Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полибутадиен структура

    Практически часто применяется смешанная классификация химических реакций в полимерах по видам соответствующих превращений макромолекул и видам воздействия на них. В ряде случаев определенный вид воздействия приводит и к одному виду изменений макромолекул, но иногда в зависимости от химической природы полимеров один И тот же вид воздействия может привести к разным изменениям структуры макромолекул. Например, при действии высоких температур может протекать деструкция, т. е. распад линейных макромолекул у одних полимеров (полипропилен, полистирол), циклизация — у других (полиакрилнитрил), образование сетчатых структур — у третьих (1.2-полибутадиен, сополимер бутадиена со стиролом), а также смешанные случаи (полиизопрен и др.). При облучении, например, полиэтилена одновременно протекают реакции соединения макромолекул друг с другом (сшивание) и распада отдельных молекул (деструкция). [c.219]


    Св-ва отдельных В. с. определяются хим. составом, строением, конформацией и взаимным расположением макромолекул (надмолекулярной структурой). В зависимости от этих факторов св-ва B. . могут изменяться в широких пределах. Так, i u -1,4-полибутадиен, построенный из гибких углеводородных цепей, при т-рах ок. 20 С представляет собой эластичный материал, к-рый ниже — 90 °С переходит в стеклообразное состояние, тогда как полиметилметакрилат, построенный нз более жестких цепей, при т-рах ок. 20 °С-твердый стеклообразный продукт, переходящий в высокоэластич. состояние лишь выше 100 °С. Целлюлоза-полимер с очень жесткими цепями, соединенными межмол. водородными связями,-вообще не может существовать в высокоэластич. состоянии до т-ры ее разложения. Большие различия в св-вах В. с. могут наблюдаться даже в том случае, когда различия в строении макромолекул на первый взгляд и невелики. Так, изотактич. полипропилен - кристаллическое вещество, плавящееся ок. 175°С, а атактический вообще не способен кристаллизоваться и размягчается ок. - 40 °С. В данном случае различия в микроструктуре макромолекулярной цепи определяют качеств, различия и в характере надмолекулярной структуры. [c.442]

    Введение электронодонорных соединений (эфиров, сульфидов, аминов и др.), сольватирующих щелочной металл, приводит к резкому увеличению содержания 1,2-звеньев в полибутадиенах, полученных под влиянием лития и его производных [22]. Структура полибутадиенов, полученных в этих условиях, близка к структуре полимеров, образующихся под влиянием натрия или калия. [c.180]

    Структура полибутадиенов при полимеризации щелочными металлами [c.179]

    В основу систематических исследований были положены закономерности, установленные Якубчик с сотрудниками [1] при озо-нолизе полибутадиенов они отметили влияние природы щелочного металла на порядок формирования структур макромолекул. Наибольшее количество 1,4-звеньев содержали полимеры, полученные под влиянием лития.  [c.200]

    На практике эти процессы идут последовательно, но часто и параллельно и потому их трудно разграничить. Однако преимущественное протекание того или иного процесса в значительной степени зависит от структуры каучука. Так, хорошо известно, что ответственными за процессы деструкции являются внутренние двойные связи, а за процессы структурирования — внешние двойные связи. В связи с этим для стереорегулярных полимеров диенов, построенных по типу 1,4-присоединения, характерны процессы деструкции, и для полидиенов, содержащих в полимерной цепи значительное количество 1,2- или 3,4-звеньев — процессы структурирования. На соотношение процессов деструкции и структурирования влияют также плотность упаковки полимера, наличие и характер групп, обрамляющих полимерную цепь, и другие факторы. Этим следует объяснить, что ис-1,4-полибутадиен более склонен к структурированию, чем ( с-1,4-полиизопрен, а также большую склонность к структурированию бутадиен-нитрильных каучуков по сравнению с бутадиен-стирольными. [c.619]


    Поскольку полистирол и полибутадиен относятся к категории термодинамически несовместимых, полимеров, термодинамическая поправка связана здесь с сегрегационным параметром хав (А и В обозначают блоки, которые в свободном состоянии разделились бы на макрофазы), величина которого столь высока, что можно принять эффективную энергию излома бесконечной, т. е. считать для полистирольных блоков /" = 0. Это приводит к полному их распрямлению вот здесь-то обходным путем удается реализовать структуру, которая возникла бы при низкотемпературном переходе второго рода, если бы его осуществлению не мешало структурное стеклование иными словами, этот переход действительно реализуется в результате сегрегации (количественно характеризуемой параметром хав) и воздействия относительно малого продольного градиента скорости у входа в канал экструдера. Впрочем, можно показать, что тот же эффект в других условиях достигается за счет одной лишь сегрегации (28]. [c.223]

    Формирование определенного типа надмолекулярной структуры может происходить "не только в процессе синтеза и переработки, но также и в процессе эксплуатации. На рис. П.4 была показана схема структурных изменений монокристалла транс-1,4-полибутадиен а, которые могут происходить в процессе эксплуатации. [c.67]

    Реализуются оба способа соединения бутадиена в макромолекуле, а соотношение между ними зависит от условий, при которых проводилась полимеризация. В последнее время полимеризация проводится преимущественно с катализаторами Циглера и образуется прежде всего цис-1,4-полибутадиен (по своей структуре он напоминает натуральный каучук). [c.294]

    Полибутадиен и полиизопрен исследовались в 1980-е годы в России в качестве опытных образцов присадок [132]. Было установлено, что на эффективность присадок влияют молекулярная масса полимера, его структура и скорость течения нефтепродукта. На рис, 77 представлено влияние характеристик полибутадиена и числа Рейнольдса на эффективность присадки. [c.189]

    Большинство С.п. имеют изотактич. структуру, и только полипропилен, полибутадиен, полимеры нек-рых полярных [c.429]

    Синдиотактический 1,2-полибутадиен (1,2-СПБ) является новым полимером, относящимся к классу термоэластопластов, то есть сочетающим свойства термопласта и эластомера. Благодаря стереорегу-лярному строению (степень синдиотактичности более 60%) полидиен имеет кристаллическую структуру, что определяет его высокие механические свойства. 1,2-СПБ способен переходить в вязкотекучее состояние при относительно невысоких температурах и перерабатывается как термопластичный полимер. [c.31]

    Окисление. Изучение реакции окисления ненасыщенных по-. жмеров (иначе называемой реакцией их старения) имеет большое практическое значение, так как позволяет определить длительность и допустимые условия эксплуатации резиновых нзде-,1ий. Поэтому исследованию реакции окисления посвящено большое количество работ. Кинетические характеристики окислительного процесса полимеров во многом зависят от скорости диффузии кислорода в толщу материала. Скорость окисления ненасыщенных полимеров на поверхности или в тонкой пленке графически изображается 5-образной кривой с ясно выраженным индукционным периодом (рис. 75). РГндукционный период тем короче, чем выше температура реакционной среды. В зависимости от структуры полимера изменяются скорость диффузии и растворимость кислорода в полимере. Соответственно изменяются кинетика окисления и степень превращения полимера под влиянием кислорода. При одинаковых условиях константа диффузии кислорода в полибутадиене в 10,5 раз больше константы диффузии кислорода в поли-диметилбутадиене. В полимерах, которым можно придать кристаллическую структуру или ориентировать их макромолекулы, [c.239]

    Хотя трудно определять структурные характеристики какого-либо соединения (кроме ПВХ) в продукте реакции ПВХ с полибутадиеном, содержащем меньше 5% последнего, тем не менее в сополимерах, содержащих 5—10% полибутадиена, наличие yu -l,4-структур может быть определено с помощью метода ИК-спектроскопии. [c.244]

    Для исследования полибутадиенов была проведена [1954, 1955] реакция диспропорционирования с октеном-4. В работах [1956, 1957] была исследована микроструктура 1,2-конфигураций в полибутадиене, а в работе [1958] описана идентификация цис- и транс-изомеров в полибутадиене. Структуры 1,4-полибу-тадиенов и сополимеров бутадиена со стиролом определяли [c.389]

    При этой полимеризации в среде полярных растворителей влияние металла катализатора на полимеризацию значительно ослабляется вследствие образования комплекса металл — растворитель и уменьшения способности атома металла образовывать комплекс с мономером. При этом полимеризация приближается к анионной. Действительно, при замене углеводорода на эфир, диоксан или при добавлении к углеводороду небольших количеств спиртов и фенолов в результате полимеризации бутадиена в присутствии литийорганических соединений получается полибутадиен с преобладанием структуры 1,2 (как и в случае полимеризации с органическими соединениями натрия и калия). С металлоорганическими соединениями лития получены и другие стереорегулярные полимеры, причем во всех случаях полимеризация протекала в растворе. При полимеризации метил-, изопропил- и циклогексилмет-акрилатов в присутствии органических соединений лития в толуоле (при низких температурах) были получены изотактические полиметилметакрилат, полиизопропилметакрилат и полиц 1клогексилметакрилат. В аналогичных условиях, но в присутствии полярного растворителя получен синдиотактический полиметилметакрилат. [c.87]


    Кроме полиизопрепа, реакционноспособными по отношению к хло-ралю оказываются и другие нолидиены. Сополимер изобутилена и изопрена (96,5 3,5) присоединяет хлораль по двойным связям в звенв изопрена. 1 мс-1,4-Полибутадиен, структура которого затрудняет протекание ионных реакций присоединения, образует продукты со степенью присоединения лишь 1,5. Однако в присутствии перекиси бензоила этот полимер реагирует с хлоралем по радикальному механизму, образуя продукты со степенью присоединения п = 4. [c.206]

    Рассмотрим два примера. Гибкие полимеры (натуральный каучук, полибутадиен, полихлоропрен и др.) легко образуют ориентированную структуру при растяжении, но сохранить ее могут только под напряжением. После снятия деформирующей силы внутреннее тепловое движение нарушает достигнутый порядок и во.чвращаст макромолекулы в исходное состояние — конформацию свернутого клубка, т е. 7 Уо(ф) Для ориентации жесткоцепных полимеров требуется большее напряжение, но за счет сильного межмопекулярного взаимодействия между ориентированными макромолекулами ориентированная структура может сохраниться при условии [c.67]

    Два последних высокомолекулярных алифатических углеводорода (полиэтилен и гидрированный полибутадиен) уникальны в том отношении, что они представляют собой примеры нерегулярно разветвленных структур. Фокс и Мертин при изучении инфракрасных снектров углеводородов в области 3—4 [л обнаружили полосу поглощения при 3,38 ц в спектре полиэтилена, которая является характеристической областью колебаний связи С—Н в метильных группах. Было определено, что соотношение СНз составляет от 1/д до 1/70- Все эти величины значительно превышают частоты, которых следовало ожидать, если бы полимеры представляли собой линейные углеводороды. Многие исследователи с тех пор способствовали детальной расшифровке инфракрасных спектров полиэтилена. Наиболее полные и точные исследования провели Рагг [28] и Кросс [9]. Последняя работа представляет особый интерес, поскольку в ней была определена зависимость между интенсивностью поглощения метильных групп и плотностью полимера. Степень кристалличности полиэтилена была определена при помощи нескольких различных методов, основанных, например, на измерениях плотности инфракрасных спектров, дифракции Х-лучей и теплоемкости. Ни один из этих методов не принимался за абсолютный, но метод, основанный на определении плотпости полимера, по-видимому, один из дающих наиболее достоверные данные. Поэтому Кросс впервые установил, что существует тесная зависимость между числом метильных групп в нолиэтиленах и их кристалличностью. [c.169]

    В настояшее время в опытном и промышленном масштабе выпускаются как изопреновые (СКИЛ, карифлекс и др.), так и бутадиеновые (СКДЛ, интен и др.) каучуки литиевой полимеризации. Для улучшения технологических свойств этих полимеров необходимо регулирование их ММР на рис. 2 приведены кривые ММР (гель-хроматограммы) полиизопренов типа карифлекс. а в табл. 2 — данные по молекулярной структуре ряда марок промышленных полибутадиенов литиевой полимеризации. [c.57]

    Сополимеры бутадиена со стиролом также имеют более полярную структуру, чем полибутадиен, поэтому при эквимолекулярном соотношении мономеров температура стеклования сополимера повышается до —45°. Резины на основе бутадиен-стирольных каучуков более прочны, чем резины из сополимеров бутадиена и акрилонитрила, но сохраняют растворимость в бензине и керосине, присуш,ую резинам из полибутадиена. [c.514]

    Экспериментальные результаты, полученные при изучении этой реакции, являются прямым доказательством того, что растущая полимерная цепь образует с переходным металлом л-аллильный комплекс. Постоянство константы спин-спинового взаимодействия /а г = 13Гц свидетельствует о сохранении на протяжении всего процесса полимеризации сын-конфигурации концевого звена растущей полимерной цепи, что хорошо соответствует транс-1,4-структуре звеньев образующихся полибутадиенов. [c.117]

    Галогенирование ненасыщенных углеводородных полимеров полиизопрен, полибутадиен, полихлоропрен) также протекает по-разному в зависимости от химической природы исходного полимера. Наиболее простое взаимодействие путем присоединения галогена к двойной связи полидиенов имеет место лишь при строгом соблюдении ряда условий реакции. Обычно наряду с присоединением происходит и реакция замещения водорода, а также образование диклических структур (внутримолекулярные превраш,ения) и сши-вания (межмакромолекулярные реакции). [c.280]

    Одновременное экранирование а- и -углеродных атомов концевого аллильного звена атомом лития в структурах XVII и XVIII делает возможным присоединение мономера не только к а-, но и к -углеродным атомам. В присутствии электронодоноров увеличиваются каталитическая активность литийорганического инициатора и содержание 1,2-звеньев в образующихся полибутадиенах. Присоединение мономера к у Углеродному атому формирует [c.129]

    А т а к т и ч е с к и й и з о м е р—аморфный полибутадиен с различной структурой звеиьев и различным пространственным расположением двойных связей и боковых групп (плотност(1 изомера 0,89—0.92 г1см ). [c.233]

    При хлорировании стереорегулярных цис-, А- и транс-1,4-поли-бутадиенов получают продукты присоединения по двойной связи с 2,3-дихлорбутановыми звеньями [68—70]. Типичным признаком такой структуры является, в частности, поглощение в области 650 см ИК-спектров полимеров [70]. При хлорировании полибутадиенов протекают также процессы сшивания и деструкции полимерных цепей. В продукте хлорирования цис-1,4-полибутадиена, содержащем около 70% хлора, обнаружено некоторое количество двойных связей транс-конфигурации [68]. По мнению авторов, последние образуются в полимере в результате отщепления НС1 от хлорированного полибутадиена. Последующее присоединение хлора к этим связям приводит к увеличению содержания хлора в продукте. Если реакция проводится в присутствии метанола, то образуется полимер с метоксигруппами (полоса 1095 см ИК-спектров). В таких полимерах даже при относительно низком содержании хлора двойные связи отсутствуют, а их элементный состав, по данным ЯМР, соответствует общей формуле С4НбС1п (0Ме)2-и, где п для образцов, содержащих 43,2 и 37,8% хлора, равняется соответственно 1,64 и 1,33. [c.40]

    Проведенный анализ позволяет с уверенностью заключить, что строение молекулы эластомера и природа функциональных групп оказывает влияние на совместимость компонентов системы и на кинетику взаимодействия каучука с эпоксидной смолой, что в свою очередь влияет на молекулярную и морфологическую структуру ге-терофазной системы. Полученные данные указывают на важность присутствия акрилонитрильпого сомономера и карбоксильных групп, влияющих на полярность каучука и, соответственно, на его совместимость с эпоксидной смолой. Далее, можно полагать, что сильно полярные полимеры, такие как сополимеры бутадиена и акрилонитрила с карбоксильными концевыми группами, заметно повышают ударную вязкость и предел прочности циклоалифатических эпоксидных смол, тогда как аналогичные эластомеры с пониженной полярностью, например полибутадиен с карбоксильными концевыми группами, повышают ударную вязкость, но снижают прочность композиций. [c.269]

    ИЛИ ПО спектрам поглощения в инфракрасной области. Последний способ в настоящее время является общепринятым и имеет то преимущество, что позволяет определять также соотнощение цис- и транс-конфигураций в 1,4-структурах. В бутадиеновых полимерах доля структур I, II, VI и VII изменяется в зависимости от температуры и способа полимеризации. Так, полибутадиен, полученный методом эмульсионной полимеризации, содержит 18—23% звеньев в положении 1,2, в то время как полимер, полученный с применением натрия или калия в качестве катализатора, содержит 45—80% звеньев в положении 1,2. Полибутадиен, полученный в присутствии калия, имеет на 15—20% звеньев в положении 1,2 меньше, чем полученный с натрием [2]. Отнощение числа звеньев в положении 1,2 к числу звеньев в положении 1,4 незначительно уменьшается в полимерах, полученных при пониженных температурах полимеризации. Однако соотношение количества звеньев со структурами транс-1 А и цис-1Л существенно зависит от температуры полимеризации [3—5]. Табл. 14 содержит результаты, полученные для полибутадиена и сополимеров бутадиена со стиролом, полученных методом эмульсионной полимеризации. С понижением температуры полимеризации для звеньев, находящихся в положении 1,4 как в полибутадиене, так и в сополимерах бутадиена со стиролом, наблюдается преимущественно транс-конфигурация. При достаточно низких температурах полимеризации получается исключительно транс-конфигурация. Медалиа и Фридман [6] и Ричардсон [7] детально изучали влияние температуры до 250— 270° на процессы полимеризации в блоке и в растворе. Установлено, что доля звеньев цис-конфигурации возрастает с ростом температуры в соответствии с закономерностью, наблюдавшейся при пониженных температурах, и достигает 36—40%. транс-Структуры составляют приблизительно такую же долю, остальные звенья (около 20%) относятся к положению 1,2. [c.173]

    Метод ЯМР несколько менее эффективен для определения структуры полибутадиенов (ио сравнению с полиизопренами). Сигналы винильных и метиленовых протонов транс- и цис- А-звеньев (а и б соотвеиственно) плохо различаются даже при ре- [c.236]

    НОСТЬЮ измерить площа111.и пиков. Это особенно важно для определения цис- и гранс-структур в полибутадиенах, так как в их спектрах ПМР сигналы цис- и гранс-звеньев плохо разделяются даже при регистрации на частоте 220 МГц (см. разд. 11.4, рис. 11.3). В иастаящее вре(мя, однако, спектроскоп,ия ЯМР по-видимому, уступает протонному реаонансу в определении аномальных структур, присутствующих в незначительных или следо-(вых концентрациях. [c.241]


Смотреть страницы где упоминается термин Полибутадиен структура: [c.332]    [c.101]    [c.60]    [c.34]    [c.284]    [c.87]    [c.78]    [c.9]    [c.190]    [c.220]    [c.373]    [c.93]    [c.205]    [c.47]    [c.311]    [c.585]    [c.440]   
Линейные и стереорегулярные полимеры (1962) -- [ c.77 , c.81 , c.488 , c.495 , c.498 , c.520 ]

Линейные и стереорегулярные полимеры (1962) -- [ c.77 , c.81 , c.488 , c.495 , c.498 , c.520 ]




ПОИСК





Смотрите так же термины и статьи:

ПоЛибутадиен

Полибутадиен кубическая структура

Полибутадиен неклейкий, с структурой железо

Полибутадиен структура и свойства

Полибутадиен структура и циклизация

Полибутадиен-акрилонитрильные сополимеры структура

Полибутадиен-стирольный сополимер структура

Полибутадиена сополимеры структура



© 2025 chem21.info Реклама на сайте