Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий в сталях и чугунах

    На территории СССР не найдено крупных месторождений собственно ванадиевых руд, и проблема промышленного получения металла была решена использованием рассеянного ванадия, встречающегося в отечественных железных рудах [17, 18]. При доменной плавке ванадийсодержащих железных руд или агломератов после магнитного обогащения получается ванадиевый чугун, в который переходит 80—85%V. Извлечение ванадия из чугуна слагается из следующих стадий 1) получение обогащенного ванадием шлака в процессе передела чугуна в сталь 2) переработка ванадиевого шлака с получением V2O 5, ванадата кальция или ванадата железа 3) выплавка феррованадия 4) получение металлического ванадия или его соединений высокой степени чистоты. [c.21]


    Никель определяют фотометрическим методом в сталях (чугунах) в виде окрашенного соединения никеля (III) с диметилдиоксимом в щелочной среде в присутствии окислителей. Железо маскируют винной кислотой. Кобальт (до 1,5%), титан и ванадий (до 12%), хром (до 20%) [386] не мешают определению. Медь должна или отсутствовать, или соединение диметилдиоксимата никеля следует предварительно отделять экстракцией хлороформом [393]. Влияние меди можно устранить также цементацией. Для этого в анализируемый раствор, содержащий НС1 (1 2), опускают на 10— [c.146]

    Для построения калибровочной кривой при анализе сталей (чугунов) рекомендуется применять сталь (или чугун), не содержащую ванадия. После растворения стали вводят определенное количество стандартного раствора соли ванадия. [c.273]

    Метод применяется для определения ванадия в чугунах и сталях. [c.182]

    Авторы отмечают, что при 0,5-н. концентрации серной кислоты в растворе поглощение ванадия падает, а при pH =1,2 той же кислоты почти весь ванадий переходит в фильтрат. Они установили также, что отделение железа от ванадия невозможно в растворе серной кислоты без добавления перекиси водорода. Из раствора 0,1-н. серной кислоты и 1%-ной перекиси водорода можно выделить железо и ванадий. Найденные оптимальные условия позволили авторам определять ванадий в стали, чугуне и феррованадии. [c.181]

    Навеску стали (или чугуна) растворяют в кислотах, после чего раствор подвергают электролизу со ртутным катодом в слабокислой среде. В результате железо, хром, марганец и другие металлы осаждаются на ртутном катоде, образуя амальгамы, а титан, алюминий и ванадий в виде соответствующих ионов остаются 8 растворе. [c.446]

    Кальций, как и литий, используется для транспортирования водорода в виде гидрида кальция. При этом отношение массы тары к массе транспортируемого водорода в 10 раз меньше, чем в случае транспортирования водорода в стальных баллонах. Гидрид кальция пытались использовать для восстановления титаиа и ванадия, а кальций — для обезвоживания органических соединений. Кальций добавляют к меди для улучшения ее механических свойств и к алюминию — для улучшения электропроводности. Малая присадка кальция увеличивает твердость свинца без уменьшения его пластичности. Добавление кальция в сталь и чугун способствует удалению из них газов, серы и фосфора. [c.527]

    Главными представителями сплавов железа являются чугуны и стали. При анализе простых чугунов и сталей обычно определяют содержание в них углерода, кремния, серы, фосфора и марганца. Для придания сплавам железа определенных технических свойств в них вводят легирующие компоненты, из которых чаще всего приходится определять никель и хром (также ванадий, медь, титан, молибден и др.). [c.454]


    В чугуне углерода содержится до 1,7% и более, в стали— от 0,3%) до 1,7%), а в ковком железе — менее 0,3%. Однако существуют специальные так называемые легированные стали, в состав которых, помимо железа и углерода, входят в определенных количествах хром, никель, вольфрам, молибден, ванадий, кобальт, титан и другие металлы. Введение тех или иных металлов в железо дает возможность получать стали с нужными свойствами (повышенной тугоплавкостью, прочностью, кислотостойкостью и т. д.). Так, хром повышает твердость стали и ее химическую стойкость никель увеличивает вязкость вольфрам сильно повышает твердость ванадий (0,2—0,5%) повышает твердость и вязкость молибден (0,15—0,25%) повышает упругость и улучшает свариваемость. [c.281]

    Сплавы — системы, состоящие из двух или нескольких металлов (или метал тов и неметаллов). В технике используют металлические сплавы, весьма разнообразные по составу и свойствам гораздо шире, чем чистые металлы. Известно более 8000 сплавов и десятки тысяч их модификаций. Различают несколько типов сплавов по основному компоненту черные сплавы (чугун, сталь), т. е. сплавы на основе железа цветные сплавы (бронзы, латуни), важнейшим компонентом кото рых является медь легкие сплавы (дюралюмин, магналий и др.), содержащие алюминий нли магний благородные и редкие сплавы, основными компонентами которых бывают платина, золото, серебро, ванадий, молибден и др. [c.267]

    Применение ванадия, ниобия и тантала. Быстрое расширение производства этих металлов вызвано потребностя.ми реактивной авиации, ракетной и атомной техники. Главный потребитель ванадия (в виде феррованадия) — производство специальных сталей, жаропрочных и сверхтвердых сплавов. Даже в небольших количествах ванадий действует как раскислитель, улучшает механические свойства стали, способствует формированию мелкозернистой структуры чугунов. Широко используются многочисленные сплавы ванадия с другими металлами. [c.414]

    Лантаноиды используют в производстве чугуна и высококачественных сталей. Введение этих элементов в чугун в виде ферроцерия (сплав церия с железом) или сплава различных лантаноидов повышает прочность чугуна. Небольшие добавки лантаноидов к стали очищают ее от серы, азота и других примесей, так как лантаноиды, являясь химически активными металлами, взаимодействуют с примесями. При этом повышаются прочность, жаропрочность и коррозионная устойчивость сталей. Такие стали пригодны для изготовления деталей сверхзвуковых самолетов, оболочек искусственных спутников Земли. С помощью лантаноидов получают также жаропрочные сплавы легких металлов — магния и алюминия. Благодаря сплавам лантаноидов проводят металлотермическое восстановление многих металлов (титана, ванадия, циркония, ниобия, тантала и др.), используя в этом процессе большое сродство лантаноидов к кислороду. [c.446]

    Более распространены методы, основанные на кинетической селективности, т. е. на различии в скоростях реакций различных фаз сплава при взаимодействии с различными компонентами. Кинетическую селективность чисто химического процесса используют, например, при определении цементита в чугуне или стали путем растворения их в разбавленных кислотах при разделении карбидных фаз, например цементита и карбида ванадия под воздействием смеси пергидроля и этанола. Необходимо отметить, что методы, [c.825]

    Для удаления избыточного кислорода в процессе получения стали в расплавленный чугун вводят раскисли-тели (марганец, ванадий, титан), которые взаимодействуют с избыточным FeO  [c.287]

    Чугун, полученный из доменной печи, может непосредственно использоваться для литья (литейный чугун), однако большая часть его идет для дальнейшей переработки в сталь (передельный чугун). В чугуне содержатся значительные количества серы, попадающей в него из кокса, а также фосфора и кремнезема из руды. Для удаления этих примесей применяются такие процессы, как выплавка стали в бессемеровском конвертере, пудлингование или получение тигельной стали. Все эти способы производства стали предназначены для удаления из чугуна примесей в форме шлаков или газов (в бессемеровском конвертере сера выгорает, превращаясь в SO2), а добавление строго ограниченных количеств углерода, марганца, хрома, ванадия и других веществ позволяет получать различные сплавы железа, называемые сталями. [c.449]

    Кислотное выщелачивание обеспечивает наибольшее извлечение ванадия, но оно применимо лишь при небольшом содержании в руде карбонатов. Аппараты для сернокислотного выщелачивания изготовляют из танталовой стали, кремнистого чугуна и снабжают крышками для отвода агрессивных паров кислоты. Из-за большого отношения твердого к жидкому (Т Ж) вязкость пульпы обычно высока, поэтому материал аппаратуры, трубопроводов и насосов должен иметь повышенную износоустойчивость.Иногда вскрытие серной кислотой проводят в наклонных обогреваемых трубчатых печах. Руду и кислоту подают в верхнюю часть печи, продукты реакции удаляют через нижнюю ее часть. [c.31]


    С применением фенилфлуорона ЗЬ определяют в ванадии и его окислах [563], в воздухе помещений сурьмяного производства [1218], галлии [64, 65], железе, чугуне, стали и аккумуляторной железной катодной массе [22, 495], индии [65], мышьяке [1084], [c.54]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]

    В чугунах и сталях определяют углерод (графит), марганец, никель, кобальт, медь, хром, алюминий, кремний, фосфор, серу и мышьяк, а также редкие металлы — титан, ванадий, молибден, вольфрам, цирконий, ниобий, тантал и др. [c.129]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Определение ванадия в стали и чугунах производится обычно объемным методом, основанным на восстановлении ванадия солью Мора. Возможно прямое титрование ванадия солью Мора или добавлением избытка соли Мора с последующим окислением избыточного двухвалентного железа персульфатом аммония (персульфат аммония окисляет на холоду только железо, но не ванадий) и титрованием восстановленного ванадия перманганатом. Эти методы дают очень хорошие результаты. А. М. Дымов [226] в качестве стандартного метода для определения ванадия в чугунах и сталях приводит метод прямого титрования пятивалентного ванадия солью Мора с индикатором — фенилантрани ловой кислотой или потенциометрически. Потенциометрический метод с применением соли Мора рекомендуется и другими исследователями [301, 302]. [c.129]

    При электроплавке часто легирование ванадием, как и многими другими легирующими элементами, проводится через введение ферросплава (в данном случае РеУ). При традиционном способе выплавки легированных ванадием сталей [ 11.77] используется следующая схема (рис. 11.50, а) доменная печь - конвертор с получением конверторного ванадиевого шлака (КВШ) - химическая переработка ванадиевого шлака с получением 60-70 % оксида ванадия У О - ферросплавное производство с использованием электропечи и получением железованадиевого сплава РеУ (содержание ванадия 33-38 %) - выплавка стали в электропечи с использованием феррованадия. Однако этот процесс очень энергоемкий, т.к. он включает такие энергоемкие процессы, как доменный и химической переработки ванадиевого шлака, кроме того, потери ванадия в данной, очень длинной цепочке составляют 68-70 %. При этом впервые получили достаточно достоверные значения энергоемкости классического способа получения РеУ она весьма значительна и составила 157315 кг у.т./т. (табл. 11.10, 11.11) [ 11.82]. При этом высокое значение ТТЧ КВШ (16374 кг у.т./т) получается из-за низкого выхода его после передела ванадиевого чугуна в дуплекс-цехе (77 кг/т полупродукта), поэтому столь значительные величины ТТЧ в последующих переделах, где используется КВШ и продукты его переработки. [c.542]

    Вторая альтернативная схема производства легированной ванадием стали (рис. 11.50, б), принципиальная возможность которой показана в работе [11.79], предусматривает сохранение производства ванадиевого чугуна и получение КВШ. Далее из технологической цепочки исключаются два передела — химический передел и выплавка РеУ в электропечах. Вместо этих двух переделов предлагается проводить выплавку РеУ в доменной печи с использованием плазменного подогрева дутья или горячих восстановительных газов (ГВГ), получаемых в газификаторе при газификации энергетического ушя в печи жидкофазного восстановления ПЖВ (или плавка в. жидкой ванне) [ 11.9,11.31,11.80,11.81]. Далее—производство легированной ванадием стали в элек- [c.542]

    Разработан ряд титриметрических методов определения ванадия в сталях, чугунах и других материалах, основанных на реакции окисления ионов Ре в кислых растворах ионами V . Для установления точки эквивалентности применяют N-фенил-антраниловую кислоту. На практике большое распространение получили методы, в которых точку эквивалентности устанавливают потенциометрически или амперометрически (по появлению тока окисления ионов Fe2+ на платиновом вращающемся аноде). [c.174]

    Ваипднй 15 основном используют в качестве добавки к сталям. Сталь, содергкащая всего 0,1—0,3% ванадия, отличается большой прочностью, упругостью и нечувствительностью к толчкам и ударам, что особенно важно, например, для автомобильных осей, которые все время подвергаются сотрясению. Как правило, ванадий вводят в сталь в комбинации с другими легирующими элементами хромом, никелем, вольфрамом, молибденом. Наиболее широкое применение ванадий нашел в производстве инструментальных и конструкцио.чных сталей (стр. 686). Он применяется также для легирования чугуна. [c.652]

    Решение. Ванадий находит применение в производстве твердых сплавов, специальных сталей и чугуна. Соединения ванадия используют в качестве катализаторов в производстве серной кислоты, анилиновых красителей, при окислении нафталина и др. При доменной плавке комплексных железных и ванадиевых руд ванадий переходит в чугун. В производстве стали из такого чугуна получают шлаки, содержащие до 15—18% V2O5, которые можно использовать как сырье в производстве ванадия. [c.14]

    При введении в систему Ре—С небольших добавок других металлов (легирование) общий вид диаграммы состояния сохраняется. Однако эти добавки способствуют стабилизации одних структурных составляющих и разрушению других. Так, легирование ванадием, хромом, вольфрамом стабилизирует структуру аустенита, что придает стали повышенную твердость и износоустойчиЕость. В то же время случайные включения цементита при этом подвергаются распаду за счет образования более прочных карбидов указанных легирующих металлов. Легирование белых чугунов переходными металлами с сильно дефектной -оболочкой (Т], V, Сг) приводит к разрушению цементита и образованию прослоек чешуйчатого графита между кристаллами сплава. Следствием этого является повышение ударной прочности. Добавки хрома и никеля, расширяющие область аустенита и стабилизирующие ее структуру, обеспечивают повышенную коррозионную стойкость сталей (нержавеющие стали), поскольку в гомогенных системах процессы коррозионного разрушения протекают медленнее. [c.415]

    Несмотря на перечисленные достоинства, применс-Н1 с окислителей связано со следующими недостатками. Обычно предварительная подготовка пробы к анализу состоит в переведении анализируемого материала в раствор посредством обработки различными кислотами чаще всего применяют азотную кислоту или ее смесь с хлороводородной или серной кислотой. Так, медные сплавы растворяют в азотной кислоте, причем содержащиеся в них элементы — железо, олово и другие—превращаются в соединения высших степеней окисления. При анализе различных чугунов и сталей необходимо определять ванадий, молибден, вольфрам, титан и нс-которые другие легирующие элементы, которые вследствие обработки пробы окислительными агентами также содержатся в полученном растворе в высших степенях окисления. Железные руды содержат оксиды железа растворяя их в хлороводородной кислоте с добавками различных окислителей, получают железо в степени окисления +3 и т. д. [c.435]

    Максимальной износостойкостью обладают высоколегированные хромотитановые чугуны с присадкой молибдена (плавка № 303), а также молибдена и ванадия (плавка № 302). Эти чугуны имеют аустенитную структуру и включают карбиды титана, карбидную эвтектику и вторичные карбиды. По сопротивлению абразивному изнашиванию эти чугуны очень близки к высокоуглероднс-тым сталям, легированным хромом. Значительную износостойкость имеет также высоколегированный хромотитанобористый чугун (плавка № 277). Однако все эти чугуны можно успешно применять в основном только в условиях безударных нагрузок. [c.100]

    Согласно ГОСТ 11658—65, алюминий в чугуне и нелегированной стали определяется алюминоном без отделения. Железо восстанавливают аскорбиновой кислотой до Fe (И), которое не мешает определению алюминия. В сталях при наличии в них титана и ванадия этот ГОСТ предусматривает предварительное удаление железа экстракцией эфиром и отделение титана и ванадия осаждением в виде купферонатов, т. е. также, как и в методе Шорта [11621. [c.212]

    Черная металлургия, потребляющая около 90% ванадия, использует его легирующие, раскисляющие и карбидообразующие свойства. В специальных сортах сталей он способствует образованию тонкой и равномерной структуры, делает сталь более плотной, повышает вязкость, предел упругости, предел прочности при ргстяжении и изгибе, расширяет интервал закалочных температур. Карбиды ванадия повышают твердость стали, увеличивают сопротивление истиранию и ударным нагрузкам. Ванадий — важная добавка в инструментальной (до 2%) и конструкционной (до 0,2%) сталях, сталях для газопроводов высокого давления. Развитие тяжелого и транспортного машиностроения обязано ванадиево-марганцевой стали, отличающейся большим сопротивлением удару и усталости. Ванадий используется для легирования сталей в комбинации с хромом, никелем, молибденом, вольфрамом. Им легируют также чугун. В машиностроении применяют чугунное литье с присадкой 0,1—0,35% V для изготовления паровых цилиндров, поршневых колец и золотников паровых машин, прокатных валков, матриц для холодной штамповки. Он — компонент сплавов для постоянных магнитов. Вводят в сталь его в виде феррованадия— сплава железа с 35— 80% V. [c.17]

    Современное состояние производства. Сведения по экономике. Основные производители ванадия и его соединений в капиталистическом мире — США, ЮАР и Финляндия (табл. 4). Добыча ванадия в 1970 и 1973 гг. была 18,6 и 20,4 тыс. т соответственно (в пересчете на [16]. Основной потребитель ванадия — США в 1970 и 1973 гг. потребление было 5220 и 6400 т соответственно в пересчете на металл. Резкое повышение добычи ванадиевых руд в США и других странах, начиная с 1949 г. объясняется организацией в США в больших масштабах производства урана. Три четверти добываемого ванадия приходилось на карнотитовые руды, содержащие уран. Другие крупные производители ванадия (в том числе и импортирующие ванадийсодержащие концентраты) — Великобритания (экспорт из Северной Родезии и ЮАР), ФРГ (лотарингские железные руды), Швеция (ванадиевые шлаки,получаемые при переделе титаномагнетитовых чугунов в сталь), Норвегия (титаномагнетиты), Италия (железистые бокситы, нефтяная зола), Намибия (полиметаллические руды). [c.20]

    В работе [1183] описан фотометрический метод определения марганца в сталях и чугунах в присутствии ванадия и хрома, основанный на экстракции перманганата тетрафенилфосфония хлороформом или дихлорэтаном из сернокислого раствора. [c.160]

    Активационные методы с выделениед и радиохимической очисткой образовавшихся изотопов ЗЬ используются для ее определения в алюминии [639—641, 912, 1235, 1247, 1376, 848] и трехокиси алюминия [639], боре и нитриде бора [426], бериллии [523], ванадии и пятиокиси ванадия [145], висмуте [1204, 1659, 1660], вольфраме [144], галлии [1375] и арсениде галлия [640, 824, 825, 831, 1375], германии [610, 639, 640], горных породах [74, 449, 1276, 1554], железе, стали и чугуне [987, 1033, 1113, ИЗО, 1280, 1590, 1653], железных метеоритах [1539], золоте [1676], индии [828, 829] и арсениде индия [115], каменных метеоритах [1136, 1234, 1236, 1515], кремнии [38, 39,275,282,455,639, 640, 861, 1035, 1144, 1355, 1473, 1492, 1540, 1687], двуокиси кремния и кварце [282—285, 487, 639, 640], карбиде кремния [38, 276, 639, 6401, [c.75]

    Среди металлических материалов исключительное полон<ение занимают сплавы на основе железа. Сплавы железа с содержанием углерода до 2% принято называть сталью, а свыше 2% — чугуном. Используемые в настоящее время в промышленности стали обычно делят на углеродистые и легированные. Создание новых и интенсификация существующих промышленных процессов заставляет все больше использовать легированные стали, которые обладают повышенной коррозионной стойкостью. Массовая доля средне- и высоколегированных сталей в настоящее время составляет почти 20% от общего количества производимых промышленностью черных металлов. Для легирования используют такие элементы, как никель, хром, молибден, вольфрам, ванадий, кобальт, марганец, медь, титан, алюминий. Сплавы железа с хромом составляют основу нер кевеющих сталей, среди которых [c.136]

    Для более твердых материалов используют методы Роквелла или Викерса, при которых вдавливание производят алмазом стандартной конической формы. Невысокой твердостью обладает свинец - 25...40 МПа, у серого чугуна - 1000... 1200 МПа, у качественной стали - 2500 МПа. Наибольшей твердостью, приближающейся к твердости алмаза, обладают карбиды ванадия, вольфрама, титана, циркония, применяемые для изготовления резцов, фрез. [c.65]


Библиография для Ванадий в сталях и чугунах: [c.143]    [c.43]   
Смотреть страницы где упоминается термин Ванадий в сталях и чугунах: [c.690]    [c.293]    [c.721]    [c.515]    [c.497]    [c.113]    [c.134]    [c.22]    [c.27]    [c.339]   
Практическое руководство по неорганическому анализу (1966) -- [ c.520 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.476 ]




ПОИСК





Смотрите так же термины и статьи:

Ванадий в сталях

Чугунные

Чугуны

сталь на чугун



© 2025 chem21.info Реклама на сайте