Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амины, поглощение

    Одной из главных причин коррозии являются кислые газы, поглощенные раствором МЭА, а также образование и накоиление в растворе высокомолекулярных смолообразных продуктов взаимодействия аминов с углекислым газом. Сами этаноламины в присутствии углекислого газа действуют в некоторой стеиени ингибиру-юще, хотя наблюдались типичные для щелочной среды случаи коррозионного растрескивания под напряжением (в абсорберах и отпарных колоннах). Наличие углекислого газа в растворе приводит к значительному увеличению скорости коррозии стали. Добавка сероводорода к углекислому газу способствует уменьшению скорости коррозии, а в присутствии только сероводорода сталь мало корродирует. Полагают, что сульфидная пленка, образованная на поверхности стали, обладает защитными свойствами. Повышенное содержание сероводорода или углекислого газа может вызвать сильную коррозию оборудования, поскольку перенасыщение раствора способствует выделению кислых газов. Поэтому содержание кислого газа не должно превышать 0,3— 0,4 моля газа на моль амина, если оборудование установки выполнено из углеродистых сталей. На практике часто степень насыщения МЭА кислыми газами на ус- [c.174]


    Поглощение СО2 раствором моноэтаноламина (МЭА) под давлением с образованием бикарбонатов (при степени карбонизации свыше 0,5 мол. СОг/моль амина) происходит медленно, поэтому для достижения высоких степеней карбонизации необходимо увеличить время пребывания раствора МЭА на стаДии насыщения. [c.206]

    Использование реакций комплексообразования для разделения катионов металлов. В результате взаимодействия катионов металлов с комплексообразующими веществами, особенно анионного характера, изменяются основные характеристики ионов, влияющие на селективность поглощения — знак и величина заряда, структура и размеры ионов, их способность к гидратации и влияние на упорядоченность структуры воды. Эти характеристики можно изменять в широких пределах в зависимости от свойств разделяемых ионов и комплексообразующих реагентов. Комплексообразующие реагенты анионного характера (например, анионы слабых кислот) более перспективны, чем реагенты молекулярного характера (например, амины), так как взаимодействие с последними не изменяет одну из основных характеристик катионов металлов — величину их заряда. Использование реакций комплексообразования позволяет увеличивать разницу в селективности ионообменного поглощения близких по свойствам ионов металлов и вследствие. этого значительно улучшать эффективность разделения. Для ионообменно-хроматографического разделения реакции комплексообразования используют в сс-новном в двух вариантах. [c.198]

    Гетероциклические соединения [79, 81, 154] могут присутствовать и в группе соединений основного характера и в группе соединений остаточного азота. Для качественного определения азотных гетероциклов в инфракрасной области можно пользоваться табл. 68 [79, 207]. Гетероциклические соединения с атомом азота в кольце, как правило, имеют характер вторичных аминов или иминов (пирролы, пиридины, хинолины). В их спектрах поглощения присутствуют полосы поглощения вторичных аминов или иминов, отличающихся, как уже говорилось, повышенной интенсивностью. Кроме того, присутствуют интенсивные полосы поглощения, соответствующие скелетным колебаниям кольца, валентным колебаниям замещенных колец, валентным и деформационным колебаниям водородного атома кольца. [c.134]

    Для спектральных и фотохимических свойств молекулы решающее значение имеет ее строение. Исследование красителей показало, что цвет вещества обусловлен присутствием особых групп хромофоров, к которым обычно относятся ароматические ядра, кратные связи, карбонильная группа. Атомные группы, усиливающие и смещающие полосу поглощения хромофора, называются ауксохромами. Если смещение поглощения под их воздействием происходит в красную (длинноволновую) область, то оно именуется батохромным, сдвиг в фиолетовую (коротковолновую) сторону — гипсо-хромным. Деление групп на хромофоры и ауксохромы не является строгим, к последнему классу относят обычно амино-, окси- и меркапто-группы, а также галоиды. Взаимное влияние различных хромофоров и ауксохромов в молекуле столь сильно, что не удается легко и однозначно выделить в спектрах колебания, вызванные теми или иными переходами. [c.281]


    Азотсодержащие соединения — амины, нитросоединения, нитрилы и азосоединения имеют, в основном, по две полосы поглощения. Амины характеризуются двумя полосами, вызванными п (т -переходами, в области 173— 199 и 213—227 нм. При этом смещение в длинноволновую область происходит при переходе от первичных к третичным аминам. В спектре нитроалканов имеются также две полосы поглощения. Одна относится к я я -переходам (200 нм, е = 50 ООО), а вторая — к л я -переходам (270 нм, е == 20—40). В нитроалкенах полоса п - я -пе-рехода смещается в более длинноволновую область (220— 250 нм, е = 10 ООО). [c.135]

    Поэтому в ИК-спектрах нейтральных растворов аминокислот нет полос поглощения свободных амино- и карбоксильных групп. Но если этот раствор подкислить, то появляется полоса поглощения, характерная для карбоксильной группы. При добавлении к раствору щелочи, наоборот, регистрируется полоса, связанная с частотой аминогруппы. [c.223]

    Рекомендованы уравнения для расчета скорости таких технологических процессов, как поглощение диоксида углерода водным раствором моноэтаноламина при умеренных и высоких степенях карбонизации, поглощение диоксида углерода раствором горячего поташа и едкого натра, поглощение диоксида углерода раствором диэтилентриамина, поглощение аммиака серной кислотой, озонирование цианидов калия, поглощение сероводорода водными растворами аминов, поглощение аммиака фосфорной кислотой. Даны примеры расчета локальных значений скорости хемосорбции. [c.222]

    В зависимость от этих двух величин. По-другому, по нашему мнению, протекает процесс сорбции аминов. Поглощение аминов может протекать но двум различным схемам в зависимости от характера выбранного растворителя. В случае сорбции аминов в водной среде реакцию можно представить следующей схемой  [c.30]

    Молекулярные коэффициенты поглощения некоторых аминов 1197  [c.133]

    При поглощении органических кислот присутствие многовалентных анионов также резко снижает используемую емкость анионитов. Выбирая оптимальные условия поглощения органических слабых электролитов, таких как ароматические амины, следует иметь в виду, что значение pH растворов, из которых извлекаются органические вещества ионитом, выше pH, соответствующего полной диссоциации их на ионы. Это объясняется тем, что при подкислении растворов органических оснований (или при подщелачивании растворов слабых кислот) одновременно быстро растет концентрация конкурирующих ионов (Н -ионов Б случае сорбции оснований и ОН — прн сорбции кислот). [c.348]

    В абсорбционно-десорбционных методах сероочистки в качестве конечного продукта выделяется сероводород, а процесс поглощения НгЗ осуществляется водными растворами аммиака, органических оснований (аминов) или солей - фосфатов, карбонатов  [c.66]

    Однако известны случаи, когда такая зависимость между величиной дипольного момента заместителя и положением полосы поглощения отсутствует (рис. 66 и табл. 84). Например, дипольный момент некоторых ароматических аминов меняется в достаточно широких пределах, а положение полос поглощения, содержащих комплексы, остается постоянным. [c.317]

    Для BAO аминного типа, а иногда и фенольного, снимают электронные спектры в области 250—350 нм, где поглощают ароматические кольца использованных для модификации низко-молекулярных антиоксидантов, которыми обычно являются производные вторичных ароматических аминов или пространственно-затрудненных фенолов. Если исходный полимер не поглощает в указанной области длин волн, то модифицированный полимер (ВАО) будет иметь максимумы поглощения за счет присоединенных низкомолекулярных антиоксидантов, причем положение максимумов поглощения практически не меняется. Это позволяет использовать спектрофотометрический метод [c.32]

    В большинстве растворителей окислительно-восстановительные реакции идут по нормальной схеме, но в жидком аммиаке и некоторых алифатических аминах щелочные и щелочноземельные металлы ведут себя совершенно аномально. В свободном виде элементы обеих групп легко растворяются в жидком аммиаке, и после испарения аммиака получаются исходные щелочные металлы, а щелочноземельные металлы образуют аммиакаты состава М(ЫНз)в- Разбавленные растворы всех этих металлов имеют характерную синюю окраску. Спектры поглощения растворов равных концентраций одинаковы для всех этих металлов, это означает, что синяя окраска обусловлена одинаковыми частицами. Оказалось, что эти растворы обладают необычайно высокой электропроводностью. Эквивалентная электропроводность этих растворов любой концентрации более высокая, чем электропроводность любой известной соли н любом растворителе, а для больших концентраций она приближается к электропроводности металлов. Структура этих растворов детально изучена, основные сведения [c.352]


    При поглощении кванта света молекула переходит в электронновозбужденное состояние, в котором существенно меняются такие свойства, как геометрия, электронное распределение, реакционная способность и др. Так, например, молекула формальдегида Н2С = 0, плоская в основном состоянии, при возбуждении меняет геометрическую структуру на пирамидальную с внеплоскостным углом 35°. Дипольный момент 4-амина-4 -нитростирола в основном состоянии равен 6,80, а в первом синглетном возбужденном состоянии он становится равным 28,50, что свидетельствует о существенном перераспределении электронной плотности. В нафталине а-положение в 50 раз реакционноспособнее р-положения. При возбуждении наблюдается нивелирование реакционной способности а- и 3-положений. [c.289]

    Анионообменное поглощение можно осуществлять также на жидких анионитах, представляющих собой нерастворимые в воде, но растворимые в органических растворителях высокомолекулярные амины (триоктиламин, додецил-амин и т. п.). Адсорбированные на твердых носителях жидкие иониты с успехом используются в колоночном варианте хроматографического анализа. [c.160]

    Амины создают более сильное поле лигандов. В результате полоса поглощения смещается из далекой красной в среднюю красную область спектра. [c.228]

    Спектры поглощения. В электронных спектрах аминов поглощение наблюдается только в далекой ультрафнолетовой области при 195—215 нм с =1500.. . 4000, что связано с возбул<дением неподеленной электронной пары (переход п- о ). [c.395]

    Но если повысить концентрацию амина вдвое (до 4 об. %), то стронций можно количественно экстрагировать 5%-ным раствором оксихинолина в хлороформе при pH 11,3. При этих условиях также можно построить градуировочную кривую, которая прямолинейна в интервале 1,7—10,5 мкг 5г на 1 мл при практическом молярном декадном коэффициенте погашения = = 5940 ( 40). Содержание стронция в пределах данной- рД оты определялось на этой основе. Однако этот метод, вообще говоря, не может быть рекомендован, так как вследствие высокого содержания оксихинолина и амина поглощение холостого раствора исключительно велико. Оптическая плотность настолько велика, что в фотометре ЕЬКО П могут применяться только кюветы с толщиной слоя 0,5 см. Поскольку оптическая плотность раствора уменьщается на 2—3% за первые полчаса после экстракции, следует измерять поглощение точно через 15 мин. после начала извлечения. [c.128]

    Почти количественная экстракция стронция в виде соединения с оксихинолином по Дюшсену [5] также может быть значительно улучшена и стать количественной, если использовать амины. Конечно, тогда не следует уже рекомендовать фотометрическое определение стронция в фазе хлороформа, поскольку вследствие высокого содержания оксихинолина и амина поглощение в холостом растворе будет очень высоким. Не удается также полное отделение от бария. Барий может экстрагироваться в условиях извлечения стронция (5% оксихинолина, 4 об.% амина) примерно на 40%. При дальнейшем повышении концентрации оксихинолина и амина возможно количественное извлечение бария, однако без непосредственного фото.четрического определения. [c.131]

    Количественное определение аминов по интенсивности поглощения в области 3000 см дш-видимому, возможно лишь для алифатических аминов, где вманс линейно зависит от числа [c.132]

    С—N-связи аминов. Алифатические амины имеют мало интенсивные полосы поглощения С—N- BH3eii в области 1220— [c.133]

    Механизм действия алифатических аминов и производных мочевины отличается от механизма действия классических ингибиторов окисления. Эти соединения почти не влияют на поглощение кислорода, но значительно снижают образование осадка в углеводородах. Такие присадки, как изопропилоктадециламин или содержащие азот в цикле, например сополимеры эфиров метакриловой кислоты с 5-винилпиридином или с р-диэтилэтаноламином, препятствуют превращению коллоидных часпщ в более крупные, выпадающие в осадок [217, 218]. [c.175]

    При катализе медной пластиной в присутствии фенольного ингибитора (ионола) на кинетических кривых наблюдается излом (рис. 5.10), за участком быстрого развития окисления (продолжительность -60 мин), где скорость поглощения кислорода ( ,) соизмерима с таковой для неингибиро-ванной реакции (т, = 1), следует участок заторможенного процесса (от 100 до 300 мин и далее), где наблюдается резкое уменьшение скорости окисления ( з) и величина Ш2 = 12 (рис. 5.10). Ингибитор коррозии ИКБ-6-2 менее активен по сравнению с ионолом (ш, = 1.25 Ш2 = 5.6). Ингибитор аминного типа (2-метил-2-этилиндолин) эффективен во всем промежутке окисления (т = 7). [c.179]

    Для предотвращения окислительных процессов и смолообразования, приводящих к ухудшению качества дизельного топлива ДЛ-0.2 предложена полифункциональная присадка, содержащая стабилизатор — третичный амин, нейтрализующий кислотные продукты окисления, которые являются катализаторами уплотнения (Агидол-3) дисперсант, уменьшающий размеры частиц и увеличивающий их число (ионол), и деактиватор металлической меди (2-метил-2-этилиндолин). При этом стабилизатор и дисперсант одновременно выступают в качестве антиоксидантов, а деактиватор является синергическим агентом, усиливающим действие антиоксидантов. Образцы разработанной присадки были испытаны в составе товарного дизельного топлива, содержащего нестабильные продукты вторичных процессов, лабораторным методом [5]. Окисление топлива молекулярным кислородом проводили на газометрической установке при 120°С в присутствии медного кольца (5сц = 166 см /л) в течение 7 ч с одновременной регистрацией концентрации поглощенного кислорода (А[02], моль/л) и оптической плотности топлива (А), характеризующей смолообразование в системе (рис. 5.21). [c.204]

    Перед конечной стадией процесса обработки—удалением двуокиси углерода — газ еще раз охлаждается и осушается. Абсорбер двуокиси углерода применяется в основном того же типа, что и в других процессах получения ЗПГ, т. е. для абсорбции кислых газов используются растворы аминов. Отработанный насыщенный растворитель подогревается, и поглощенная двуокись углерода отделяется в разделительной колонне для того, чтобы регенерированный раствор можно было использовать повторно. Содержание двуокиси углерода в газах снижается примерио от 17 до 0,5—1 об. %.  [c.112]

    Выбор амина. В соответствии с рекомендациями [И] при выборе параметров абсорбционной очистки следует иметь в виду два основных механизма абсорбции углекислого газа. Большая часть СО2 поглощается растворами МЭА и ДЭА с образованием карбамата с достижением степени поглощения 0,5 моль/моль. Превращение карбаматной структуры в бикар-бонатную с последующим протеканием кислотно-основной реакции позволяет достичь степени поглощения 1 моль/моль. При этом повышается равновесная концентрация Oj в газовой фазе за счет замедления скорости хемосорбции. С третичными аминами взаимодействие Oj по карбаматному типу невозможно из-за отсутствия подвижного атома водорода у азота, [c.24]

    А. В. Бабаевой, изучавшей спектры поглощения соединений двухвалентной платины, содержавших во внутренней сфере молекулы различных аминов (МНз, ЫНзОН), был сделан вывод (рис. 63) о незначительном влиянии природы амина на характер абсорбционного спектра. [c.314]

    Смесь продуктов реакции, покидающих реактор, охлаждают до 25°, причем вместе с водяным паром конденсируется около двух третей акрилнит-рила оставшаяся треть уносится азотом, введенным в реактор в виде воздуха. Так как на 1 моль аллиламина в реактор вводят 1,2 моля кислорода в виде воздуха, то после израсходования кислорода остается 5 молей азота. Для выделения остатка акрилнитрила азот промывают противотоком нефтяной фракцией, кипящей в пределах 130—190° и богатой ароматическими углеводородами. Поглощенный растворителем нитрил выделяют отгонкой. Выделившийся при расслаивании конденсата нитрил перегоняют, предварительно подкислив, что необходимо делать для нейтрализации аммиака и аминов, легко присоединяющихся к нитрилу. Таким способом получают нитрил чистотой 96%. Повторная перегонка дает совершенно чистый продукт. [c.368]

    ИОНИТЫ — твердые, практически нерастворимые в воде и органических растворителях вещества, способные обце-нивать свои ионы на ионы раствора. Sto природные или синтетические материалы минерального или органического происхождения. Подавляющее большинство современных И.— высокомолекулярные соединения с сетчатой или пространственной структурой. И. делят на катиониты (способные обменивать катионы) и аниониты (обменивают анионы). Катиониты содержат сульфогруппы, остатки фосфорных кислот, карбоксильные, оксифениль-ные группы, аниониты — аммониевые или сульфониевые основания и амины. Обменную емкость И. выражают в миллиграмм-эквивалентах поглощенного иона на единицу объема или на 1 г И. Природные или синтетические И.— катиониты — относятся преимущественно к группе алюмосиликатов. Аниониты — апатиты, гидроксиапатиты и т. д. Метод ионного обмена очень широко используется в промышленности и в лабораторной практике для умягчения или обессоливания воды, сахарных сиропов, молока, вин, растворов фруктозы, отходов различных производств, удаления кальция из крови перед консервированием, для очистки сточных вод, витаминов, алкалоидов, разделения металлов и концентрирования ионов. И. применяют как высокоактивные катализаторы в непрерывных процессах и т. п. [c.111]

    Если высокая растворимость амидокомплексов препятствует их выделению в свободном состоянии, то амидопревращение может быть изучено спектрофотометрически. Установлено, что в результате амидореакции полосы поглощения в видимой или ультрафиолетовой части спектра сдвигаются в сторону более длинных волн. В данном случае это проявляется в появлении келтого окрашивания у растворов бесцветных аминов при добавлении щелочи. Иногда желтое окрашивание раствора может и не наблюдаться. Это означает, что смещение полос поглощения наблюдается не в видимой, а в ультрафиолетовой области. [c.140]

    Наиболее успешно используется этот метод для исследования алюмосиликатных катализаторов крекинга и окисных катализаторов в связи с возможностью возникновения на них в процессе хемосорбции заряженных форм адсорбированных веществ. Исследования спектров поглощения адсорбированных молекулярных ионов ароматических аминов и ароматических углеводородов с конденсированными ядрами показали присутствие на поверхности алюмосиликатных катализаторов сильных кислотных центров двух типов электроноакцепторных (льюисовских) и протонодонорных (брен-стедовских). При адсорбции молекул на кислотных центрах образуются молекулярные ионы в результате контакта молекул с поверхностью при комнатной температуре. При этом возникали молекулярные ионы двух типов МН+ — в результате присоединения к молекуле поверхностного протона (бренстедовские центры), и М+ — при отрыве одного электрона от молекул (льюисовские центры). Появлялась возможность устанавливать не только заряженные формы адсорбированных молекул, но и распределение двух типов активных центров на поверхности. [c.180]


Смотреть страницы где упоминается термин Амины, поглощение: [c.491]    [c.266]    [c.132]    [c.132]    [c.142]    [c.152]    [c.110]    [c.25]    [c.174]    [c.310]    [c.388]    [c.135]    [c.412]    [c.110]    [c.173]   
Ионообменные разделения в аналитической химии (1966) -- [ c.18 , c.138 ]




ПОИСК







© 2025 chem21.info Реклама на сайте