Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионная обрыв цепи

    Различив между каталитическим и термическим крекингом или, более узко, между ионным и термическим механизмами наиболее отчетливо наблюдается на примере ароматических углеводородов. В самом деле, было уже отмечено [19], что между механизмами каталитического и термического крекинга алифатических углеводородов существует некоторое формальное сходство и основное отличие заключается в изомеризации промежуточного иона карбония. Иное явление имеет место при крекинге алкилароматических углеводородов, в случае которых обрыв цепи происходит либо у кольца (при каталитическом крекинге) либо по крайней мере у соседнего с кольцом атома углерода (при термическом крекинге), что показано ниже на примере крекинга м-пропилбензола. [c.130]


    Многократный обрыв цепей на ионах металлов. Пероксидные радикалы спиртов (вторичных и первичных) и алифатических аминов могут выступать в качестве окислителей или в качестве восстановителей (см. с. 117). В присутствии ионов переменной валентности возникает цикл реакций каталитического обрыва цепей [c.203]

    Но так как концентрация ионов намного выше концентрации пероксидных радикалов, а константы скорости реакций высокие (см. табл. 6.2), то обрыв цепей идет очень быстро. Поскольку в обрыве цепей принимают участие обе валентные формы металла и их суммарная концентрация в ходе опыта сохраняется постоянной, возникает уникальная ингибирующая система с /=оо. [c.203]

    Обрыв цепи здесь происходит в результате реакции иона, ведущего цепь, с молекулой примеси, обычно О или Nj. [c.226]

    Обрыв цепей происходит при встрече иона карбония с анионом алюмосиликата  [c.325]

    Обрыв цепи. Рост цепи прекращается в результате отщепления (регенерации) от растущего иона комплексной кислоты или катализатора  [c.395]

    Обрыв цепей. Ограничение роста цепей в анионной полимеризации возможно по следующим реакциям 1) перенос гидрид-иона с конца растущей цепи на противоион или мономер, например  [c.278]

    Обрыв цепи при катионной полимеризации — явление редкое. В отличие от радикальной полимеризации реакция обрыва цепи при катионной полимеризации имеет первый порядок относительно концентрации активных центров. Для некоторых систем гибель активных центров может наступать в результате взаимодействия макрокатиона с противоионом либо за счет перехода ионной связи в ковалентную, что наблюдается, например, при полимеризации стирола, катализируемой СРзСООН  [c.19]

    В ионной полимеризации отсутствует бимолекулярный обрыв цепи. [c.29]

    Обрыв цепи происходит в результате передачи цепи от растущего иона карбония противоиону с регенерацией каталитического комплекса (III) или через мономер (IV), причем возможна передача цепи путем перехода к мономеру комплекса катализатор — со-катализатор (в молекуле полимера получается ненасыщенная связь) либо путем отрыва гидрид-иона от мономера  [c.29]

    Ионная полимеризация характеризуется также полным отсутствием или очень малыми разветвлениями основной цепи полимера, а также более высоким значением средней молекулярной массы и узким молекулярно массовым распределением полимеров по сравнению с радикальной. Этому способствует невозможность обрыва цепи путем соударения двух растущих частиц, имеющих одинаковый но знаку заряд. Обрыв цепи в ионной полимеризации происходит либо в результате реакции растущей цепи с низкомолекуляр-иыми добавками н примесями, либо путем передачи реакционной цепи на мономер или растворитель. [c.37]


    Обрыв цепи путем рекомбинации одноименно заряженных ионов невозможен. Он осуществляется вследствие перестройки ионной пары при уменьшении кинетической подвижности макроиона вследствие увеличения его размеров. При этом образуется нейтральная молекула полимера с двойной связью на конце и регенерируется исходный комплекс катализатор—сокатализатор  [c.38]

    Ионная полимеризация является также цепной реакцией, но осуществляется с помош.ью катализаторов — веществ, которые активируют мономер, переводя его в ионное состояние. Процесс ионной полимеризации также складывается из нескольких элементарных актов 1) инициирование — образование ионов 2) рост цепи 3) обрыв цепи. В первой стадии образуются ионы, содержащие либо положительно заряженный (катионная полимеризация), либо отрицательно заряженный (анионная полимеризация) атом углерода с последующей передачей по цепи положительного или отрицательного заряда. [c.450]

    Скорость полимеризации пропорциональна квадрату концентрации мономера и корню квадратному из концентрации катализатора. Обрыв цепи при анионной полимеризации происходит путем передачи цепи на растворитель и присоединения протона или другой положительно заряженной частицы. В данном случае обрыв происходит при взаимодействии карбаниона с аммиаком в результате присоединения протона аммиака с регенерацией иона амида МНг. Таким образом, амид калия не расходуется в процессе реакций. [c.85]

    Реакция обрыва при радикальной полимеризации протекает с большой скоростью при взаимодействии двух радикалов с последующей рекомбинацией или диспропорционированием. При катионной полимеризации обрыв цепи происходит в результате передачи на мономер или в результате взаимодействия растущего иона с противоионом. [c.88]

    Обрыв цепи может протекать как вследствие взаимодействия ацилий-иона с противоионом, так и в результате передачи цепи на полимер или мономер, [c.119]

    Полимеризация по ионному механизму начинается с образования в реакционной системе инициатора — катиона или аниона (в зависимости от этого различают катионную и анионную полимеризацию). В качестве источников ионов в систему вводят специальные вещества АВ (например, неорганические и органические соли). Ионная полимеризация протекает через те же стадии, что и радикальная инициирование, рост и обрыв цепи. Так, анионную полимеризацию (с участием аниона B ) этилена можно представить следующими реакциями  [c.324]

    Опубликованы [132] аналогичные исследования кинетики полимеризации бутадиена. Весьма вероятно, что полимеризация изопрена в присутствии катализаторов типа циглеровского протекает по анионному механизму [109, 126]. Рост цепи полимера можно представить себе как результат включения поляризованных ориентированных молекул мономера между растущей цепью и поверхностью катализатора. Сильно ненасыщенные мономеры в большей степени ориентированы и сильнее адсорбируются на поверхности катализатора, чем молекулы полимера. Обрыв цепи происходит в результате передачи гидридного иона катализатору или передачи цепи молекуле мономера. [c.199]

    Необходимо отметить возможность обрыва полимерных цепей с помощью ОН-групп фенолов и более сильное их ингибирующее действие по сравнению с метилбензолами. Это накладывает ограничения на количество используемых фенолов [около 0,1-1% (мол.)]. Наблюдаемый для анизола, наряду с передачей, обрыв цепи объясняется образованием оксониевых ионов, не способных к росту из-за высокой их стабильности [1, с. 171]  [c.107]

    ООО ООО, Наряду с блоксополимера-ми возможно образование и привитых сополимеров. Обрыв цепей реализуется преимущественно за счет взаимодействия иона Мл + с растущим радикалом [61]. [c.46]

    Ионная полимеризация, как любая цепная реакция, протекает в три стадии инициирование - образование ионов или ионных пар рост макроионов прекращение роста макроионов. Активные центры при ионной полимеризации состоят из растущего иона (К или К ) и противоиона (А или А ). Ионная полимеризация приводит к получению полимеров, не имеющих или имеющих очень мало боковых ответвлений, с высокой средней молекулярной массой и узким молекулярно-массовым распределением полимера. Это объясняется невозможностью обрыва цепи соударением двух растущих частиц, имеющих одинаковый по знаку заряд. Обрыв цепи в ионных процессах происходит обычно за счет передачи реакционной цепи на мономер или растворитель, или какие-то добавки и примеси. [c.31]

    Таким образом, на конце растущей цепи всегда находится карбкатион с противоионом, а благодаря поляризации молекулы мономера обеспечивается регулярное присоединение звеньев по типу голова к хвосту . Поэтому макромолекулярная цепь имеет регулярную структуру. Обрыв цепи происходит в результате перестройки ионной пары с образованием нейтральной молекулы полимера, имеющего двойную связь на конце цепи, и регенерируется катализатор [c.32]


    Обрыв цепи превращений карбениевых ионов происходит возвратом протона к поверхности катализатора или отнятием электрона от центров Льюиса. [c.459]

    Радикальные реакции начинаются с разложения какого-нибудь лабильного соединения как первичного источника радикалов (инициирование). Затем следует ряд реакций между радикалами и молекулами (рост цепи) [см., например, уравнения (7) —(9)], которые обычно приводят к продуктам реакции заканчиваются радикальные реакции рекомбинацией или диспропорционированием радикалов (обрыв цепи) [см., например, уравнения (12) и (13)]. Для химии радикалов более обычны цепные реакции в сравнении с ионными реакциями новый радикал, образующийся за счет реакций присоединения или отрыва, часто способен быстро взаимодействовать с молекулой субстрата с образованием другого радикала, который ведет цепь [см. например, схемы (14) и (21)] до тех пор, пока она не оборвется, за счет взаимодействия между радикалами. Развитие (продолжение) цепи обусловлено высокой реакционной способностью радикалов, ведущих цепь, в радикал-молекулярных реакциях. Благодаря этому сохраняется низкая концентрация радикалов, а следовательно, и невысокая скорость радикал-ради-кальных реакций обрыва цепи. [c.573]

    При ионной полимеризации бимолекулярный обрыв цепей невозможен, поскольку активные концы растущих цепей взаимно [c.138]

    Обрыв цепи путем рекомбинации или диспропорционирования в этом случае невозможен из-за отталкивания одноименно заряженных ионов. Он происходит путем перестройки ионной пары, при которой образуется нейтральная молекула полимера с двойной С=С-связью на конце и генерируется исходный каталитический комплекс  [c.50]

    Цепь начинается [уравнение (33)] с окислительной атаки серной кислоты по третичному водороду, что ведет к выделению двуокиси серы (при разложении иона бисульфата), которое сопровождает изомеризацию углеводородов при помощи этого катализатора [8]. Изомеризация [уравнение (34)] включает перемещение метильной группы вдоль углеродной цепи, что осуществляется весьма легко. Некоторые исследователи [75] считают возможным образование на этой стадии промежуточного циклического иона. При этом может наблюдаться также некоторое увеличение разветвленности в результате образования диметилпентанов, но в гораздо меньшей степени. Цепь развивается за счет перехода третичного атома водорода от молекулы углеводорода к одному из ионов карбония (35). На этой стадии образуется другой ион карбония, который также чувствителен к реакциям изомеризации и развития цепи. Обрыв цепи, по-видимому, сопряжен с реакцией полимеризации носителя цепи с обра-аованием сильно непредельных органических комплексов, которые накапливаются в кислотном слое [33]. [c.38]

    При этом регенерируется активный центр, который может вызвать полимеризацию новой порции мономера. Аналогичный механизм полимеризации изобутилена предлагает Топчиев [12], с той лишь разницей, что растущий ион карбония отделен от аниона, возможно, вследствие диссоциации. Обрыв цепи происходит в результате взаимодействия полимерного карбониевого иона с анионом после израсходования всего изобутилена. [c.330]

    Окислительно-восстановительная способность гидроксиперок-сидных радикалов объясняет каталитический обрыв цепей на ионах переменной валентности в окисляющих спиртах, когда один ион металла участвует в обрыве цепей бесконечное число раз благодаря циклу [217] [c.118]

    Источник метильной группы обсуждается позже. Обрыв цепи может происходить путем переноса гидрид-иона [уравнение (4)]. Возможен перенос гидрида к активному центру вместо мономера [уравнение (5)]. В обоих случаях перенос гидрида объясняется присутствием метильной группы в головном конце полимерной цепи и винильной группы в хвостовом. [c.184]

    ИоЕгнал полимеризация, как и радикальная, является цепным процессом. От радикальной ионная полимеризации отличается тем, что полимерная цепь, образующаяся в присутствии ионных катализаторов, не содержит свободных радикалов, а активные центры в ней образуются в результате присоединения катализатора к молекуле мономера, вследствие чего образуется малоустойчивый ион, к которому последовательно присоединяются молекулы мономера с одновременным перемещением заряда на крайнее звено растущей цепи. Таким образом, в этом случае рост цепи осуществляется под действием макроиона, а не макрорадикала, как это имеет место в радикальной полимеризации. Обрыв цепи макромолекулы при ионной полимеризации происходит в результате отщепления от макромолекулы катализатора, который, таким образом, не расходуется на образование макромолекулы. [c.373]

    Обрыв цепи. Обрыв цепи при алкилировании изобутана олефинами происходит в каждом случае потери грет -бутилкарбоний-иона, например при поглощении двух ионов и регенерации лишь одного. Реакции протекают в соответствии с уравнениями  [c.35]

    При алкилировании изобутана обрыв цепи ведет к образованию преимущественно (хотя и не единственно) 2,2,4-триметилпентана продукт, получаемый при обрыве цепи, близок по составу к продукту алкилирования изобутана изобутиленом. Сходство составов алкилатов (особенно фракций Се), получаемых при алкилировании разными олефинами, и существенное их отличие от равновесного (рассчитанного на основании термодинамических данных) показывают, что углеводородные молекулы в алкилате относительно стабильны в условиях алкилирования и изомеризуются лишь-незначительно. Нежелательные побочные продукты, например ди-метилгексаны и тяжелый остаток, вероятно, образуются при изо-, меризации и полимеризации бутиленов (а не при изомеризации алкилата или изооктилкарбоний-ионов). [c.35]

    Инициирова ние циклизации осуществляется за счет взаимодействия двойной связи с протоном (либо с другим акцептором электронов). Образующийся ион карбония взаимодействует с ближайшей двойной связью с образованием циклического иона карбония. Далее циклический ион карбония или может действовать на соседнюю двойную связь с образованием второго цикла и т. д., или в результате депротонизации образуется новая двойная связь (т. е. происходит обрыв цепи). Направление реакции будет зависеть от соотношения вероятностей самопроизвольной депротонизации и реакции циклического карбо-ниевого иона с соседней двойной связью. А это соотношение зависит от экспериментальных условий реакции, т. е. от типа полимера, растворителя и катализатора, от продолжительности реакции и температуры. Например, при циклизации поли-(2,3-диметил)-бутадиена, полиизопрена и полибутадиена в одинаковых условиях скорость циклизации будет уменьшаться в направлении к полибутадиену, но в этом же направлении будет увеличиваться средняя длина полициклических участков цепи. [c.59]

    Такие олефиновые концевые группы были обнаружены при полимеризации пропилена [69]. Их присутствие полностью согласуется со всеми рассмотренными выше механизмами, так как все они предполагают участие металлорганических соединений. При радикальном и ионно-радикальном вариантах механизма обрыв цепи может происходить в результате диспропорционирова-ния или димеризацпи растущих радикалов, что также ведет к появлению ненасыщенных и насыщенных концевых групп. [c.298]

    Обрыв цепи происходит в результате потери протопа, отрыва гидрид-иона от растворителя (5Н) илн от другой присутствующей в растворе молекулы, или в результате соединения с ационои  [c.405]

    Обрыв цепи при ионно координационнон полимеризации происходит различными способами  [c.142]

    Обрыв цепи при катионной полимеризации обычно осуществляется путем переноса протона к мономеру или рекомбинации карбениевого иона с анионом. Такие соединения, как амины, простые эфиры и сульфиды, которые реагируют с карбениевыми ионами, образуя более устойчивые ионы, ингибируют реакцию. По катионному механизму полимеризуются не только виниловые мономеры известны и другие примеры (уравнения 14, 15). В реакциях полимеризации, проходящих с разрывом цикла в мономере, движущей силой процесса в значительной мере является напряженность цикла. [c.305]

    Этот ВИД полимеризации, связанный с возникновением ион-радикалов, интересен тем, что дает возможность получать живые полимерные цепи, т. е. растущий макробианион длительное время способен возбуждать полимеризацию при добавлении новых порций мономера. Обрыв цепи даже способами передачи на растворитель или мономер исключен полностью. Полимеризация прекращается только после исчерпания всего мономера. Полимеры, получаемые этим способом, характеризуются высоким значением молекулярной массы и малой полидисперсностью. [c.52]


Смотреть страницы где упоминается термин Ионная обрыв цепи: [c.453]    [c.604]    [c.604]    [c.231]    [c.472]    [c.108]    [c.397]    [c.520]    [c.139]   
Энциклопедия полимеров Том 2 (1974) -- [ c.406 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.2 , c.406 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.406 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.2 , c.406 ]




ПОИСК





Смотрите так же термины и статьи:

Обрыв цепи



© 2025 chem21.info Реклама на сайте