Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кадмий комплекс с в присутствии алюминия

    Примером использования избирательной адсорбции может служить концентрирование микроколичеств катионов металлов, содержащихся в воде (водопроводная вода, вода природных водоемов и т. д.), на активированном угле с последующим определением их содержания. Для этого к достаточно большому объему анализируемой воды (-1 л) прибавляют аммиачный буфер до pH 8—9 и 8-оксихинолин (раствор в ацетоне), который образует относительно прочные оксихинолинатные комплексы с катионами металлов, присутствующих в микроколичествах в анализируемой воде (ионы меди, цинка, кадмия, ртути, алюминия, свинца, хрома, марганца, железа, кобальта, никеля и др.). Затем воду пропускают через активированный уголь, находящийся на фильтре. При фильтровании оксихинолинатные комплексы металлов практически количественно адсорбируются на активированном угле (коэффициент концентрирования равен -Ю ), из которого они могут быть десорбированы обработкой небольшим объемом раствора азотной кислоты НМОз (около 10 мл). В полученном азотнокислом концентрате можно определить содержание указанных металлов различными методами (например, оптическими). [c.236]


    Устойчивые комплексы нуклеиновых кислот образуются также при взаимодействии с ионами металлов, особенно многовалентными ионами. Например, рибонуклеиновая кислота с ионами бериллия дает устойчивый к диализу комплекс [291]. Связывание ионов других двухвалентных металлов, таких, как магний и кальций, может происходить главным образом за счет образования ионной пары с близлежащими первичными фосфатными группами [292]. Взаимодействие с другими металлами, такими, как ионы меди, возможно, заключается в образовании комплексов с основаниями, особенно с пуриновыми остатками [293]. Добавлением ионов двухвалентного никеля можно достичь значительной стабилизации инфекционности РНК растительных и животных вирусов, причем оптимальное соотношение равно одному иону никеля на нуклеотид [25, 294]. В рибонуклеиновых кислотах из различных биологических источников обнаружены значительные количества хрома, марганца, никеля, железа, алюминия, меди, цинка, кадмия, свинца и других металлов с общим молярным отношением 1/50 фосфатных остатков [295, 296]. Такие комплексы чрезвычайно устойчивы и отделение металлов диализом или с помощью комплексообразующих агентов представляет большие трудности действительно, между рибонуклеиновой кислотой из печени быка, ионом двухвалентного железа и 1,10-фенантролином легко образуются устойчивые смешанные комплексы [296]. Хотя присутствие в рибонуклеиновых кислотах некоторого количества этих металлов может быть. [c.414]

    При амперометрическом варианте необходимость в индикаторе отпадает. Кроме того, подбирая соответствующие условия, можно проводить титрование в присутствии больших количеств кальция, магния, свинца (при сульфатном фоне свинец в большей своей части окажется в осадке), меди (до соотношения меди к цинку, равном примерно 1 1), кадмия (до соотношения кадмия к цинку, равном примерно 1 10), алюминия и железа. Такая возможность достигается подбором фона, способствующего связыванию мешающих элементов в комплексные соединения или выпадению их в осадок. Так, в ацетатно-аммиачной среде медь и кадмий удерживаются в виде комплексных соединений, а цинк, обладающий наименьшей по сравнению с другими металлами растворимостью ферроцианидного соединения, выпадает в осадок. Железо в аммиачной среде выпадает в осадок и не мешает титрованию, если его содержание не слишком велико, так как в ином случае цинк может адсорбироваться осадком гидроокиси железа. Поэтому при высоких содержаниях железа (около 10% и выше) следует прибегать к добавлению лимонной кислоты связывающей его в достаточно прочный комплекс, из которого ферроцианид не осаждает железо. Добавление лимонной кислоты также ослабляет влияние алюминия, которое вообще довольно заметно при всех титрованиях с платиновым электродом (возможно, что алюминий пассивирует электрод вследствие образования тончайшей пленки гидроокиси, появляющейся в результате гидролиза солей алюминия). [c.345]


    К слабокислому анализируемому раствору прибавляют 1 г хлорида аммония, несколько кристаллов солянокислого гидро-ксиламина и требуемое количество триэтаноламина. Прибавляют буферный раствор и титруют магний прямо раствором комплексона в присутствии эриохрома черного Т. Цинк, кадмий, медь и т. п. элементы маскируют цианидом калия. Раствор следует подогреть до 60°, так как титрование при нормальной температуре протекает медленно вследствие длительности установления равновесия между отдельными комплексами, присутствующими в растворе. Можно титровать и на холоду, но тогда поступают следующим способом. После маскирования алюминия триэтаноламином и прибавления буферного раствора вносят в раствор твердый комплексонат магния в достаточном количестве. Тотчас же образуется комплексонат марганца (II)  [c.423]

    Метод позволяет определять кобальт в присутствии щелочноземельных металлов. Железо и алюминий мешают, однако эти ионы можно удержать в растворе и элиминировать их мешающее действие связыванием в салицилатные или тартратные комплексы. Катионы меди, кадмия, никеля, марганца и цинка образуют аналогичные осадки и нх необходимо удалить перед осаждением кобальта. [c.96]

    Примечание. Этот метод вполне специфичен для висмута и может применяться в присутствии щелочных и щелочноземельных металлов, железа, марганца, хрома, никеля, кобальта, алюминия, цинка и меди. Если присутствует олово, надо прибавить по 2 г винной кислоты на каждые 75 мл раствора и принять меры (устанавливая соответственно кислотность раствора), чтобы не выпал кислый тартрат калия. В присутствии ртути, кадмия или большого количества цинка надо также прибавить винную кислоту, перенести осадок при помощи горячей воды в стакан, прокипятить несколько минут, чтобы гидролиз прошел полностью, профильтровать через тот же фильтр и промыть горячей водой. Осадок (оксихлорид висмута) снова растворяют в горячей 1 н, соляной кислоте, содержащей 10% бромида калия, и после прибавления 30%-ного раствора бромида калия, как описано выше, снова осаждают в виде хромового комплекса. [c.219]

    При цериметрическом окончании анализа можно определить около 3 мг кобальта в присутствии преобладающих количеств ионов трехвалентного железа, никеля, кадмия, цинка, меди, молибдена, ванадия и вольфрама (от 20 до 110 мг) с ошибкой менее 1%. Не мешают также катионы бериллия, свинца, марганца, хрома, алюминия, титана, циркония и других элементов, не образующих комплексов с 1,10-фенантролином, анионы хлора, азотной и серной кислот. Методика определения сводится к следующему. [c.118]

    Прямое комплексонометрическое титрование индия в присутствии эриохром черного Т при комнатной температуре возможно в среде этилендиамина, который предотвращ ает выпадение индия в осадок в форме основной соли, но в то же время не препятствует образованию комплексов индия с динатриевой солью этилендиаминтетрауксусной кислоты и эриохром черным Т [166, 167]. Окрашенный комплекс индия с эриохром черным Т образуется только в том случае, если концентрация этилендиамина не очень велика. Ионы меди, цинка, кадмия, никеля и кобальта маскируют добавлением цианида, а ионы алюминия — триэтаноламином. [c.101]

    Определению не мешают палладий, ртуть, кадмий, медь, олово, сурьма, алюминий, никель, кобальт, марганец, цинк, барий, кальций, натрий, калий. Железо (1П) образуете реактивом желтый комплекс, поэтому в присутствии железа добавляют фосфорную кислоту. [c.187]

    Оксалат аммония применяют в качестве реактива при количественном определении тория, редкоземельных металлов и главным образом кальция. Кальций количественно осаждается в виде оксалата кальция в аммиачных или слабокислых растворах. К выделению кальция в виде оксалата приступают обычно после соответствующего отделения остальных аналитических групп, так как практически все катионы мешают определению кальция вследствие образования нерастворимых гидроокисей или оксалатов. Применение комплексона здесь особенно выгодно, так как в слабо кислом растворе, содержащем уксусную кислоту, все катионы связываются в прочные комплексы, не гидролизуются и не осаждаются оксалатом, тогда как кальций выделяется в виде оксалата в пригодном для фильтрования виде [82]. Простым осаждением можно надежно определить кальций в присутствии ртути, свинца, висмута, меди, кадмия, мышьяка, сурьмы, железа, хрома, алюминия, титана, урана, бериллия, молибдена, вольфрама, церия, тория, никеля, кобальта, марганца, цинка, магния и фосфатов. [c.102]

    Прямое титрование возможно в растворе глутаминовой кислоты, которая образует с кобальтом комплекс, не окисляющийся на воздухе, но реагирующий с КзРе(С )б оптимальное pH равно 9,8—11,4 [114]. Титрование можно вести в присутствии ионов никеля, хрома, кадмия, алюминия, меди, цинка, вольфрама, висмута, титана, молибдена, ванадия, мышьяка, допустимы также полуторакратные количества марганца. [c.109]


    При Проведении титрований раствором ЭДТА мешающие ионы можно связывать в комплексы и таким способом устранять их влияние. Так, кальций можно титровать в присутствии железа (И1), алюминия, марганца и магния, добавляя триэтаноламин. Таким же способом, связывая алюминий триэтаноламином, можно в его присутствии титровать никель. Цинк, кадмий и никель можно титровать в присутствии алюминия, магния и кальция, прибавляя растворимый фторид. Кальций можно титровать в присутствии никеля, цинка и меди, связывая эти ионы цианидом. Цинк определяют в присутствии урана (VI), добавляя карбонат. [c.549]

    Весовое определение меди. Оксихинолят меди осаждается как из разбавленного уксуснокислого раствора, так и из щелочного раствора тартрата натрия. Разбавленный уксуснокислый раствор обеспечивает избирательное определение меди в присутствии бериллия, магния, кальция, кадмия, свинца, мышьяка и марганца. С другой стороны, осаждение медного комплекса идет избирательно в присутствии алюминия, свинца,. 0Л0ва(1У), мышьяка (V), сурьмы (V), висмута, хрома и же-,леза(П1) в щелочном растворе тартрата. [c.122]

    Применение маскирующих средств. Основанные на этом методы титрования исходят из того, что, например, один или группа металлов связываются в комплексы, более прочные чем с ЭДТА или осаждаются и т. п. Так, алюминий и титан мешают титрованию редкоземельных и щелочноземельных элементов. Однако А1 и Т1 можно-замаскировать, связав их в прочный комплекс с пирокатехином (чаще применяют сульфопроиз-водное пирокатехина — тайрон). Редкоземельные элементы, а также индий и свинец можно титровать в присутствии цинка, меди, кадмия, кобальта и др. металлов, если эти последние связать в прочные комплексы цианистым калием. Титрованию цинка, кадмия и др. мешает ртуть ее легко замаскировать йодидом. [c.432]

    ВИЯХ, что и алюминий. Не реагируют щелочные и щелочноземельные металлы, N1, Со, 2п, Сс1, РЬ, (VI), Сг (П1), Сг (VI) и Цинк и кадмий не мешают даже при 100 000-кратном избытке. Никель и кобальт мешают только своей окраской, поэтому определение Б присутствии этих элементов возможно, если их вводить в стандартные растворы. Д о (VI) и Ш (VI) не мешают до соотношения к алюминию 8000 1 и 1000 1 соответственно. Большие количества их уменьшают окраску комплекса алюминия. Влияние Ре (III) устраняется аскорбиновой кислотой, а Си (II) — тиосульфатом. [c.113]

    Амнерометрическое титрование индия при pH 1 возможно в присутствии больших количеств цинка, марганца, кобальта, кадмия, алюминия, а также значительных количеств железа, если его предварительно восстановить аскорбиновой кислотой (табл. 46). Двухвалентное олово может присутствовать в растворе лишь в незначительных количествах (до 0,5 мг), однако его влияние можно устранить введением в раствор винной кислоты. Следует отметить, что образование комплекса олова с винной кислотой протекает во времени нагревание ускоряет )тот процесс. Поэтому титрование следует производить после предварительного подогрева раствора или примерно через 2 часа после приготовления. В этом случае присутствие даже 5 мг олова не отражается на результатах титрования. Введением в раствор винной кислоты удается предотвратить мешающее влия- ние сурьмы (до 2 мг). Титрование возможно и в присутствии не- больших количеств галлия и никеля. Висмут мешает оиределе- / нию. Медь также мешает, однако ее влияние можно до некоторой степени устранить введением в раствор тиомочевины. В этом случае титрование возможно в присутствии до 0,5 мг меди. [c.109]

    Определение кобальта в виде комплекса с пиридин-2,6-дикарбоновой кислотой С5Нз (СООН)2 [813]. Ионы двухвалентного кобальта легко окисляются броматом калия в азотнокислой или сернокислой среде в присутствии пиридиндикарбоновой кислоты, образуя окрашенный в красный цвет анионный комплекс трехвалентного кобальта, в котором на один ион кобальта приходится две молекулы реагента. Комплекс имеет максимум поглощения при 514 ммк и молярный коэффициент погашения при этой длине волны, равный 672. Можно определять 2—100 мг мл Со. Комплекс устойчив по отношению к ионам двухвалентного олова и тиогликолевой кислоте это позволяет определять кобальт в присутствии трехвалентного марганца, который также образует окрашенный комплекс, но легко восстанавливается при действии указанных восстановителей. Не мешают катионы меди, железа и никеля, а также щелочноземельных металлов, алюминия, кадмия, ртути, галлия, индия, свинца, сурьмы, мышьяка, висмута, титана, циркония, цинка, ванадия, церия, тория, хрома, серебра, анионы перманганата, молибдата, вольфрамата, хромата. [c.145]

    Алюминий и индий реагируют с комплексом кадмия аналогично галлию, однако реакцию алюминия можно маскировать прибавлением NaF. В этом случае метод пригоден для 01Пределе-ния галлия В присутствии 350-кратного количества алюминия. [c.175]

    Следует иметь в виду, что кобальт тоже реагирует с диметилглиоксимом, и если он присутствует в количествах ббльших, чем 5% от количества никеля, то его нужно предварительно удалить, так как применение комплексообразователей, например цианида или пирофосфата, не дает удовлетворительных результатов . Железо (III), алюминий и хром (III) не мешают, если их немного, но если они начинают выпадать в аммиачной среде, то могут адсорбировать никель. Поэтому Г. А. Бутенко, Г. Е. Беклешова и Е. А. Со-рочинский и рекомендуют связывать железо (III) во фторидный комплекс алюминий также связывается фторидом и выпадает в осадок, а хром (П1) дает достаточно устойчивый растворимый комплекс, не мешающий определению никеля. Другие катионы, например цинк и кадмий, восстанавливаются при указанном выше потенциале, следовательно, все титрование будет проходить при большом начальном токе. Если содержание этих металлов не очень высоко (не выше 1%, по данным Кольтгофа и Лангера ), то они не мешают определению никеля. Катионы меди очень мешают, перед титрованием ее необходимо удалять. [c.272]

    В. А. Хадеев и Ф. Ф. Квашнина определяют цирконий прямым комплексонометрическим титрованием по анодному току комплексона III с танталовым электродом при +1,2 в (Нас. КЭ). Фоном служит 0,5—1,0 и. серная кислота, причем, по данным авторов этой работы, титрованию в таких условиях не мешают даже большие количества бериллия, урана, тория, цинка, кобальта, кадмия, молибдена, свинца и небольшие количества хрома, никеля, титана, церия (III) и ванадия (V). Алюминий мешает, но его связывают во фторидный комплекс. Однако следует помнить, что цирконий тоже образует прочные фторидные комплексы, почему и рекомендуется добавлять алюминий в присутствии фторида при определении циркония купфероновым методом. [c.355]

    По данным Эрёметсе, дитизонаты тяжелых металлов сильно сорбируются на колонке из их раствора в четыреххлористом углероде, причем сорбция ослабевает в ряду 8Ь(1П), 8п(П), N1, Мп, Си, са, Ре(П), Со(II), 2п, Н (П). Свободный дитизон, присутствующий в избытке, также сорбируется на колонке, занимая положение между железом и кобальтом. Бах [692] разделял на окиси алюминия дитизонаты серебра, ртути(П) и меди(П). Эти комплексы сорбировали из их раствора в четыреххлористом углероде, затем промывали колонку хлороформом и. ацетоном. Аналогичным образом разделяли дитизонаты кадмия, меди и ртути. [c.217]

    Железо (III), хром (III) и кобальт обусловливают положительную ошибку, прозрачность уменьшается, причем вид кривой прозрачности не очень изменяется. Многие катионы (медь, кадмий, свинец, алюминий) вызывают отрицательные ошибки. Это влияние более выражено в соляной, чем в хлорной кислоте, и, очевидно, является следствием образования комплексов, например d n . которые соединяются с ионами циркония. Положительную ошибку, вызываемую железом, уменьшают посредством увеличения концёнтрации соляной кислоты, но при этом уменьшается и чувствительность реакции циркония. При определении 10 г Zr в условиях, описанных ниже в ходе анализа, ошибка, вызываемая 1 мг посторонних металлов, не должна превышать 50%. Другими словами, если эти металлы присутствуют в количествах, сравнимых с количеством циркония, то помеха с их стороны не должна быть заметной. [c.527]

    Флуориметрические методы часто более чувствительны, чем обычные фотометрические. Однако pH раствора, природа растворителя, концентрация реагента, температура и присутствие посторонних ионов или молекул (которые могут частично гасить флуоресценцию), видимо, оказывают на них большее влияние [6]. Обычно этими методами определяют Ве, А1, Оа, 1п, 5с, и и Хт. В щелочных растворах бериллий реагирует с хинизарином 1,4-диоксиантрахиноном) с образованием соединения, флуоресцирующего красным светом. Подобным же образом при pH 4,5 олово (IV) образует флуоресцирующий комплекс с пурпурином (1,2,4-триоксиантрахиноном), а в слабокислых растворах ТЬ, Оа и Рг — флуоресцирующие комплексы с 1-амино-4-оксиантрахино-ном. Красный бис-комплекс эриохром (понтахром) сине-черного К с алюминием, образующийся при pH 4,8 в течение I час, можно экстрагировать н-амиловым спиртом и определять по флуоресценции [7]. Метод чувствителен (позволяет определять до 0,01 мкг мл алюминия), но значительные помехи оказывают Ре, Си, Со, V(V) и Т1, если они присутствуют. Небольшие концентрации магния, цинка, алюминия, галлия и индия [8] иногда определяют по флуоресценции их комплексов с 8-оксихинолином или 8-оксихинолин-5-сульфокислотой [9]. 2-(о-Оксифенил)бензо-ксазол является флуориметрическим реагентом на кадмий [10]. В кислых или нейтральных растворах морин Ы образует флуоресцирующие комплексы с Ве, Оа, 5п( ) > 8с > г, ТЬ, А1, 1п [c.171]

    За последние годы предложены новые довольно высокочувствительные и селективные системы для определения микроколичеств серебра. Так, Дагнел и Уэст [27, 28] предложили для фотометрического определения серебра тройную систему, основанную на взаимодействии 1,10-фенантролина, бромпирогалло-вого красного и одновалентного серебра. Авторами установлено соотношение компонентов в возникающем комплексе [Ag(/оЛеп) г] 2 BPR, где ркеп — 1,10-фенантролин, ВРК—бром-пирогалловый красный. Максимум поглощения комплекса находится при 635 нм, коэффициент молярного погашения 51 ООО, область существования комплекса pH 3—10. Оптическая плотность подчиняется закону Бера в интервале концентраций серебра 0,02—0,2 мкг мл. При увеличении концентраций реагирующих веществ и при стоянии выпадает осадок комплексного соединения.. В присутствии комплексообразователей (комплексона III, перекиси водорода, фторидов) определению серебра не мешают стократные количества многих катионов, а также ацетаты, бромиды, карбонаты, хлориды, цитраты, фториды, нитраты, оксалаты, сульфаты, фосфаты. Сильно мешают цианиды и тиосульфаты. Из катионов не мешают ионы алюминия, бария, висмута, кальция, кадмия, трехвалентного церия, трехвалентных хрома и железа, двухвалентных кобальта, меди, ртути, магния, марган- [c.49]

    Для повышения коэффициентов расиредоления экстрагируемых веществ большой эффективностью обладает введение в водный раствор вы-саливатслей. В. М. Вдовенко и Т. В. Ковалева [37], для распределения малых количеств уранилнитрата (0,001 молярной доли) между водными растворами и диэтиловым эфиром в присутствии различных нитратов лития, натрия, калия, аммония, магнпя, кальция, стронция, бария, цинка, кадмия, алюминия и железа показали, что эффективность высаливающего действия нитратов зависит не только от концентрации питрат-иона, по и от вводилюго в раствор катиона (рис. 2). При одинаковых молярных долях высаливателя в водном растворе высаливающее действие нитратов возрастает по море увеличения заряда и уменьшения радиуса катиона (рис. 3). Высаливающее действие является следствием связывания молекул воды при гидратации катиона. Нитрат-ионы, введенные в раствор с высаливателем, сдвигают равновесие образования нитратных комплексов в сторону образования экстрагируемых соедипепий. [c.268]

    Иодидный комплекс индия [1—3 экстрагируют диэтиловым эфиром из среды 0,5—2,5 н. (6—30%-ной) иодистоводородной кислоты с выходом выше 99%. В этих условиях галлий не экстрагируется. (При экстракции из 6 н. раствора соляной кислоты наблюдается обратное.) Вместо иодистоводородной кислоты можно применять 1—3 и. серную кислоту, в которой растворено 15—20% иодида калия. На экстракцию индия из иодидной среды не влияет присутствие хлоридов, бромидов, цианидов, фторидов, фосфатов и цитратов. В условиях экстракции индия экстрагируются так/ке таллий, кадмий и олово, а частично висмут, цинк, ртуть и сурьма. Алюминий и же-лезо(1П), как и галлий, не экстрагируются. В качестве растворителя предлагается использовать и тцгклогексанон 3 . [c.181]


Смотреть страницы где упоминается термин Кадмий комплекс с в присутствии алюминия: [c.196]    [c.28]    [c.475]    [c.297]    [c.29]    [c.8]    [c.134]   
Комплексоны в химическом анализе (1960) -- [ c.423 ]




ПОИСК





Смотрите так же термины и статьи:

Кадмий комплексы

Комплексы алюминия



© 2025 chem21.info Реклама на сайте