Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сахара п физические свойства

    Физические свойства и нахождение в природе. Глюкоза — наиболее распространенный моносахарид. Она придает сладкий вкус плодам и ягодам. Особенно много ее в спелом винограде, почему и получила второе название — виноградный сахар. [c.293]

    Растворение белков в воде связано с гидратацией каждой молекулы, что приводит к образованию вокруг белковой глобулы водных (гидратных) оболочек, состоящих из ориентированных в определенной форме в пространстве молекул воды. По химическим и физическим свойствам вода, входящая в состав гидратной оболочки, отличается от чистого растворителя. В частности, температура замерзания ее составляет —40°С. В этой воде хуже растворяются сахара, соли и другие вещества. Растворы белков отличаются крайней неустойчивостью, и под действием разнообразных факторов, нарушающих гидратацию, белки легко выпадают в осадок. Поэтому при добавлении к раствору белка любых водоотнимающих средств (спирт, ацетон, концентрированные растворы нейтральных солей щелочных металлов), а также под влиянием физических факторов (нагревание, облучение и др.) наблюдаются дегидратация молекул белка и их выпадение в осадок. [c.26]


    Далее, поскольку обычно известно, к какому ряду (D или L относится исходный моносахарид, или это было определено заранее (см. выше), то можно выбрать и конфигурацию гликозида. Более того, измеряя враш,ение полученной двухосновной кислоты и зная по физическим свойствам, к ка-кой паре она относится (т. е. a-D и a-L- или Р-о-и P-L-), можно сделать выбор внутри каждой пары и сразу отнести полученную кислоту, а следовательно, и исходные глюкозиды к a-D-, P-D, a-L- или p-L-ряду. Таким образом, можно определить в один прием конфигурацию у С(1)И С(5) (или С (4) у пентоз), т. е. конфигурацию гликозидного центра и абсолютную конфигурацию сахара. В настояш,ее время все четыре типа кислот, которые могут получаться в результате окисления, хорошо известны, и это позволяет сразу, получив продукты окисления и сравнив их с известными образцами, сделать вывод о конфигурации у С(-1) и С(5 (или соответственно у С(-4))- [c.45]

    Тыква содержит (в % кожицы 17,0, мякоти 73 и семян 10. По другим данным [1], выход семян колеблется от 1,3 до 5% от массы плода. Состав семян тыквы (в %) воды 6,31 жира 38,4 азотистых веществ 27,47 сахара, крахмала и пентозанов 11,02 клетчатки 14,84 золы 1,99. Физические свойства тыквенного масла плотность 921,7 кг/м кислотное число 0,675 число омыления 196,3 йодное число 108,7 неомыляемые вещества 1,13. [c.399]

    При исследовании твердого вещества большую пользу может принести определение его температуры плавления, поскольку температура плавления является характерным физическим свойством каждого чистого вещества. Температурой плавления называется температура, при которой твердое вещество переходит в жидкое состояние. Не все вещества плавятся некоторые из них вместо этого разлагаются. Но в таком случае для идентификации вещества можно определить его температуру разложения. Если вы, например, захотите разделить вишневый сироп на компоненты и обнаружите, что один из них имеет температуру плавления 185 °С, следует предположить, что этот компонент представляет собой обычный сахар, называемый сахарозой, потому что он тоже имеет температуру плавления 185 °С. Однако затем следует провести еще другие исследования этого компонента, поскольку могут существовать различные вещества с близкими температурами плавления, но все же определение температуры плавления идентифицируемого вещества обычно дает какой-то ключ к решению задачи. [c.24]

    Попытаемся связать между собой теоретические представления о химической связи и физические свойства веществ, которые принадлежат к одному из двух классов — к ионным или ковалентным. Свойства веществ, состоящих из ионов, существенным образом отличаются от свойств веществ, состоящих из молекул. Посмотрим, как эти две уже известные нам основные модели химической связи согласуются со свойствами реальных веществ, с которыми мы сталкиваемся в повседневной жизни, например со свойствами соли, сахара или специй. [c.128]


    Мак-Карти с сотрудниками выполнили серию опытов по исследованию сульфитного щелока. Они изучали сбраживание кальциевого, магниевого и аммонийного сульфитного щелока [131 размножение дрожжей [139] физические свойства такие, как плотность, вязкость, удельную теплоемкость и удельную теплопроводность [96] регенерацию аммиака из сульфитного щелока на аммонийном основании [45, 140] состав сахаров щелока [177]. [c.424]

    Хелатная структура озазонов сахаров находится в полном соответст-ствии с их химическими и физическими свойствами. Она, в частности, объясняет, почему реакция образования озазонов останавливается на присоединении двух остатков фенилгидразина и не сопровождается окислением гидроксильной группы при С и следующих атомах углерода. [c.118]

    I. К первой группе относятся вещества, физические свойства которых определяются наличием полярной группировки. Это — соли, многоатомные спирты, сахара, аминоспирты, карбоновые оксикислоты, двух-и многоосновные кислоты, амиды низших кислот, алифатические аминокислоты, сульфокислоты. [c.570]

    Для определения структуры антоцианинов и места присоединения молекулы сахара прибегают к изучению реакций окисления (стр. 247) и метилирования, цветных реакций, распределения в несмешивающихся растворителях, к сравнению физических свойств и, наконец, к синтезу. Температура плавления антоцианинов не имеет большого значения для идентификации, так как обычно эти соединения плавятся с разложением. Антоцианины подразделяют на следующие пять классов  [c.250]

    По каким физическим свойствам можно различить а) воду и бензин б) сахар и поваренную соль в) сероводород и углекислый газ  [c.12]

    Если растворимое вещество, например сахар, привести в соприкосновение с водой, оно диспергируется в жидкости, образуя физически гомогенный раствор, свойства которого указывают на то, что сахар разбился в жидкости на отдельные молекулы. Если тонко измельченный кварц внести в воду, он также диспергируется в жидкости. Но в этом случае, в противоположность сахару, ничто не указывает на то, что после соприкосновения с водой частицы кварца испытывают дальнейшее диспергирование. Частицы кварца в суспензии сохраняют все свои физические свойства, в, то время как диспергированные частицы сахара получают свойства, резко отличающиеся от свойств твердого тепа, например значительно увеличенную способность к диффузии через мембраны с малой проницаемостью .  [c.107]

    Для исследования влияния физических свойств жидкости (вязкости и плотности) на толщину пленки в опытах были применены растворы сахара различной [c.54]

    Тростниковый сахар может быть получен в виде больших прозрачных кристаллов моноклинной системы. Он чрезвычайно хорошо растворим в воде, особенно в горячей, и легко дает густые пересыщенные растворы (сиропы). Физические свойства растворов тростникового сахара хорошо известны на них проверялись и устанавливались физико-химические законы для растворов. [c.690]

    План. В этой работе ставится цель показать возможность проведения анализа путем использования специфических физических свойств. Растворы сахарозы можно анализировать посредством измерения показателя преломления и угла поворота плоскости поляризованного света. Любой из этих методов дает высокую точность с водными растворами чистого сахара. Одновременное с сахаром присутствие других углеводов приводит к изменению одного или обоих свойств. Все углеводы примерно в одинаковой степени изменяют показатель преломления, но вращательная способность является свойством в высокой степени специфичным ее значения в зависимости от природы вещества меняются от положительных к отрицательным, проходя через нуль. [c.476]

    Применение конформационного анализа в химии углеводов имеет большое значение в настоящем и будущем по следующим двум причинам. Во-первых, все сахара принадлежат к нескольким семействам диастереомеров. В пределах этих семейств они отличаются только своим пространственным строением, поэтому и различия между ними можно отнести за счет конформационных факторов. Если бы последние можно было точно оценить, удалось бы объяснить и предсказать ряд химических и физических свойств различных сахаров. [c.419]

    Физические свойства и нахождение в природе. Сахароза, или обыкновенный сахар, — бесцветные кристаллы, сладкие на вкус, хорошо растворимы в воде. Сахароза плавится при 160°С, при остывании затвердевает, превращаясь в общеизвестную карамель. [c.296]

    Сахароза — хорошо знакомый всем обыкновенный сахар. По физическим свойствам она сходна с глюкозой. Это белое, твердое кристаллическое вещество, более сладкое чем глюкоза, хорошо растворимое в воде. При осторожном нагревании до 150—160°С плавится. При длительном нагревании желтеет, по охлаждении застывает в прозрачную аморфную массу — леденец. При более сильном нагревании масса буреет и превращается в карамель. Будучи нагретой еще сильнее, обугливается. Образующийся уголь является почти чистым углеродом. [c.279]


    Вокруг твердой гидрофильной частицы вода образует уплотненную оболочку. Повышенная плотность гидратационной воды, доходящая до 2,5, вызывает изменение ее физических свойств температура замерзания ее ниже, электрическая проницаемость 2,2 (вместо 81). Вода гидратационных оболочек не участвует в растворении, почему объем, занимаемый ею в растворе, называется и е -растворяющим объемом. Если в раствор сахара ввести гидрофильный порошок, например, глину, то концентрация са- [c.36]

    Химические и физические свойства нуклеозидов зависят от состава входящих в них оснований и сахаров. Будучи глико-зильными производными, они оптически активны, причем значения оптической активности зависят от величины pH. Однако помимо диссоциации сахара рК от— 12 до 13) значительное влияние на оптическую активность оказывает также природа основания (и его константы диссоциации), и, вероятно, все значения рК могут быть определены из данных об изменении вращения с изменением величины pH. [c.35]

    Полимеризацию большей части непредельных соединений (например, стирола, винилацетата, метилметакрилата, каучукового латекса и т. д.) можно ускорить путем добавки перекиси водорода или других перекисных соединений [152]. Это действие обусловлено свободными радикалами, образующимися от разложения перекиси, поскольку эти радикалы, как известно, способны инициировать полимеризациониые цепи. Варьирование концентрации и природы используемой перекиси, а также экспериментальных условий позволяет в значительной мере видоизменять средний молекулярный вес и другие свойства продукта. Скорость образования радикалов из перекиси может быть значительно повышена путем применения так называемых редокс-систем , обеспечивающих возможность достижения значительных скоростей полимеризации при температурах гораздо ниже обычных. Этим путем можно получать полимеры, обладающие превосходными физическими свойствами (например, холодный каучук ). Типичная редокс-система содержит соль многовалентного металла, иапример железа, в сочетании с таким восстановителем, как сахар. Начальные реакции могут быть написаны следующим образом  [c.511]

    Шелк Шардонне, медно-аммиачный шелк и вискозный шелк в химическом отношении представляют собой регенерированную, пере-осажденную целлюлозу, и для них не могут совершенно бесследно пройти те различные химические воздействия, которым целлюлоза подвергается в процессе переработки. Они обладают признаками некоторого неглубокого расщепления слегка повышенной восстановительной способностью, большей гигроскопичностью и увеличенной восприимчивостью к красителям. Некоторые из этих особенностей отчасти объясняются тем, что физическое строение искусственного шелка отличается от строения волокна природной целлюлозы. Мельчайшие частицы целлюлозы, ее мицеллы, или кристаллиты, расположены в нитях искусственного шелка в большей пли меньшей степени беспорядочно, а не ориентированы вдоль оси волокна, как в природной целлю.тозе. На физические свойства волокна оказывает влияние ослабление связей между мицеллами и увеличение активной поверхности. Это приводит к повышению адсорбционной способности искусственного шелка по отношению к воде и красителям, а также к уменьшению химической и механической прочности. Устойчивость искусственных и природных волокон целлюлозы по отношению к действию ферментов тоже не одинакова волокна искусственного шелка при действии целлюлазы , содержащейся в улитках и других беспозвоночных, сравнительно легко и полно превращаются в сахара, тогда как расщепление природной клетчатки (хлопка) происходит значительно медленнее. [c.465]

    Формирование внутренней структуры слоев происходит при замесе затяжного и крекерного теста, когда создаются условия для более полного набухания белков муки. Этому способствует малое количество сахара и жира в тесте, большая влажность, повышенная температура теста и продолжительный процесс. Такой режим замеса теста создает оптимальные условия для образования в тесте губчатой структуры клейковины, которая обуславливает специфические физические свойства затяжного и крекерного теста — упругость и эластичность. [c.114]

    В течение прошедших 50 лет коренным образом изменились воззрения о природе кремнезема, находящегося в обычных щелочных силикатных растворах с отношениями ЗгОг ЫагО от 2 1 до 4 1. Сходство физических свойств вязких, тягучих растворов растворимых силикатов с растворами линейных органических полимеров давало повод в некоторых случаях предполагать, что вязкие силикатные растворы должны были содержать линейные полимеры с высокими молекулярными массами. (Такое представле ше имело место, несмотря на тот очевидный факт, что конценгрированные растворы или сиропы сахара, т. е. вещества с низкой молекулярной массой, также оказываются очень вязкими.) Более того, быстрое гелеобразование в силикатных растворах при добавлении кислоты, по-видимому, поддерживало идею о том, что механизм образования геля по аналогии с органическими полимерными системами включал стадию поперечной сшивки уже существовавших к этому моменту линейных полимеров. Развитие таких теоретических представлений, применимых к органическим полимерам и ошибочно используемых при рассмотрении растворимых силикатов, может задержать выявление правильной интерпретации неорганической системы. Полимерные линейные силикатные разновидности, безусловно, в растворе встречаются, но они не очень вытянуты, а механизм полимеризации совершенно иной, чем в любой органической системе. [c.157]

    При производстве лекарственных препаратов используются, в основном, такие КВ, как и в пищевой промышленности. Для придания ощущения кислого вкуса применяют кислоты (например, лимонную). Но надо учитывать, что кислотьт являются многофункциональными, действуют как КВ, как консерванты, синергисты для антиоксидантов, и, кроме того, модифицируют физические свойства ЛФ. Используются в качестве К13 соленые (хлориды натрия, калия) и сладкие вещества (сахар, сахароза и др.), которые называются подслащивающими веществами. [c.382]

    Кстати здесь надо euje заметить, что тростниковый сахар существует в двух различных модификациях которые химически идентичны но разнятся по своим физическим свойствам Обыкновенная, устойчивая людификация (температура плавления 179— 180" ) выкристаллизовывается из всех растворителей кроме метилового спирта, между тем 1сак неустойчивая модификация (температура плавления 169—170°) получается кристаллизацией из этого последнего растворителя. Синтетический тростниковый сахар также получен в зтих двух формах. [c.379]

    Одновременно идут и другие биохимические процессы. О ролизе крахмала, мальтозы и сахарозы уже говорилось ра Частичному гидролизу подвергаются и пентозаны. Наряду с буханием белков они подвергаются частичному протеолизу. тичный протеолиз в тесте из сильной муки желателен. Он водит к улучшению физических свойств теста, а в резуль взаимодействия восстанавливающих сахаров с продуктами д лимеризации белков (меланоидинообразование) улучшаются вкус и аромат, окраска корки хлеба. В тесте из слабой t интенсивный протеолиз нежелателен, он приводит к увелич неограниченного набухания белков, ухудшает физические с ства теста. Хлеб получается расплывшийся, недостаточ объема. [c.108]

    Гидролиз протекает ступенчато. В промежуточных стадиях образуются целлодекстрины различной сложности, целлотетро-за, целлотриоза и наиболее важная целлобиоза, СхзНзгОц. В отличие от промежуточных продуктов и глюкозы, получаемых в результате ее гидролиза, целлюлоза в очень малой степени восстанавливает Фелингову жидкость и подобные растворы, т. е. она имеет низкое медное число . Однако, как бы тщательно природная целлюлоза ни была очищена, она никогда не бывает полностью лишена способности к восстановлению, причем чистейшие образцы ее имеют медные числа порядка 0,05, тогда как -глюкоза имеет 300. Е сли целлюлоза находится в условиях, содействующих гидролизу, ее медное число всегда возрастает. Так, разбавленные слабые кислоты при низких температурах вызывают небольшое увеличение медного числа, хотя условия эти таковы, что никаких следов конечного гидролиза до глюкозы обнарун ить нельзя. Что эти небольшие изменения медного числа сопровождаются фундаментальными изменениями в структуре целлюлозы подтверждается тем, что одновременно меняются и физические свойства. Так, действие холодной разбавленно] слабой кислоты постепенно вызывает падение сопротивления иа разрыв целлюлозных изделий или отдельного волокна. Эти факты неминуемо приводят к заключению, что целлюлоза представляет собой продукт конденсации -глюкозы, образующийся с выделением воды, причем химический механизм этого процесса приводит к значительному, но все же неполному исчезновению альдегидных групп сахара. [c.159]

    План. В этой работе ставится цель показать возможность проведения анализа путем использования особых физических свойств веществ. Анализ растворов сахарозы может быть выполнен путем измерения либо показателя преломления раствора, либо угла поворота плоскости поляризованного света. Любой из этих методов дает высокую точность при измерении водных растворов чистого сахара. Присутствие, кроме сахара, других углеводов в растворе приводит к изменению одного или обоих из этих свойств. Все углеводы примерно в одинаковой степени влияют на показатель преломления. Однако вращательная способность углеводов является в высшей степени специфичным свойством и может быть либо исложительной, либо отрицательной, либо равной нулю для различных веществ. [c.331]

    Питательная ценность источников углерода зависит от физиологических особенностей микроорганизма, химического состава и физических свойств вещества. Легкость усвоения углеродсодержащих соединений предопределяется степенью окислен-ности углерода. Карбоксилы — СООН имеют малую питательную ценность, радикалы с восстановленным углеродом — СНз, СНг и СН — более питательны. Но легче всего усваиваются полуокнсленные атомы углерода — СНгОН, СНОН, СОН. Высокую питательную ценность имеют соединения, богатые спиртовыми группами. Наиболее доступными источниками углерода для большинства гетеротрофных микроорганизмов являются сахара, глицерин, маннит, молочная, винная и лимонная кислоты. Многие бактерии успешно осуществляют гидролиз углеводов, жиров, белков, используя их в качестве источника углерода. Весьма распространенный растительный полисахарид крахмал часто служит источником углерода для бактерий и гри- [c.88]

    Активные земли и глины, известные под названием флоридинов, франконитов, сукновальной глины (фуллеровой земли), реактива Ллойда, фильтрол-нейтрола и т. д., обладают высокой сорбционной активностью, особенно проявляющейся при работе с водными растворами поэтому эти адсорбенты и применяются главным образом для разделения сахаров и других полиоксисоединений, аминокислот, энзимов и т. д. Колонну из активной глины трудно выжать из трубки, не повредив хроматограммы поэтому в последнее время замечается тенденция к замене природных силикатов синтетическими, обладающими белым цветом и лучшими физическими свойствами. Синтетические силикаты применяются как в водной среде, так и в органических растворителях. [c.196]

    Так, для алкалоидов получают соли с различными кислотами, метильные, ацетильные и другие производные для альдегидов и кетонов — фенилгидразоны, 2,4-дини-трофенилгидразоны и семикарбазоны для спиртов — фе-нил- и нафтилуретаны для кислот — различные эфиры для сахаров — озазоны и т. п. Для всех этих производных определяют температуру плавления, а при необходимости и другие физические свойства. [c.49]

    Пуриновые и пиримидиновые компоненты нуклеозидов обусловливают ультрафиолетовое поглощение этих соединений. Природа этого поглощения зависит от природы заместителей в основании и от pH раствора, так как ионизация основания или его заместителей влияет не только на таутомерные превращения, но и на возможность резонанса. Кажущиеся значения р/С (включая рК сахара) могут быть легко определены с помощью как спектрофотометрических методов, так и титрования [160]. Поскольку таутомерная форма обусловливается окружающей средой и каждая форма представляет собой набор многих резонансных структур, характеристика с помощью обычных методов оказывается до некоторой степени ошибочной. Физические свойства нуклеозидов свидетельствуют о значительном вкладе цвиттерионных структур, в частности в циклонуклеозидах, таких, как 0 ,5 -циклотимидин. Этому соединению на основании его растворимости, более высокой по сравнению с тимидином температуры разложения (но не температуры плавления), а также данных хроматографии на бумаге и поведения при электрофорезе следует приписать структуру I, но не П (см. стр. 52). [c.51]

    В зависимости от химического состава ПАВ мицеллы могут быть неионными, катионными, анионными или амфотерными. Физические свойства ряда детергентов приведены в табл. 1. Наиболее широко применяемые неионные детергенты содержат полиоксиэти-леновую или полиоксипропиленовую цепь, связанную, как правило, со спиртами или фенолами имеющими длинную углеводородную цепь. К неионным ПАВ относятся также эфиры сахаров, жирные алканоламины, жирные окиси аминов. Все эти вещества довольно трудно получить в виде индивидуальных химических соединений, однако отсутствие ионов в мицеллах, которые они образуют, делает их особенно полезными в качестве детергентов и эмульгаторов и позволяет упростить теоретическое рассмотрение структуры таких мицелл. ККМ неионных ПАВ обычно в 100 раз меньше, чем ККМ ионогенных детергентов, содержащих сравнимые по величине гидрофобные группы. Поэтому масса мицелл неионных детергентов существенно больше, чем масса мицелл ионогенных ПАВ. Анионные детергенты обычно содержат длинную углеводородную цепь и карбоксилатную, сульфатную или сульфонатную группу. В качестве противоионов выступают натрий, калий, литий или водород. Длинноцепочечные четвертичные амины или пиридипы с бромид-, хлорид- или иодид-ионом в качестве противоиона образуют группу катионных ПАВ. Степень нейтрализации заряда противоионами в слое Штерна у катионных мицелл несколько меньше (это связано с некоторым экранированием заряда четвертичной аммониевой группы), поэтому их структура более компактна по сравнению с анионными мицеллами. Катионные мицеллы обладают несколько большей солюбилизующей способностью в отношении неполярных субстратов, чем анионные мицеллы, образованные ПАВ того же молекулярного веса. Амфотерные мицеллы образованы цвиттер-ионными молекулами, у которых тип диссоциации определяется pH раствора [45, 46]. Природные фосфатиды и липиды, такие, как лецитин и соли желчных кислот, также образуют мицеллы и определяют многие важные биологические функции in vivo и in vitro [20, 47—51]. [c.228]


Смотреть страницы где упоминается термин Сахара п физические свойства: [c.94]    [c.105]    [c.1024]    [c.139]    [c.17]    [c.58]    [c.271]   
Конформационный анализ (1969) -- [ c.452 ]




ПОИСК





Смотрите так же термины и статьи:

Глюкоза Виноградный сахар физические свойства

Сахароза Тростниковый сахар. Свекловичный сахар физические свойства

Физические и химические свойства Казеиновых фракций с низким содержанием сахаров

Шевчук, Ю. Н. Богословский, В. И. Сахаров. Зависимость величин удерживания ацетиленовых и других высоконепредельных углеводородов от физических свойств и электронного строения молекул

Шевчук, Ю. Н. Богословский, В. К. Сахаров. Зависи, ность величин удерживания ацетиленовых и других высоконепредельных углеводородов от физических г свойств и электронного строения молекул

внутри сахаров и физические свойств



© 2025 chem21.info Реклама на сайте