязнению атмосферы, подпочвенных вод, исключению из севооборота сотен гектаров земли. Отходы производства резинотехнических изделий перерабатывают с помощью различных методов деструкции нолнмеров термической, термокаталитической в присутствии соединений марганца, ванадия, меди, хрома, молибдена или вольфрама с применением химических агентов (кислот Льюиса, нитрозосоединений, окислительно-восстановительных систем и др.) биохимической, механохимической, фо-тоокислнтелыгай, ультразвуковой и др. [c.142]

    Зольность кокса. Этот показатель характеризует содержание в коксе негорючих веществ, которые являются вредными примесями. Основные зольные составляющие кокса - железо, кремний, кальций, алюминий, натрий, мапшй, ванадий, титан, хром, марганец, нк- кель, фосфор, соединения серы и др. [34, 35] - переходят в кокс нз нефти. Наиболее нежелательным элементом явллется ванадий, присутствие которого ухудшает качество алюминия. [c.22]

    В работе [1183] описан фотометрический метод определения марганца в сталях и чугунах в присутствии ванадия и хрома, основанный на экстракции перманганата тетрафенилфосфония хлороформом или дихлорэтаном из сернокислого раствора. [c.160]

    Определению урана не мешают любые количества молибдена и вольфрама и до 1 Л1г ванадия в навеске. Присутствие больших количеств ванадия дает некоторую положительную ошибку. Определению не мешает присутствие хрома, меди и марганца в количествах до 10 мг в навеске. При анализе продуктов с ббльши.м содержанием меди она в значительных количествах переходит в содовый раствор и вызывает быстрое обесцвечивание окраски перекисного соединения урана вследствие каталитического разложения перекиси водорода. [c.118]

    Кох [76] исследовал ароматизацию гептеновой фракции. В качестве катализаторов были использованы окислы ванадия и хрома на окиси алюминия, применялись температуры от 440 до 530° С и время от 8 до 40 сек. Самый высокий выход ароматики, главным образом толуола (37%), был получен при 510° С и 40 сек. в присутствии пяти-окиси ванадия. Одновременно с ароматизацией протекают реакции расщепления и конденсации, что отравляет катализатор. [c.55]

    За последние годы предложено несколько вариантов этого метода для определения ванадия в различных объектах в металлическом ванадии, в хромитев урансодержащих веществах по-прежнему много внимания уделяется этому методу при анализе легированных сталей причем особенно для одновременного определения нескольких компонентов — ванадия, хрома и марганца Предложен этот метод и для определения ванадия и хрома в силико-алюминиевых катализаторах крекинга нефти, причем вместо обычного в таких случаях селективного окисления хрома пользуются восстановлением его до трехвалентного при помощи азида натрия хром (III) не мешает титрованию ванадия солью Мора. Можно селективно определять ванадий и железо при совместном их присутствии в растворе сперва титруют ванадий солью Мора, затем — общее содержание железа аскорбиновой кислотой. Из общего содержания железа вычитают то количество железа, которое было израсходовано (в виде соли Мора) на титрование ванадия [c.181]

    Если одновременно определяют и ванадий и хром, то окисление проводят персульфатом в присутствии нитрата серебра (кислотность раствора не должна быть выше 2 п.), удаляют избыток персульфата кипячением. Для устранения влияния марганца (VII), образовавшегося в результате окисления марганца в пробе, добавляют 5 мл 5%-ного раствора хлорида натрия (по Бутенко и Беклешовой) или несколько капель концентрированной соляной кислоты (по Парксу и Агацци), кипятят в течение 3 мин, охлаждают и титруют солью Мора сумму ванадия и хрома. Затем окисляют восстановленный при титровании ванадий перманганатом на холоду, как указано выше, и титруют только ванадий, так как хром в этих условиях не окислится. Содержание хрома определяют по разности. [c.182]

    В составе нефти в очень мальк количествах присутствуют и другие элементы, главным образом металлы алюминий, железо, кальций, магний, ванадий, никель, хром, кобальт, германий, титан, натрий, калий и др. Обнаружены также фосфор и кремний. Содержание этих "злементов не превышает нескольких долей процента, определяется геолог(гческими условиями залегания нефти. Так, основным элементами мезозойских и третичных нефтей является железо. В па-1еозойских нефтях Волго-Уральской области повышенное содержание ванадия и никеля. Считается, что часть микроэлементов находится в нефти с момента её образования в осадочных породах, а другая часть накашшвается в последующий период существования нефгей. [c.12]

    Определение ванадия и хрома из одной навески феррометрическим методом. При растворении навески сплава в НС] или в разбавленной серной кислоте в присутствии HNO3 ванадий и хром переходят в раствор  [c.339]

    Присутствие в сырье для каталитического крекийга даже незначительных примесей металлов (железа, ванадия, никеля, хрома) вредно отражается на эффективности катализатора, так как они отлагаются на последнем. Удаление этих примесей сокращает отложение кокса. Фурфурол позволяет удалить эти примеси на 70—80%. [c.191]

    При сожжении масла или других горючих воздухом в пламени, горящим под водой, в присутствии таких катализаторов, как ванадий, никель, хром, железо или другие металлы, образующие несколько окислов получаются азотная кислота и окислы азота. Зо избежан1ие коррозии аппаратуры и для нейтрализации кислот к тоде добавляют гидроокись кальция или мел. Образующиеся при этом соли можно выделить. Получающийся водяной пар может быть использован для силовой установки. [c.1074]

    Эта схема предусматривает прежде всего выделение остаточной кремнекислоты. Затем отделяют железо, титан и редкоземельные металлы, осаждая их едким натром в присутствии окислителя и карбоната натрия. В фильтрате остаются алюминий, фосфор, ванадий, хром и бериллий. Из осажденных элементов железо выделяют в виде сульфида осаждением сульфидом аммония в присутствии тартрата аммония титан определяют в фильтрате колориметрически, после разрушения винной кислоты цирконий о< аждают в растворе, содержащем перекись водорода, употребленном для определения титана, и, наконец, редкоземельные металлы осаждают вместе с гидроокисью титана в фильтрате от осаждения циркония и отделяют от титана в виде фторидов. Окраска фильтрата, после осаждения едким патром указывает па присутствие хрома или урана, если последние содержатся в количествах, достаточных, чтобы окрасить раствор. Дальше веду-т анализ следующим путем. Сначала, определяют ванадий объемным методом, затем выделяют фосфор в виде фосфоромолибдата аммония и, наконец, осадок, полученный осаждением аммиаком фильтрата от фосформолйбдата, испытывают на алюминий, бериллий и другие элементы. [c.119]

    Серебряный редуктор. Применение в редукторе серебра вместо цинка (стр. 139) имеет преимущество, если железо надо определять в присутствии хрома или титана. Присутствие ванадия также не отражается на результатах титрования, если в качестве индикатора хрименяют комплексное соединение о-фенантролина с железом (II) (см. стр. 454). [c.444]

    Установлено , что цирконий количественно осаждается также фтале-вон кислотой из раствора в 0,3 н. соляной кислоте. В этом случае однократным осаждением цирконий отделяют от большинства элементов, ъ частности от тория, железа, алюминия, бериллия, урана, марганца, никеля и редкоземельных металлов цериевой группы. В присутствии олова, титана, ванадия и хрома требуется двукратное осаждение. Основанный на этой реакции метод определения циркония заключается в следуюш,ем. К раствору хлорида циркония прибавляют 30 мл насыщенного раствора нитрата аммония, а затем вводят достаточное количество 2 н. соляной кислоты, чтобы при последующих операциях после разбавления раствора до 200 мл концентрация соляной кислоты в нем была 0,3 н. Разбавляют до 100 мл, нагревают до кипения и, непрерывно перемешивая, вводят 100 мл кипящего 4%-ного раствора фталевой кислоты. Осторожно кипятят [c.647]

    Эти методы менее над(зжны, чем объемный метод, изложенный на стр. 659, но они обладают тем преимуществом, что ими можно пользоваться в присутствии железа. При использовании для титрования метиленовой сини солянокислый раствор хлорида титана восстанавливают цинком, предпочтительно в редукторе Джонса (стр. 135). Полученный после восстановления раствор защищают от действия воздуха, создавая атмосферу двуокиси углерода, и титруют раствором метиленовой сини до появления неисчезающей голубой окраски. Восстанавливать и титро- вать лучше горячие растворы. Присутствие азотной и серной кислот нежелательно, так как они затрудняют определение конечной точки титрования. Мешают титрованию также молибден, ванадий, вольфрам, хром и олово, которые реагируют с метиленовой синью. Метод применим в присутствии кремния, железа, алюминия, сурьмы, мышьяка и фосфора. [c.662]

    Описание метода. Предлагаемый метод не содержит ничего совершенно нового, кроме того, что в этом методе нри одновременном присутствии хрома и ванадия нет необходимости отделять их друг от друга, а можно определять их в одном и том же растворе, нервьи — колориметрическим методом, описанным выше (стр. 979), а второй — объемным методом  [c.982]

    Фталат гафния имеет такой же состав. На один атом- элемента приходится одна молекула фталевой кислоты [307]. При помощи фталевой кислоты однократным осаждешкм цирконий отделяют от тория, железа, ал оминия, бериллия, урана, марганца, никеля, редкоземельных и других элементов. В присутствии олова, титана, ванадия и хрома необходимо двукратное переосаждение. [c.68]

    Добавление тяжелых металлов (никель, медь, кобальт) приводит к резкому увеличению образования кокса. Так, при введении 0,5—0,7% этих металлов выход кокса возрастает в 3,2—3,5 раза. При значительном содержании в катализаторе ванадия, молибдена, хрома и свинца, достигающем 0,5—0,7%, коксосодержание также увеличивается (в 1,3—1,5 раза), а при наличии 0,02—0,003% ванадия выход кокса в 1,25 раза меньше, чем в присутствии исходного катализатора. По уменьшению влияния на образование кокса металлы располагаются в следующем порядке никель, медь > кобальт > молибден, ванадий > железо, хром > свинец > бериллий > магний > кальций > стронций > >литий > натрий > калий > цезий. [c.53]

    В присутствии четырехокиси осмия, пятиокиси ванадия, трехокиси хрома и даже ультрафиолетового света перекись водорода присоединяется к этиленовым соединениям, образуя гликоли. Лучшие результаты получаются при обработке олефинов перекисью водорода в присутствии четырехокиси осмия в безводном /лрет-бутиловом спирте. По этому методу глицерин и -фенилглицериновую кислоту можно получить с выходами 60 и 56% соответственно [22]  [c.202]

    Водные растворы перекиси водорода ие реагируют или реагируют очень медленно с аллиловым спиртом, кротоновой или малеиновой кислотой и сходными с ними ненасыщенными соедииениялп4. Майлас [5] установи,i, что перекись водорода все же присоединяется к этим соединениям в присутствии некоторых соединений осмия, ванадия или хрома. Такое же присоединение происходит под действием ультрафиолетового света. Принимают, что при этом происходит фотохимический распад перекиси водорода на два активированных гидроксильных радикала [61  [c.128]


Смотреть страницы где упоминается термин Ванадий в присутствии хрома: [c.614]    [c.317]    [c.54]    [c.523]    [c.160]    [c.247]    [c.1016]    [c.103]    [c.514]    [c.646]   
Практическое руководство по неорганическому анализу (1966) -- [ c.984 ]

Методы химического анализа железных, титаномагнетитовых и хромовых руд (1966) -- [ c.104 , c.105 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.899 ]




ПОИСК







© 2025 chem21.info Реклама на сайте