Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация энтропия

Таблица 67. Теплоты ДЯм и изменения энтропии Д5м при полимеризации с образованием твердого частично кристаллического полимера при 25 °С Таблица 67. Теплоты ДЯм и <a href="/info/12283">изменения энтропии</a> Д5м при полимеризации с <a href="/info/277188">образованием твердого</a> <a href="/info/117716">частично кристаллического</a> полимера при 25 °С

    Для определения энтропии смешения линейного полимера с низкомолекулярным растворителем необходимо предположить, что разме ) сегментов макромолекулы (звенья) равен размеру молекулы растворителя. Иногда в качестве сегмента берут мономерную единицу, а за нх число г в цепи макромолекулы принимают степень полимеризации. Используя решеточную модель раствора, в которой отдельные узлы решетки заняты молекулами растворителя или сегментами макромолекулы, обладающей гибкостью, рассчитывают число возможных расположений микромолекул. Число частиц, принимающих участие в перестановках, равно = 1 22. После расчета полной статистической вероятности Я в соответствии с уравнением Больцмана (5 = й 1пй) определяют энтропию смеше- [c.322]

    Из изложенного ясно, что энтропия возрастает при переходе вещества из кристаллического состояния в жидкое и из жидкого в газообразное, при растворении кристаллов, нри расширении газов, при химических взаимодействиях, приводящих к увеличению числа частиц, и прежде всего частиц в газообразном состоянии. Напротив, все процессы, в результате которых упорядоченность системы возрастает (конденсация, полимеризация, сжатие, уменьшение числа частиц), сопровождаются уменьшением энтропии. [c.78]

    Уменьшение энтропии активации указывает на то, что комплекс имеет большую степень порядка по сравнению с исходными частицами. Отрицательное значение энтропии активации объясняется также тем, что при соединении двух молекул в активный комплекс теряются степень свободы поступательною и вращательного движения. Для реакций ассоциации, димеризации и полимеризации энтропии активации обычно имеют большие численные значения. Если энтропия активации близка к изменению энтропии реакции, это говорит о том, что строение активного комплекса сходно со строением молекулы продукта реакции. [c.68]

    Почему энтропия сшитого полимера меньше, чем энтропия мономера до полимеризации  [c.84]

    Определение изменения энтропии при полимеризации. Для определения изменения энтропии при полимеризации ASm можно воспользоваться измерением равновесной концентрации мономера и вести расчет по уравнению пс= (AH°IRT) — —AS° R. Другой возможный метод основан на экспериментальном определении предельной температуры полимеризации Тар-Если измерять скорость образования полимера или расходования мономера, то вблизи Гпр измеряемая скорость будет близка к нулю. Экстраполяция графика скорость—температура в область нулевой скорости позволяет найти Гпр с точностью не ниже 2—3 градусов. Дальнейший расчет основан на следующих соотношениях. [c.264]


    Всегда ли при полимеризации энтропия системы уменьшается  [c.140]

    Нужно заметить, что если в ходе поликонденсации концентрация воды остается постоянной (это можно обеспечить технологическими приемами), а концентрация мономерных единиц, вступающих в реакцию, одинакова, то термодинамический анализ поликонденсации, по существу, тот же, что и для полимеризации. Поэтому можно использовать рассмотренные выше для полимеризации методы определения констант равновесия, теплот и изменений энтропий. Поликонденсацию, как и полимеризацию, можно характеризовать предельной температурой. [c.278]

    Ениколопян с сотр. [921 изучали влияние степени полимеризации и МБР на энтропию полимера. Они показали, что при низких степенях полимеризации энтропия полимера зависит от ОР  [c.34]

    При п > 3 тепловой эффект полимеризации близок к нулю [10, 39] и, следовательно, основной движущей силой процесса является изменение энтропии системы. [c.472]

    Термодинамический анализ процессов низко- и высокомолекулярной полимеризации позволил объяснить ряд экспериментальных данных. Например, 1а-метилстирол полимеризуется при атмосферном давлении при температурах ниже 65 °С наоборот, сера образует интересные полимерные молекулы с раскрытием цикла при температурах выше 180 °С. Это удалось объяснить на основе исследования влияния на величину АО при различных температурах теплоты и изменения энтропии при полимеризации, а также используя представления о верхней и нижней предельных температурах полимеризации (см. ниже). Стало понятным, почему не удается получить полимер ацетона (из-за низкой предельной температуры полимеризации), хотя полимеры других карбонильных соединений синтезированы и т. л. [c.245]

    Расчеты для теплоты реакции лучше согласуются с рассматриваемой концепцией, чем для изменения энергии Гиббса. Это связывают с тем, что изменения энтропии не столь постоянны при присоединении мономерных единиц, как изменения теплот. Однако можно для достаточно хороших оценок термодинамических характеристик газофазной полимеризации использовать соотношения [c.252]

    Изложенное означает, что энтропия является мерой неупорядоченности состояния системы. Она растет не только с повышением температуры, но и при плавлении (и возгонке) твердого вещества, при кипении жидкости, т. е. при переходе вещества из состояния с меньшей энергией в состояние с большей энергией. Ростом энтропии сопровождаются и процессы расширения, например газа, растворения кристаллов, химическое взаимодействие, протекающее с увеличением объема, например диссоциация соедннения, когда вследствие роста числа частиц неупорядоченность возрастает. Наоборот, все процессы, связанные с увеличением упорядоченности, такие как охлаждение, отвердевание, конденсация, сжатие, кристаллизация из растворов, химическая реакция, протекающая с уменьшением объема, например полимеризация, сопровождаются уменьшением энтропии. Возрастание энтропии вещества при повы- [c.177]

    Мы не будем обсуждать здесь возможные причины различий теплот и энтропий полимеризации [50, 51]. Отметим, лишь, что величины Д5м менее чувствительны к природе мономера, чем ЛЯм- [c.260]

    Полимеризация. В термодинамическом отношении процессы полимеризации мономеров характеризуются тем, что сопровождаются выделением теплоты и уменьшением энтропии. Та- [c.560]

    КИМ образом, они могут протекать самопроизвольно под действием энергетического фактора прн противодействии энтропийного( 95). Так как влияние энтропийного фактора относительно возрастает с повышением температуры, то при достаточно высоких температурах (при атмосферном давлении) вместо образования полимера становится термодинамически возможным обратный процесс деструкции (разложения). Эта температура в общем тем ниже, чем меньше теплота полимеризации, с поправкой на различие в значениях энтропии полимеризации. Тепловые эффекты процессов полимеризации для некоторых полимеров приведены в табл, 65. [c.561]

    Определите критическую температуру полимеризации (Гкр) некоторого мономера, если тепловой эффект его полимеризации составляет Ы кДж/моль, а энтропия полимеризации— 100 Дж-моль- -град  [c.202]

    При этом выделяется энергия сопряжения, и суммарный тепловой эффект реакции полимеризации близок к нулю. Поскольку полимеризация сопровождается уменьшением энтропии, то этот процесс термодинамически невыгоден. Образование же комплексов нитрилов с галогенидами металлов сопровождается значительным уменьшением изобарно-изотермического потенциала, что делает возможным проведение процесса. Предполагают, что молекулы в комплексах располагаются благоприятно для образования полимерных цепей. [c.417]

    Химическое взаимодействие, связанное с увеличением беспорядка (в том числе протекающее с возрастанием объема), также характеризуется ростом энтропии. Наоборот, реакции, сопровождающиеся уменьшением неупорядоченности, протекают с уменьшением энтропии. Примером первых могут служить процессы диссоциации (например, карбонатов, сульфидов, двухатомных веществ в газовом состоянии), примером вторых — реакции полимеризации (в частности, димеризация двуокиси азота, получение полиэтилена). [c.94]


    Изложенное означает, что энтропия является мерой неупорядоченности состояния системы. Энтропия растет не только с повышением температуры, но при переходе вешества из состояния с меньшей энергией в состояние с большей энергией, например при плавлении (и возгонке) твердого вещества, при кипении жидкости. Ростом энтропии сопровождаются и процессы расширения газа, растворения кристаллов, химическое взаимодействие, протекающее с увеличением объема, например диссоциация соединения, когда вследствие роста числа частиц их неупорядоченность возрастает. Наоборот, все процессы, связанные с увеличением упорядоченности системы, такие как охлаждение, отвердевание, конденсация, сжатие, кристаллизация из растворов, химическая реакция, протекающая с уменьшением объема, например полимеризация, сопровождаются уменьшением энтропии. Возрастание энтропии вещества при повышении температуры иллюстрирует рис. 2.5. Влияние давления на энтропию можно показать на следующем примере при Т - 500 К и р-101 кПа энтропия аммиака составляет 212 Дж/(моль К), при 7 -500 К и р-30300 кПа эта величина равна 146 Дж/(моль-К), т. е. с увеличением давления энтропия снижается, но незначительно. [c.189]

    Найдите энтропию одного моля раствора, состоящего из низкомолекулярного растворителя и линейных полимерных молекул со степенью полимеризации, равной г. [c.90]

    Процесс полимеризации сопровождается уменьшением энтропии системы энтропийный член при температуре 27°С составляет 34—-42 кДж/моль (7,5—10 ккал/моль). Вследствие этого процесс полимеризации возможен только при тепловом эффекте реакции, превышающем 34—42 кДж/моль (7,5—10 ккал/моль). [c.102]

    Все процессы, которые протекают с уменьшением порядка в расположении частиц системы, сопровождаются увеличением энтропии. Это растворение кристаллов, плавление, сублимация, повышение температуры и др. И наоборот, процессы, протекающие с увеличением упорядоченности в расположении частиц, сопровождаются уменьшением энтропии. К ним относятся отвердевание, конденсация, сжатие, кристаллизация из растворов, полимеризация, понижение температуры и др. [c.133]

    Эго уравнение определяет условия при которых возможно протекание реакции и устойчивое существование продуктов реакции. Если конечные продукты имеют более низкую энергию Гиббса, чем исходные вещества, то ДС принимает отрицательное значение и реакция может протекать самопроизвольно при положительном значении АС реакция самопроизвольно протекать не может и ее продукты неустойчивы. Дня процессов аддитивной полимеризации АН и Д5, как правило, отрицательны, поскольку, в принципе, полимер имеет меньшую энтропию, чем соответствующий мономер, а элементарный акт полимеризации — разрыв двойной связи с образованием одинарной — процесс экзотермический. Анализ уравнения (4.43) показывает, что в случае, когда АН<0 и Д5< <0, существует такая температура, при которой ДС = 0. Выше этой температуры, называемой предельной и равной [c.71]

    Энтропия 8, так же как внутренняя энергия и, энтальпия Н, объем V и др., является свойством вещества, пропорциональным его количеству. 8,и,Н,У обладают аддитивными свойствами, т.е. при соприкосновении системы суммируются. Энтропия отражает движение частиц вещества и является мерой неупорядоченности системы. Она возрастает с увеличением скорости движения частиц при нагревании, испарении, плавлении, расширении газа, при ослаблении или разрыве связей между атомами и т.п. Процессы, связанные с упорядоченностью системы конденсация, кристаллизация, сжатие, упрочнение связей, полимеризация и т.п. - ведут к уменьшению энтропии. Энтропия является функцией состояния, т.е. ее изменение (Д8) зависит только от начального (8 ) и конечного (82) состояния и не зависит от пути процесса, [c.27]

    При полимеризации олефинов присоединение молекулы мономера к радикалу сопровождается разрывом двойной связи и образованием двух ординарных связей. Следовательно каждый такой акт должен сопровождаться понижением внутренней энергии связи (АЦ) на величину, равную разности энергий двойной связи (480 кДж/моль) и энергии двух а-связей (около 400 кДж/моль), т.е. примерно 80 кДж/моль. Одновременно понижается энтропия системы Д. вследствие увеличения размера частиц, соответственно, понижающего степень свободы колебательных и вращательных движений молекул. [c.24]

    Электронным строением фосфонитрилгалогенидов стали интересоваться сравнительно недавно, причем наибольшее внимание уделяется фосфонитрилхлориду (NP ig) . Одно из наиболее важных его свойств заключается в том, что все низшие члены ряда полимеризуются при нагревании до 250— 300° С [105]. Поскольку при полимеризации энтропия системы уменьшается, то в уравнении для изменения свободной энергии AF = АН — TAS величина последнего члена растет с увеличением температуры. Поэтому сам факт полимеризации при нагревании указывает на то, что отрицательный вклад АН преобладает над положительным вкладом —TAS. Это возможно лишь в том случае, если с увеличением длины цепи происходит упрочнение химических связей [ 106]. Действительно, на основании данных по инфракрасным спектрам поглощения систем (NP lg) можно считать, что кратность связи фосфор — азот возрастает по мере роста п, достигая максимума у каучукообразного полимера [1051. [c.84]

    Всегда ли при полимеризации энтропия системы уменьшается Рассмотрим этот вапрос подробнее. Величина AS складывается из трех ком1понентов изменения энтропии поступательного движения молекул, вращательного движения молекул как целого и отдельных групп атомов в них, а также колебательного движения молекул. При полимеризации всегда происходит уменьшение свободы -поступательного движения молекул вследствие увеличения молекулярной массы. Энтропия вращательного и колебательного движения при полимеризации виниловых и большинства гетероатом-ных Соединений изменяется слабо (на это указывают данные спектроскопического анализа мономеров и полимеров). Таким образом, при полимеризации этих соединений сум1марное изменение энтропии определяется уменьшением энтропии поступательного движения. [c.70]

    Энергетически реакции типа (1) обычно очень удобны, так как при полимеризации олефина выделяется от 12 до 23 ккал на 1 моль при незначительном снижении энтропии, так что при обычных температурах снижение свободной энергии составляет 2—13 ккал1моль [34]. С другой стороны, несомненно, для превращения олефинов в высокополимеры требуются довольно специфичные условия и методы полииррпзации. Олефины, действительно дающие такие продукты, составляют сравнительно небольшую группу. С этой точки зрения рассмотрение полимеризации включает два вопроса 1) по какому пути могут протекать реакции полимеризации и 2) какие факторы определяют, способен ли данный мономер к полимеризации, и при каких условиях будет идти этот процесс. [c.115]

    Дэйнтон и Эйвин на основании термодинамических данных предсказали, что реакции полимеризации, как правило, должны показывать резко выраженный потолок температуры [34]. Величина этого потолка была определена по теплотам и энтропиям полимеризации как [c.136]

    На кинетику анионной полимеризации циклосилоксанов заметно влияет число звеньев в цикле. Так, если у ненапряженных циклосилоксанов п > 3) мольные энергии активации практически одинаковы (79,6—84 кДж/моль) [5, 41, 42], то при /г = 3 они равны 71 2 кДж/моль у Дз [5, 43], 69 кДж/моль у Аз [46], 67 кДж/моль у [СНз(СзН7)510]з —Пз [5], 62 + 2 кДж/моль у Фз [33, 44], т. е. ниже, чем у высших циклов примерно на величину энергии напряжения цикла [39]. Скорости полимеризации тримеров гораздо выше скоростей полимеризации соответствующих тетрамеров в тех же условиях примерно в 50 раз у Дз и в 75 раз у Пз [5], а у Фз в 300 раз [40]. Скорости полимеризации ненапряженных циклодиметилсилоксанов едким кали возрастают в ряду Д4 <С Д5 < Дб Д (при одинаковых энергиях активации отношение предэкспонент равно 1 1,5 8,7 286), причем Д полимеризуется быстрее напряженного Дз [43]. Авторы объясняют это различием в энтропиях переходных комплексов (с пентаковалент-ным кремнием) вследствие различной их жесткости. [c.478]

    Расчет изменения энергии Гиббса, константы равновесия и предельной температуры полимеризации. Если теплоты и изменения энтропии при полимеризации установлены, то расчет изменения энергии Гиббса или Гельмгольца, константы равиО" весия и предельной температуры выполняется по известным, соотношениям (АОм=АЯм—ГАХм, АО°и= —ЯТ п К, 7 пр= = АЯм/А5м) и не вызывает затруднений. Нужно лишь подчеркнуть, что для высокомолекулярной полимеризации константа равновесия есть отношение констант скоростей роста полимерной цепи и деполимеризации  [c.265]

    Как видно из уравнения (VI. 75), изменение энтропии зависит только от числа смешиваемых молекул, или от пх концентрации. Если предположить, что масса растворенного вещества остается той же, а его молекулярная масса увеличивается, например, в результате полимеризации, то должно уменьшаться число его молекул, или частичная концентрация. В соответствии с уравнением (VI. 75) это должно снижать рост энтропни. Такие рассуждения привели в свое время к ошибочным выводам о том, что растворение ВМС и неидеальность их растворов обусловлены изменением внутренней энергии, хотя очевидно, что простое увеличение размера молекул без изменения их качества не может существенна изменить взаимодействия с растворителем. [c.322]

    При малых п, сопоставимых с , число возможных конформаций макромолекулы относительно мало. Это мешает ей принять наиболее вероятную конформацию большой молекулы — клубка, подобного изображенному на рис. I. 8. Но из этого вовсе не следует, как нередко утверждается, что с уменьшением степени полимеризации растет жесткость. Это — одна из издержек конформационных оценок гибкости. В действительности уменьшается не гибкость, а статистический вес, или конформационная энтропия макромолекулы (иногда говорят об уменьшении конформационного набора , представляющего собой тот же статистический вес, связанный с энтропией формулой Больцмана 5 = й1пй7). Гибкость же, выражаемая в абсолютных единицах /, а или Г, остается неизменной. Тем не менее обеднение конформационного набора сказывается при переходе полимера в конденсированное состояние. [c.41]

    Энтропия также увеличивается при процессах расширения, растворения кристаллического вещества, при химических реакциях, првтекающих с увеличением объема (например, процесры диссацнации). В этнх случаях вследствие роста числа частиц неупорядоченность (беспорядок) возрастает. Напротив, процессы, связанные с увеличением упорядоченности (порядка в относительном расположении частиц),— охлаждение, конденсация, кристаллизация из растворов, сжатие, химические реакции, протекающие с уменьшением объема (например, процессы полимеризации),— сопровождаются уменьшением энтропии. Энтропию, как И тепловые эффекты, принято относить к определенным условиям. Общепринятыми являются /=25 С и Р=1 атм при этом газы считают идеальными, а для растворов принимают их состояние [c.207]

    Изменение энтальпии X Ю в кДж/мопь (ккап/мопь) и энтропии X 0 кДж/(мвль. к) [ккал/(мол(.. °0] при полимеризации цикланов и некоторых гетероциклов [c.131]

    Методами прецизионной адиабатической вакуумной и высокоточной динамической калориметрии, а также изотермической калориметрии сжигания изучены термодинамические свойства и термодинамические характеристики реакций синтеза ряда классов новейших полимеров карбо-силановых дендримеров нескольких генераций с концевыми аллильными группами, фуллеренсодержащих полимеров и линейных алифатических полиуретанов, образующихся при полимеризации соответствующих цик-лоуретанов с раскрытием цикла, и а, со-миграционной полимеризацией изоцианатоспиртов для области 5-350 К. Получены температурные зависимости теплоемкости, температуры и энтальпии физических превращений, термодинамические функции для некоторых из них - энтальпии, энтропии и функции Гиббса реакций синтеза, константы полимеризацион-но-деполимеризационного равновесия и равновесные концентрации мономеров. [c.134]

    Как изменигся (увеличится, уменьшится) энтропия системы при щ)0текании следующих процессов а) смешение двух жццкостей б) растворении газа в жидкости в) полимеризации Почему для щ)остых веществ величины S° и О , в отличие от Я , не равны нулю  [c.94]

    Было замечено, что при протекании полимеризации при температуре ниже температуры плавления полимера равновесное содержание мономера оказывается гораздо меньшим, нежели подсчитанное теоретически. Этот эффект объясняется сосуществованием кристаллической и аморфной фаз, причем первая не содержит мономера и не участвует в установлении равновесия полимер — мономер. При низкотемпературной полимеризации также должно приниматься во внимание изменение энтропии вследствие кристаллизации образующегося полимера при этом экзотермические эффекты реакции различны для разных лактамов. [c.51]


Смотреть страницы где упоминается термин Полимеризация энтропия: [c.241]    [c.151]    [c.8]    [c.703]    [c.36]   
Энциклопедия полимеров Том 3 (1977) -- [ c.3 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.3 ]




ПОИСК







© 2025 chem21.info Реклама на сайте