Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олово аммиаком

    Прямое осаждение гидроокиси олова аммиаком применяется редко,— только в тех случаях, когда олово определяют в чистом растворе его соли. [c.171]

    Многочисленные работы по каталитическому разложению пероксида водорода будут рассмотрены в разделе электрохимических реакций пероксида водорода. Активированные угли ускоряют окисление молекулярным кислородом солей двухвалентного железа, олова, аммиака и гидразина, оксида азота, нитритов, диоксида серы, сероводорода, мышьяковистой кислоты и арсенитов и др. [30]. При изучении окисления сернистого газа было показано, что поверхностные кислородные комплексы на угле представляют собой активные промежуточные соединения. Местами адсорбции ЗОа являются парамагнитные центры, фиксированные хемосорбированным кислородом [159]. Доля электрохимически активного хемосорбированного кислорода [166] соответствует его количеству, участвующему в каталитическом процессе. Это, по мнению авторов работы [166], позволяет предположить протекание реакции через промежуточное образование поверхностных оксидов. [c.67]


Рис. 64. Схема регенерации электролита методом осаждения гидроокиси олова аммиаком. Рис. 64. <a href="/info/28291">Схема регенерации</a> электролита <a href="/info/7917">методом осаждения</a> гидроокиси олова аммиаком.
    Раствор охлаждают, прибавляют 30 мл воды и снова нагревают до растворения сульфатов, затем прибавляют 10 мл 5%-ного раствора хлорида железа (П1) и осаждают гидроокись железа и олова аммиаком. Осадок отфильтровывают, растворяют в соляной кислоте и повторяют осаждение. [c.152]

    Осаждение олова аммиаком с гидроокисью железа проводят один раз. [c.157]

    Арсениты, соли сурьмы Соли олова Аммиак [c.305]

    Приводятся уточненные данные по двухступенчатой гидрогенизации угля. В жидкой фазе оксалат олова заменен сульфатом железа (из экономических соображений). Иа 1000 кг органической массы угля и 59,2 кг водорода получено в жидкофазной ступени 579,5 кг бензина, нафты и среднего масла, 111,2 кг тяжелого масла, 19,3 кг сероводорода, 8,1 кг аммиака, 155,2 кг газов, 49,1 кг нерастворимого остатка [c.18]

    Взвешенные частицы анализируют на содержание ионов фтора, нитратов, сульфатов и аммиака, а также мышьяка, бериллия, висмута, кадмия, хрома, кобальта, меди, железа, свинца, марганца, молибдена, никеля, селена, олова, ванадия и цинка. Улавливаются и анализируются также асбест, бор, силикаты. [c.100]

    Опыт 25. Получение гидроксида олова (IV) и исследование его амфотерности. К раствору тетрахлорида олова прилейте раствор аммиака. Полученный осадок испытайте по отношению [c.87]

    Приборы и реактивы. Стаканчик. Сероводородная вода. Растворы едкого натра (2 н.) аммиака (2 н. 25%-ный) азотной кислоты (2 и.) иодида калия (0,1 н.) тиосульфата натрия (.0,5 н.) нитрата серебра (0,1 н.) хлорида олова (II) (0,5 н.) глюкозы (10%-ный) хлорида калия (0,5 н.) бромида калия (0,5 н.) сульфита натрия (0,5 н.) хромата калия (0,5 н,). [c.203]

    Приборы и реактивы. Цинк (гранулированный). Молибдат аммония. Эфир диэтиловый. Растворы молибдата аммония (насыщенный) азотной кислоты (плотность 1,2 и 1,4 г/см ) хлороводородной кислоты (2 н. плотность 1,19 г/см ) серной кислоты (2 и. плотность 1,84 г/см ) хлорида кальция (0,5 н.) нитрата свинца (0,5 н.) хлорида олова (II) (0,5 и.) роданида калия или аммония (0,5 и.) гидрофосфата натрия (0,5 н.) аммиака (25%-ный) едкого натра (2 н., 4 к.) полисульфида аммония пероксида водорода (3%-ный). [c.234]


    Эту кислоту поместить в круглодонную колбу, прибавить концентрированный раствор аммиака и нагревать на водяной бане, пока не высохнет осадок. Затем укрепить колбу на асбестированной сетке и нагревать пламенем газовой горелки, пока осадок не расплавится и не станет изменять окраску. Осадок — нитрофталимид— извлечь из колбы, измельчить, поместить в коническую колбу, туда же прибавить полуторное количество металлического олова, 35 мл концентрированной НС1 и 9 мл воды. Нагревая, следует добавлять воду и НС1 небольшими порциями до растворения олова. Если раствор не будет прозрачным, отфильтровать его. Прибавив к фильтрату концентрированный раствор аммиака, осадить 3-фталимид. После нового добавления аммиака осторожно охладить колбу под струей воды. Реакция должна быть кислой. Осадок отфильтровать на стеклянном фильтре, перенести в фарфоровую ч шку и обработать раствором гидрата гидразина до изменения в цвете. Затем осадок просушить и измельчить в порошок. Полученный таким образом препарат загрязнен, но это не мешает успешно использовать его для демонстрационных целей. Получение более чистого препарата см. Синтезы органических препаратов , сб. 4, с. 40, 372, 1953. [c.148]

    Тетрахлорид олова ЗпС растворяют в воде и добавляют избыток раствора аммиака  [c.187]

    В качестве восстановителей применяют амальгаму натрия, натрий и спирт, литий и калий в жидком аммиаке, алюмогидрид лития, олово и хлорид олова, железо и сульфат железа (II), цинк, сероводород, сульфиды натрия и аммония, сернистую кислоту и ее соли, гидросульфит натрия, иодид водорода, метол, альдегиды, глюкозу и др. [c.138]

    Опыт 9. к раствору хлорида олова (IV) прилить раствор аммиака. Полученный осадок а-оловянной кислоты разделить на две части и установить его амфотерность. [c.209]

    Опыт 7. Медь, стружка. Олово. Азотная кислота, концентрированная. Аммиак, концентрированный раствор. Железные гвозди. Сульфат меди, 0,5 н. раствор. [c.311]

    Встречаясь с бесконечным разнообразием природы, человеческий ум, первоначально, быть может, даже бессознательно, стремится прежде всего объединить сходные предметы или явления, облегчая себе таким образом их дальнейшее понимание. Поэтому первым этапом развития молодой науки является всегда накопление фактов и систематизация опытного материала. Пытаясь произвести такую систематизацию, химики древности и средних веков не делали различия между органическими и минеральными веществами. Свою классификацию они основывали на внешних признаках веществ. Например, солями именовались все бесцветные кристаллические вещества, растворимые в воде. Вместе с настоящими солями сюда попадали янтарная кислота, щавелевая кислота, винная кислота. Маслами считались все густые жидкости сюда причислялись и растительные масла (подсолнечное, хлопковое и др.), и масло винного камня (расплывшееся во влажном воздухе едкое кали), и купоросное масло — название, еще и сегодня употребляемое в технике для концентрированной серной кислоты. Спиртовыми веществами считались летучие жидкости винный спирт, хлорное олово, соляная и азотная кислоты, водный раствор аммиака. Для последнего еще и ныне употребительно название нашатырный спирт . [c.3]

    Металлический полоний обычно получают электроосаждением из кислых растворов (нитратных, иногда фторидпых) на платине или золоте, либо самоосаждением полония на серебре или никеле с последующей вакуумной сублимацией полония с металлической основы [25]. Полоний в виде металла образуется также при термическом разложении в вакууме его сульфида или двуокиси, равно как и при действии на его соединения восстановителей гидразина, гидроксиламинг , хлористого олова, аммиака. [c.204]

Рис. 65. Схема технологического процесса с регенерацией промыниых вод и электролита методом осаждения гидроокиси олова аммиаком. Рис. 65. <a href="/info/28503">Схема технологического процесса</a> с регенерацией промыниых вод и электролита <a href="/info/7917">методом осаждения</a> гидроокиси олова аммиаком.
    Первая стадия этого процесса — синтез фталонитрилов — осуществляется при атмосферном давлении в интервале температур 350—480 С при четырехсемикратном избытке аммиака и кислорода. В качестве катализаторов используют окислы металлов переменной валентности, преимущественно на основе пятиокиси ванадия. Применение смеси окислов позволяет повысить активность и несколько улучшить селективность катализаторов. Наиболее часто предлагают использовать смеси окислов ванадия, олова и титана, ванадия и хрома, ванадия и молибдена рекомендуются также смеси окислов ванадия, титана, молибдена и висмута. Катализаторы могут применяться в виде сплавов, совместно осажден ных окислов или наноситься на окись алюминия, карборунд, силикагель, алюмосиликат и др. [c.286]


    В окислении и аммоокислении олефинов углеводород претерпевает частичное дегидрирование, образуя адсорбирующийся радикал, к которому присоединяется кислород. Полученные продукты, сходные с альдегидами, могут затем конденсироваться с аммиаком, а продукт присоединения дегидрируется в нитрил. Необходимые функции — дегидрирование, присоединение кислорода и конденсация — ассоциируются с такими катализаторами, как молибдат висмута и соединения окислов олова и сурьмы. [c.33]

    Оба соединения бесцветны и очень легко разлагаются при нагревании с разбавленной серной кислотой они гидролизуются до хинона и аммиака. Неустойчивость по отношению к минеральным кислотам является хара1 терным свойством соединений этого класса. Хинон-иминь так же легко восстанавливаются, как хиноны наиример, при действии двухлористого олова хинонмоноимин восстанавливается до и-аминофенола, а диимин—до фенилендиамина. [c.709]

    Свойства а-оловянной кислоты. Для получения -оловянной кислоты к небольшому количеству (около 1 мл) хлорида олова (IV) в пробирке добавьте раствор аммиака до образования аморфного белого осадка. Раствор с осадком разделите поровну в две пробирки и испытайте его взаимодействие с избытком концентрированной НС1 и раствором NaOH. Напишите уравнения реакций растворения a-SnOi-JiHaO в кислоте и щелочах. [c.217]

    Амфотерность гидроксида олова (II). К 5—10 каплям раствора хлорида олова (II) в пробирке добавьте 4—6 капель раствора аммиака. Полученный белый осадок гидроксида олова (II) промойте методом декантации, разделите поровну в две пробирки и испытайте взаимодействие его с кислотами и щелочами, добавив в одну пробирку 5—8 капель раствора НС1, а в другую — 5—8 капель раствора NaOH. Напишите уравнения реакций. [c.217]

    Отгонка аммиака используется в широко известном методе определения азота в органических соединениях по Кьельдалю. В простейшем варианте этого метода пробу обрабатывают при нагревании концентрированной серной кислотой в присутствии солей ртути (катализатор), в результате чего органические соединения окисляются до СО2 и Н2О, а азот переходит в ЫН4Н504. После охлаждения к остатку добавляют раствор щелочи и отгоняют ЫНз в отмеренный объем титрованного раствора кислоты, а затем определяют избыток кислоты, не вошедшей в реакцию с аммиаком, и рассчитывают массу азота в пробе по формуле обратного титрования. Методом Кьельдаля можно определять азот в аминах, аминокислотах, алкалоидах и многих других азотсодержащих соединениях. Некоторые соединения можно проанализировать по методу Кьельдаля только после предварительного разложения или восстановления хлоридом олова (И) или цинковой пылью (азотсоединения, производные гидразина и т. д.) [c.215]

    Приборы и реактивы. Прибор для получения сероводорода. Стакан. Тигель № 1. Фарфоровая чашечка (с1 = 3.— 4 см). Железная полоска. Цинк (гранулированный порошок). Натрий. Церий или мишметалл. Диоксид марганца. Мод кристаллический. Магний лента. Пероксид бария. Сульфат натрня. Сульфит натрия. Нитрит калия. Сульфид железа. Нитрат меди Си(Ы0з)2-ЗН20, Висмутат натрня. Дихромат аммоиия. Пероксодисульфат калия или аммония. Спирт этиловый. Растворы сероводородная вода хлорная вода бромная вода йодная вода крахмала фенолфталеина щавелевой кислоты (0,5 н,) серной кислоты (2 и. 4 и, плотность 1,84 г/см ) хлороводородной кислоты (2 н. плотность 1,19 г/см ) азотной кислоты (0,2 н. 2 н.) уксусной кислоты (2 и.) гидроксида натрня или калия (2 и.) аммиака (2 н. 25%) сульфата марганца (0,5 и.) сульфата меди (0,5 н,) сульфита натрня (0,5 н,) хлорида олова (11) (0,5 и,) дихромата калия (0,5 н.) перманганата калия (0,5 н,) нитрата ртути (II) (0,5 н,) нитрата серебра (0,1 н.) формальдегида (10%-ный) пероксида водорода (3%-ный) иодида калия (0,5 н.) сульфата цинка (0,5 и.) хлорида железа (111) (0,5 и.) гексацнано-феррата (III) калия (0,5 н.) соли ттана (IV) (0,5 и.) сульфида натрия нли аммония (0,5 и,) гидроксида натрия (2 н,). [c.94]

    Получить комплексное соединение меди, для чего поместить в пробирку 15—16 капель раствора сульфата меди н по каплям добавлять 25%-ный раствор аммиака. Наблюдать растворение выпавшего вначале осадка основного сульфата меди п изменение цвета раствора при образовании комплексного сульфата тетра-амминмедн (П). Полученный раствор разделить в две пробиркп и провести те же два опыта, которые были проделаны с растворо.м медного купороса. Выпадает ли осадок при добавлении хлорида бария Выделяется ли медь на грануле олова  [c.121]

    Приборы и реактивы. Микроскоп. Фарфоровый тигель. Оксид ртути (II). Растворы азотной кислоты (плотноть 1,4 г/см ) едкого натра (2 и.) сульфида аммония (насыщенный) нитрата ртути (II) (2 н.) нитрата ртути (I) (2 и.) хлорида ватрия (насыщенный, 0,5 н.) иодида калия (0,5 н., 0,2 н.) роданида калия (насыщенный), нитрата серебра (2 н.) хлорида кобальта (насыщенный) хлорида олова (II) (0,5 н.) аммиака (2 н.) сероводородной воды, [c.194]

    Образование малорастворимого гидроксида олова (II). Едкие щелочи, карбонаты щелочных металлов и аммония, раствор аммиака осаждают белый осадок гидроксида олова (И), растворимый в кислотах и в избытке едких щелочей. В последнем случае образуются тетрагидроксостаннат(П)-ионы, или тетрагидроксостанниты  [c.319]

    Осадкн кислот ЭОа-НоО со временем (при стоянии) изменяют степень гидратации (пИаС)) и структуры (размеры) образующихся частиц — стареют . Это весьма характерно для ЗпОа-пНаО. Так, при взаимодействии водного раствора аммиака с раствором тетрахлорида олова получается гексагидроксооловянная а-кислота  [c.300]

    Вещества, являющиеся донорами электронных пар, называют основаниями Льюиса, а акцепторы электронных hap - кислотами Льюиса. К основаниям Льюиса относятся галогенид-ионы, вещества, содержащие аминный азот (аммиак, алифатические и ароматические амины, пиридин и т. п.), кислородсодержащие соединения общей формулы Rj O (где R - органический радикал или атом галогена). Кислотами Льюиса являются галогениды бора, алюминия, кремния, олова, фосфора, мышьяка, сурьмы и многих других элементов, ионы-комплексообразователи Ag, Со , Сг , Pt и др. [c.302]

    Олово (II) определяют спектрофотометрическим титрованием раствором сульфата церия (IV) — хлориды олова (И) и олова (IV) прозрачны для ультрафиолетовых лучей. Поглощение, как и в предыдущем случае, определяется только раствором сульфата церия (IV), Методика определения свинца. Навеску сплава 0,01 или 0,1 г (микро- или макрохимическая методика выполнения) растворяют в 1,5—15 мл разбавленной (1 1) азотной кислоты. Раствор разбавляют водой до 10—100 мл соответственно и нейтрализуют растворо,м аммиака по метиловому оранжевому. Для уничтожения образовавшейся мути прибавляют по каплям 78%-ную уксусную кислоту. Затем раствор упаривают до 1 —1,5 мл (микро) или 10—15 мл (макро) и, осадив ионы свинца известным количеством щавелевой кислоты, в фильтрате отти-тровывают сульфатом церия (IV) ее избыток при л = 365 нм. [c.269]

    Метод основан иа титровании индия (111) при pH 1,0 раствором динатриевой соли этилендиаминтетрауксусной кислоты (комплексон III). Точку эквивалентности устанавливают по исчезновению диффузионного тока восстановления 1п Ч-иона на ртутном капельном электроде при потенциале от —0,7 до —0,8 в относительно насыщенного каломельного электрода. Определению не мешают многие элементы, с которыми обычно приходится встречаться при анализе индийсодержащих продуктов, а именно 2п, Мп, Сс1, Со, А1. Титрованию не мешают также значительные количества Ре++ ( 10 мг). Железо (111) восстанавливают до Ре++. Влияние олова (-<5 мг) и сурьмы (-<2. мг) устраняют введе-ннем винной кислоты. Определение возможно в присутствии небольших количеств (-<0,5 мг) ионов медн, если их замаскировать тномочевиной, и ионов свинца, а также мышьяка (-<2 мг). Большие количества этих элементов затрудняют установление точки эквивалентности вследствие того, что медь, свинец и мышьяк дают диффузионный ток. Однако эти элементы легко отделяются от индия в ходе анализа мышьяк и свинец удаляются при разложении пробы смесью хлористоводородной и серной кислот и упаривании раствора до появления паров Н2504 медь — при осаждении гидроокиси нндия избытком аммиака. Определению мешает висмут. [c.369]

    Метод основан на взаимодействии бромидного комплекса индия с родамином 6Ж. Образующееся соединение экстрагируют бензолом из 15 н. серной кислоты и определяют концентрацию индия по интенснвно-сти флуоресценции экстракта. Мешающие ионы железа (III), меди (II), олова (IV), сурь.мы (III), таллия (III), золота (III), ртути (II) удаляют при экстракции индия бутилацетатом с последующей реэкстракцнеи хлористоводородной кислотой. Возможен ускоренный вариант отделения мешающих элементов с применением двукратного осаждения аммиаком и цементации на металлическом железе. [c.388]

    Опыт 1. Амфотерные свойства гидроксида олова, (П). Поместите в пробирку 8—10 капель раствора хлорида олова Sn l , добавьте несколько капель воды и раствор аммиака до полного осаждения осадка. Распределите содержимое на две пробирки и добейтесь растворения осадка в каждой из них с помощью в одном случае 2 н. раствора НС1, в другом — 2 н. раствора NaOH. Составьте уравнения реакций, зная, что при реакции гидроксида олова с едким натром [c.209]

    Можно сказать, что свойства интерметаллических соединений тем в большей степени являются индивидуальными, чем больше отличаются образовавшие их металлы по своему электрохимическому характеру, т. е. чем значительнее они различаются по величине своих электродных потенциалов. Когда мы имеем соединение очень электроположительного элемента с мало электроположительным, то такое соединение по своему характеру приближается к соединениям металла с неметаллами. С химической стороны интерметаллические соединения изучены Краусом, который воспользовался свойством многих из них растворяться в жидком аммиаке. Растворы интерметаллических соединений в жидком аммиаке проводят электрический ток, т. е. они электролиты. Так, при электролизе НадЗл на аноде выделяется олово, на катоде — натрий в весовых отношениях, отвечающих приведенной формуле. Будучи растворенными в жидком аммиаке, интерметаллические соединения вступают во многие химические реакции, которые идут до конца. На основании своих работ Краус приходит к выводу, что интерметаллические соединения — настоящие электролиты, во всех отношениях совершенно аналогичные типичным электролитам — солям. Краус указывает, что в обыкновенных солях, образованных металлом и неметаллом, мы принимаем у атомов металла валентность положительной, а у атомов неметалла отрицательной. Точно так же в интерметаллических соединениях, по-видимому, следует считать электроположительным наиболее активный металл. [c.224]


Смотреть страницы где упоминается термин Олово аммиаком: [c.138]    [c.151]    [c.156]    [c.306]    [c.264]    [c.523]    [c.498]    [c.515]    [c.200]    [c.423]    [c.320]    [c.640]    [c.190]   
Практическое руководство по неорганическому анализу (1966) -- [ c.334 , c.342 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.305 , c.312 ]




ПОИСК







© 2024 chem21.info Реклама на сайте