Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидролиз Омыление кислотный

    В состав глицеридов входят насыщенные и ненасыщенные высшие кислоты алифатического ряда с четным числом углеродных атомов пальмитиновая, стеариновая, олеиновая, линолевая, линоленовая и др. Большое количество самых разнообразных ненасыщенных жирных кислот входит в состав жиров, начиная с кислот, содержащих одну двойную связь, до клупанодоновой кислоты, у которой пять двойных связей. Разнообразие состава жиров обусловлено еще содержанием в них различных изомеров жирных кислот, циклических кислот, оксикис-лот (как насыщенных, так и ненасыщенных). В процессе хранения жиры нередко подвергаются глубоким изменениям, протекающим на воздухе в присутствии воды и ферментов, что обусловлено сложным химическим составом их и значительным количеством непредельных соединений. Растительные масла в основном состоят из эфиров ненасыщенных жирных кислот с одной двойной (олеиновой), двумя (линолевой) и тремя (линоленовой) двойными связями. Поэтому они весьма неустойчивы при хранении на воздухе, легко окисляются и прогоркают. Процессам окисления растительных масел обычно предшествует расщепление их (гидролиз) эфирных связей с накоплением свободных жирных кислот. При исследовании масла (жира) определяют кислотность, йодное число, число омыления и другие химические и физические показатели, которые характеризуют его качество и химическую природу. [c.178]


    Ацилирующие средства галогенангидриды, ангидриды, сложные эфиры. Дцилирование спиртов, фенолов, аминов, аммиака. АциТгиро-вание по Фриделю—Крафтсу. Этерификация. Механизм реакции этерификации. Кислотный и щелочной гидролиз. Омыление жиров. [c.92]

    Таким образом, бимолекулярная (с учетом катализатора) элементарная реакция идет, как мономолекулярная, а тримолекуляр-ная (также с учетом катализатора) — как бимолекулярная. В условиях специфического кислотно-основного катализа идут реакции замещения, рацемизации (инверсия тростникового сахара, стр. 248), омыления (гидролиз) сложного эфира (стр. 253). [c.228]

    Омыление сложных эфиров карбоновых кислот в щелочной среде протекает быстрее, чем гидролиз в условиях кислотного катализа, так как нуклеофильность гидроксил-аниона выше нуклеофильности молекулы воды. [c.413]

    Для кислотного гидролиза сложных эфиров 6=1. Для омыления сложных эфиров, например, б = 0,70, поэтому щелочной гидролиз менее чувствителен в отношении стерического эффекта заместителя, чем кислотный гидролиз. [c.183]

    Таким образом, разрушение белкового компонента и освобождение связанных с ним витаминов может быть осуществлено тремя методами 1) щелочным гидролизом (омыление), 2) кислотным гидролизом и 3) энзиматическим гидролизом. [c.218]

    В противоположность кислотно-катализируемому гидролизу омыление сложных эфиров идет необратимо. [c.242]

    Кислотно-основной катализ. В этом случае роль катализатора выполняют кислоты или основания. Сюда относятся большинство реакций в растворах, как, например, омыление эфиров, инверсия сахара, гидролиз крахмала, амидов, ацеталей и др. Чаще всего непосредственный каталитический э4х ект вызывается ионами гидроксония Н3О+ и гидроксила ОН". Примем следующее выражение константы скорости реакции для этого случая  [c.268]

    Чаще используют гидролиз, катализируемый ионами гидроксила (омыление), поскольку он протекает быстрее, чем кислотный ион гидроксила участвует в реакции как основание большой нуклеофильности и малого объема, поэтому он гораздо легче, чем вода, присоединяе тся к сложному эфиру [c.92]

    Чтобы определить величины 0 -констант (индукционных констант заместителей), необходимо, воспользовавшись уравнением (IV, 16), задаться значением параметра р в эталонной для данного ряда серии. Заместители К в реакционной серии омыления эфиров оказ1з1вают чрезвычайно малое влияние на скорость кислотного гидролиза эфиров, т, е. р нь = О, поэтому величина р в выражении (VI, 16) практически определяется значением реакционной константы щелочного гидролиза эфиров рои-. Для нее было принято то значение, которым характеризуется щелочное омыление м- и п-замещенных бензоатов. Оно примерно равно 2,48. Учитывая это, можно переписать выражение (VI, 16) [c.177]


    Гидролиз сложных эфиров протекает как в кислой, так и в щелочной среде. Для кислотного гидролиза требуются лишь каталитические количества кислоты. При щелочном омылении обычно берут или молярное количество щелочи, или избыток, так как она является не только катализатором, но и выводит из сферы реакции образующуюся кислоту в виде соли. [c.250]

    Омыление и кислотный гидролиз [c.166]

    В заключение можно сказать, что проведение омыления в условиях МФК синтетически выгодно в случае стерически затрудненных эфиров. При этом следует использовать систему твердый гидроксид калия/толуол и краун-эфиры или криптанды в качестве катализаторов. Кроме того, скорость гидролиза простых эфиров карбоновых кислот концентрированным водным раствором гидроксида натрия значительно выше для гидрофильных карбоксилатов. Хорошими катализаторами являются четвертичные аммониевые соли, особенно BU4NHSO4 и некоторые анионные и неионные ПАВ. Это указывает на то, что может осуществляться любой из трех возможных механизмов реакции на поверхности, мицеллярный катализ или истинная МФК-реакция. В зависимости от условий может реализоваться каждый из этих механизмов. Как было показано раньше, при МФК возможна экстракция кислот в форме ионной пары R4N+X----HY [57]. Ранние работы, в которых рассматривалось кислотное МФК-омыление, оказались ошибочными [1202, 1348]. Однако недавно было описано мягкое и селективное расщепление трет-бутиловых эфиров, которое происходит при перемешивании с [c.250]

    Гидролиз белкового дрожжевого белка может быть также осуществлен путем нагревания и кипячения дрожжей, разведенных и подкисленных молочной кислотой до pH 5 (М Мейсель) Таким образом, разрушение белкового компонента и освобождение связанных с ним витамлнов может быто осуществлено тремя методами 1) щелочным гидролизом (омыление) 2) кислотным гид ролизом и 3) энзиматическим гидроллзом [c.218]

    Природные жиры и Масла представляют собой сложные эфиры высших жирных кислот с глицерином, причем чаще всего на молекулу глицерина приходится три молекулы этерифицирующей кислоты (триглицериды). В качестве последней наиболее часто встречается ненасыщенная олеиновая кислота. Наряду с ней в животных жирах находятся пальмитиновая и стеариновая кислоты, а властительных маслах (соевом, арахисовом и др.)—дважды ненасыщенная линолевая кислота. Для производства масляных красок и лаков важное значение имеют так называемые высыхающие масла (ср. разд. Г, 1.6) (например, льняное и китайское древесные масла), которые содержат, кроме того, ненасыщенные кислоты с тремя двойными связями (линоленовую и элеостеариновую). Гидролиз триглицеридов проводят либо под давлением (действием одной только воды или в присутствии основных катализаторов), либо без давления в присутствии кислотных катализаторов, например так называемого реактива Твлтчелла ). Омыление с помощью едких щелочей применяют исключительно для получения мыл — щелочных солей жирных кислот. Получающийся при расщеплении глицерин также находит разностороннее применение (ср. разд. Г,4.1.6). [c.98]

    Химические свойства и технологическое применение жиров обусловлены их строением Практическое значение имеют три технологических процесса, связанные с жирами Гидролиз (омыление) жиров осуществляется с целью получения жирных кислот, натриевых, реже калиевых солей жирных кислот (мыла), глицерина Твердые природные гидрогенизированные жиры обычно подвергают гидролизу водяным паром при 140-150 С и 0,7-0,8 МПа в присутствии 0,6% окиси цинка в течение 8 часов или в условиях кислотного (сульфокислоты, H2SO4) или щелочного (NaOH) катализа [c.712]

    Ионообменный катализ представляет собой частный случай гетерогенного катализа, в котором реакция ускоряется противоионами активных групп ионообмениваюших смол. Принципиально с помощью ионообменивающих смол в соответствующих ионных формах можно ускорить любые реакции, в гомогенных средах катализируемые тем или другим ионом. Однако наиболее широкое применение получил ионообменный катализ сильнокислыми сульфокатионитами или сильноосновными анионитами, который по природе катализирующих ионов можно считать разновидностью кислотно-основного кв1а-лиза. Ионообменивающие смолы широко применяются в качестве катализаторов реакций этерификации, гидролиза, омыления, конденсации, алкоголиза, присоединения и отщепления воды, перевода амидов в амины. Поскольку многие из этих реакций выполняются при повышенной температуре [4, 5], важно углубить наши, пока еще весьма ограниченные познания о термической устойчивости ионитов, используемых в качестве катализаторов. [c.242]

    Омыление технических образцов синтетических жирных кислот (СЖК) и канифоли проводят нагреванием их в водном растворе щелочи. Количество кислот берут с таким расчетом, чтобы получить 15%-ный раствор мыла. Нужное количество щелочи рассчитывают по кислотному числу СЖК или канифоли, которое указывается в паспорте на продукт. (Кисютыое число — количество щелочи (КОН) в мг, необходимое для омыления 1 г продукта.) Для обеспечения некоторой избыточной щелочности, требуемой для предотвращения гидролиза мыла, навеску щелочи увеличивают на 0,5—1% от расчетного количества. Омыление проводят на водяной бане в химическом стакане емкостью 1 л, снабженном мешалкой. [c.199]


    При прохождении этапов реакции в обратном порядке эфир под действием воды и минеральной кислоты переходит в смесь кислоты и спирта. Этот процесс называется кислотным гидролизом эфиров. Гидролиз можно осуществить и с помощью оснований. В этом случае реакция протекает по другому механизму (инициирующим этапом является нуклеофильная атака гидроксид-ионом атома углерода группы OOR) и называется омылением (это название возникло потому, что при щелочном гидролизе глицеридов — сложных эфиров глицерина и высших карбоновых кислот — получаются мыла). [c.166]

    С повышением температуры скорость омыления сложных эфпров увеличивает Протеканию реакции способствует также непрерывная отгонка образующегося спирта. Скорость кислотного гидролиза зависит от концентрации IEQFOU водорода эта реакция протекает обычно значительно медленнее, чем щелочное омыление. [c.366]

    Эта реакция, вероятно, практически необратима вследствие образования резонансно стабилизированного карбоксилат-аниоиа. Большое значение имеет влияние заместителей, т. е. наличие электроноакцепторных групп ускоряет омыление так же как и при кислотном гидролизе, следует принимать во внимание стерический эффект. [c.224]

    При кислотном гидролизе происходит частичное омыление эфирных групп фосфоновой кислоты с образованием цвиттер-иона другого типа (1.53). [c.98]

    В синтезах пептидов с применением метиловых эфиров для защиты концевой карбоксильной группы могут встретиться затруднения в омылении эфира без сопутствующего частичного гидролиза пептидных связей. Пб этой причине для защиты карбоксильной группы часто прибегают к бензиловым эфирам, которые можно легко получить прямой этерификацией, применяя бензолсульфокислоту [402] или полифосфорную кислоту [403] в качестве катализатора (см. также [2]). Бензиловые эфиры можно снова превратить в свободные карбоновые кислоты каталитическим гидрогенолизом [2, 64], действием металлического натрия в жидком аммиаке [404] или же кислотным или щелочным омылением. Следует отметить, что неги-дролитически, действием бромистого водорода в уксусной кислоте, можно отщепить группу ЫНСООСНаСеНв, но не НСООСНгСвНв [120]. Защита карбоксильной группы в аминокислотах и пептидах превращением в бензиловые эфиры, несомненно, тесно связана с применением карбобензилоксигруппы для защиты аминогрупп (см. раздел Уретановые производные , стр. 209). Обе защитные группы обычно отщепляются при действии одних и тех же реагентов, за исключением одного упоминавшегося метода. [c.245]

    При гидролизе или омылении эфиров обычно образуются карбоновая кислота, а также спиртовые или фенольные фрагменты, которые можно разделить, превратив в производные, и анализировать методом ГХ по отдельности. (См. гл. 1, разд. И, А — И, Г. Об образовании производных фрагментов см. эту главу, разд. II.) Не слишком полярный спирт, не содержащий кислотных групп, (а возможно, и мешающие примеси) можно удалить путем экстракции из щелочного раствора для проведения омыления несмешиваю-щимся с ним растворителем [44]. Спирты, мешающие анализу, можно также и испарить из смеси под вакуумом. Кислоту, если она не слишком поляриа из-за присутствия в молекуле других функциональных групп, можно экстрагировать растворителем после подкисления раствора для омыления. [c.140]

    Аналогично использованию многих уретановых производных для защиты аминогрупп существует целый набор простых эфиров, которые можно использовать для защиты карбоксильной группы. Так, бензиловые эфиры (расщепляемые гидрогенолизом илн сильными кислотами) и г/ ет-бутиловые эфиры (расщепляемые кислотной обработкой, но в более мягких условиях) нашли широкое применение для защиты С-терминальиых и боковых карбоксильных групп в производных аминокислот и пептидов. Подобным образом могут быть использованы некоторые содержащие заместители в кольце бензиловые и другие сложные эфиры, аналогичные урета-нам, приведенным в табл. 23.6.1. Эфиры с простыми алкилами (метил или этил), расщепляемые омылением, находят лишь ограниченное применение для защиты карбоксильной функции. Хотя производные пептидов со сложноэфирной группой на С-конце существенно более электрофильны, чем обычные алифатические сложные эфиры (благодаря электронооттягивающим свойствам а-кар-боксамидного заместителя), условия для их расщепления в щелочной среде слишком жестки для пептидов, за исключением самых простых. В общем случае они также непригодны для защиты карбоксильной функции в боковой группе (см. разд. 23.6.2.3) соответствующие уретаны в этих условиях продвергаются внутримолекулярной циклизации в производные гидантоина (см. разд. 23.6,2.1) вместо обычного гидролиза. Тем не менее метиловый и этиловый эфиры являются важными промежуточными продуктами для получения С-терминальных гидразидных производных для продолжения пептидного синтеза азидным методом (см. разд. 23.6.3.4). [c.380]

    Омыление 120 г нефракционированного лигнина 5%-ным водным раствором едкого натра в течение 36 ч при 25 С дало 68 3 лигнина с 19,6% метоксилов. Омыление эфирорастворимой фракции (18,8% метоксилов, 10,6% ацетила) дало лигнин с 23,3% метоксилов. Кислотный гидролиз эфирораствори.мого уксусного лигнина (18,7% метоксилов, 11,3% ацетила) в диоксане в течение 48 ч при 25°С 4%-ным водным раствором соляной кислоты дал лигнин с 24,1% метоксилов. [c.118]

    Для повыщения гидролитической стабильности парентеральных лекарственных средств в их состав дополнительно вводят вещества, обеспечивающие достижение значений pH среды, соответствующих области максимальной устойчивости препарата. Для предотвращения гидролитического разложения солей или омыления эфиров состав стабилизаторов подбирают в зависимости от природы соответствующей соли или эфира, добавляя кислотные или щелочные агенты или буферные системы, обеспечивающие поддержание необходимого значения pH. Скорость гидролиза может быть уменьщена также введением в состав препарата высокомолекулярных соединений или поверхностно-активных веществ. [c.346]

    Щелочная среда препятствует гидролизу ацеталей и таким образом способствует увеличению количества водонерастворимых прпмесей. Даже прп незначительной кислотности в этерпфикаторе образуются сложные эфиры и повышается число омыления, поэтому в некоторых случаях перед ректификацией в реакционную массу добавляют небольшое количество щелочи. [c.320]

    Реакция С -> D при участии трибромида фосфора — один из способов получения из спирта аралкил и алкилгалогенидов, значит вещество D — алкил или аралкилоромид. В результате следующей реакции D Е при участии цианида иатрия бром в D замещается на N-rpynny и образуется нитрил (соединение Е), который при кислотном гидролизе Е - F (реакция омыления) дает кислоту — продукт F. В реакции F - G с участием тионилхлорида ЗОСЬ (хлорирующий агент) гидроксил в карбоксильной группе кислоты F замещается на хлор и образуется хлорангидрид — продукт G. [c.132]

    А. К. фрейберга и В. С. Громов, проводившие сульфитную варку березовой древесины, подвергнутой предварительной обработке растворами различных солей с разными значениями pH, а также растворами аммиака различной концентрации, наблюдали, что в ряде случаев даже прп достаточно высокой стеиени деацетилирования, например при обработке растворами аммиака, фосфатов и Др., в отличие от обработки растворами NaOH и Са(0Н)2 не происходит заметного повышения выхода технической целлюлозы и содержания в ней пентозанов [288, 289], Осуществляя де--ацетилирование березовой древесины в мягких условиях — обработкой 0,15 н. раствором метилата натрия в метаноле ири комнатной температуре — и подвергая деацетилированные образцы сульфитной варке, упомянутые авторы не обнаружили связи между степенью деацетилирования и стабилизацией иентозанов. На основании полученных данных делается вывод, что отщепление ацетильных групи О-ацетил-4-О-метилглюкуроноксилана не является основной причиной стабилизации данного иолисахарида относительно кислотного гидролиза в условиях сульфитной варки березовой древесины. Высказывается предположение, что к стабилизации глюкуроноксилана ведет не само явление деацетилирования, а включающий деацетилирование комплекс химических и физико-химических изменений, происходящих в древесине в ироцессе обработки, а именно омыление ацетильных групи, расщепление лигноуглеводных связей, частичная деполимеризация ГМЦ, ведущие к повышению подвижности фрагментов макромолекул ГМЦ, набухание древесины, разрыхление ее структуры, увеличение площади внутренней поверхности и объема субмикроскопи-ческих капилляров в клеточных стенках. В результате создаются условия для упорядочения цепей макромолекул части ГМЦ, образования более прочных водородных связей между ними и макромолекулами целлюлозы, повышающих ттойчивость их к кислотному гидролизу. [c.309]


Смотреть страницы где упоминается термин Гидролиз Омыление кислотный: [c.287]    [c.47]    [c.211]    [c.74]    [c.111]    [c.316]    [c.366]    [c.42]    [c.167]    [c.192]    [c.36]    [c.462]    [c.69]    [c.172]    [c.182]    [c.65]    [c.204]    [c.89]    [c.75]   
Теоретические проблемы органической химии (1956) -- [ c.293 , c.298 , c.303 , c.304 ]




ПОИСК





Смотрите так же термины и статьи:

Омыление

Омыление кислотное



© 2025 chem21.info Реклама на сайте