Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анизотропия внешняя

    Здесь 0B.V — угол между направлением внешнего магнитного поля Во и направлением нормали к границе раздела N S — параметр остаточной анизотропии [c.235]

    Исследуя восприимчивость монокристаллов, можно определить величину ее анизотропии [25—28]. Как мы увидим в главах, посвященных ЭПР и ЯМР комплексов ионов переходных металлов, эти данные применяются в нескольких важных областях. Анизотропию магнитной восприимчивости обычно определяют методом Кришнана, устанавливая критический момент вращения. В статье [31] рассматривается использование метода ЯМР для измерения магнитной восприимчивости веществ в растворе. Раствор парамагнитного комплекса, содержащий внутренний стандарт, вводят в объем между двумя концентрическими трубками. Раствор того же самого инертного стандарта в том же самом растворителе, в котором растворен комплекс, вводят во внешнюю часть конструкции. В этом случае наблюдаются две линии стандарта, причем линия вещества, введенного в раствор парамагнитного комплекса, соответствует более высокой частоте. Сдвиг линии внутреннего стандарта" в парамагнитном растворе относительно диамагнитного раствора АН/Н связывают с разностью объемной восприимчивости ДХ двух жидкостей  [c.156]


    Указанные два внешних признака кристаллического состояния — резко выраженная температурная точка перехода в жидкое состояние и определенная внешняя геометрическая форма — не всегда применимы для характеристики кристаллической, структуры. Более общим признаком может служить присущее кристаллам явление анизотропии, заключающееся в том, что некоторые свойства (например, теплопроводность) данного кристалла неодинаковы для разных направлений в нем это явление называют иначе векториальностью свойств. Векториальность свойств кристаллов является их общим признаком. Она не свойственна ни газам, ни большинству жидкостей в обычных условиях. [c.122]

    Внешний вид и прозрачность. Очищенный парафин в застывшем состоянии представляет собой матовую белую массу, более или менее просвечивающую, а иногда и почти прозрачную. Матовый вид парафина обусловлен оптической анизотропией его кри-  [c.56]

    Поведение парамагнитной частицы с невырожденными орбитальными уровнями во внешнем магнитном поле показывает, что благодаря спин-орбитальной связи внешнее поле индуцирует слабое орбитальное движение. Это приводит к отклонению значения -фактора от чисто спинового значения и появлению пространственной анизотропии -фактора. [c.226]

    Весьма интересной особенностью полимеров является способность перехода в промежуточное (мезофазное) по отношению к жидкому и твердому состояниям жидкокристаллическое фазовое состояние. Оно характеризуется вполне определенными исходными структурой и физическими свойствами, а также способностью их быстрого изменения под влиянием внешних воздействий. Жидкие кристаллы, с одной стороны, обладают высокой пластичностью (легко переходящей в текучесть), а с другой стороны, обнаруживают характерную для твердых веществ спонтанную оптическую анизотропию. [c.30]

    Однако стекла, подобно жидкостям, обладают векториальными анизотропными свойствами под действием внешних и внутренних напряжений. Последние могут быть вызваны резкой закалкой. При снятии механических напряжений анизотропия свойств исчезает. [c.190]

    Для кристаллических тел весьма характерно явление анизотропии, сущность которого состоит в том, что кристалл в различных направлениях обладает неодинаковыми свойствами. Такие свойства, как теплопроводность, электрическая проводимость, механическая прочность, коэффициент теплового расширения, скорость растворения и другие свойства в различных направлениях кристалла различны. Например, слюда сравнительно легко разделяется на пластинки только в одном направлении (параллельно поверхности), в других же направлениях разрушение слюды требует гораздо больших усилий. Если из какого-то кристалла (не кубической формы) выточить шар, а затем его нагреть, то шар изменит свою форму и превратится в эллипсоид. Изменение внешней формы тела в данном случае произойдет потому, что коэффициент линейного расширения по различным направлениям кристалла не одинаков. [c.28]


    В поликристаллическом или замороженном стеклообразном образце из-за анизотропии спин-орбитального н диполь-дипольного взаимодействий даже в отсутствие внешнего магнитного поля (в ну- [c.63]

    Если плоскость падающего линейно поляризованного луча составляет некоторый угол (обычно для максимального эффекта выбирают 45 ) с направлением внешнего поля г, то такой луч может быть разложен на две составляющие Г , параллельную ёг, и перпендикулярную ёг (рис. ХП1.2), В связи с анизотропией [c.234]

    Многие свойства кристаллов (механические, оптические, электрические, магнитные и др.) зависят от направления их измерения. Проявление неодинаковых физических свойств кристалла ио его разным направлениям называется анизотропией. Анизотропия вызвана тем, что внешнее воздействие на кристалл осуществляется через различное число узлов кристаллической [c.159]

    Когда радикал находится в монокристалле и направления молекулярной системы координат фиксированы, в спектре ЭПР возникает анизотропия сверхтонкого расщепления вид спектра меняется при повороте монокристалла по отношению к направлению внешнего магнитного поля. [c.112]

    Рассмотрим влияние на положение и форму спектров ЭПР анизотропии -фактора. Представим себе монокристалл, в котором все парамагнитные центры ориентированы одинаково относительно кристаллографических осей. При любой ориентации кристалла по отношению к внешнему- магнитному полю спектр будет регистрироваться при значениях поля, равных HQ=hv g , где g определяется по формуле (IX.7) или (IX.8). Поворот кристалла будет изменять величину Ё, а следовательно, и Яо. Так, например, при аксиально анизотропном --факторе (дх= у) g будет меняться от g=g (0 = 0) до g=g (0=я/2), а величины резонансного поля —от iI =h g р до Яx=/lv/gi р. Если парамагнитные центры ориенти- [c.237]

    В естественных условиях аморфные вещества изотропны. Анизотропия их механических, электрических, магнитных, оптических и других физических свойств возникает только в результате внешних воздействий. [c.302]

    Коллоидные растворы с несферическими (анизометричными) частицами, в частности палочкообразными, пластинчатыми, цепочечными и другими, могут в определенных условиях (при наложении внешних полей) стать оптически анизотропными. Исследование анизотропии позволяет получить ценные сведения не только о размерах, но и о форме частиц. Действительно, в обычных условиях (в отсутствие поля) коллоидная система с жидкой или газообразной средой всегда оптически изотропна, даже при собственной анизотропии частиц, поскольку их опти- [c.47]

    Порядок в пространственном расположении частиц (атомов, молекул, ионов) у кристаллических тел — кристаллическая решетка — определяет основные внешние признаки кристаллического состояния, К таким признакам относятся 1) определенная и резко выраженная температура плавления (переход в жидкое состояние) 2) определенная геометрическая форма одиночных кристаллов 3) анизотропия. [c.29]

    Ярко выраженная способность образовывать волокна и пленки, т. е. способность проявлять высокую анизотропию свойств. Эта способность обусловлена также длиной и гибкостью макромолекул и связана с изменением их формы и ориентацией в направлении действия внешнего силового иоля. [c.246]

    Симметрия внешней формы отражает симметрию внутренней структуры кристалла, т.е. правильную периодическую повторяемость расположения частиц в узлах пространственной решетки того или иного вида. Характерной особенностью кристаллических тел, вытекающей из их строения, является анизотропия. Она проявляется в том, что механические, электрические и другие свой ства кристаллов зависят от направления внешнего воздействия сил на кристалл. [c.117]

    Однако чисто хаотическое движение пузырька осуществляется лишь в случае, когда величина свободной энергии системы не зависит от его положения. Чаще же всего это условие не выполняется, и на пузырек действуют вполне определенные движущие силы. При этом силовое поле может определяться градиентом температур [108, 113, 114], напряжений [115, возникающих как от приложения внешней нагрузки, так и из-за внутренних причин (анизотропия распухания и роста отдельных кристаллитов, анизотропия коэффициента теплового расширения и т. п.), и концентрации диффундирующего компонента в диффузионной зоне [116—118]. Оно может создаваться норой или дислокацией, находящейся в непосредственном соседстве, или границами зерен и внешними поверхностями, примыкающими к пузырьку [118] . [c.52]

    Резонансные частоты V, отличны от частот, которые наблюдаются в изотропной фазе, что вызвано влиянием анизотропии констант экранирования. Кроме того, Iц в матрице гамильтониана нужно заменить в диагональных элементах на / / - -а в недиагональных элементах — на /,-/ — О,-,-. В принципе скалярные взаимодействия могут определяться непосредственно из анализа, основанного на уравнении (IX. 31). Однако можно упростить задачу, если использовать данные анализа спектров в изотропной фазе. Важно отметить, что с помощью спектров ЯМР частично ориентированных молекул можно определить абсолютные знаки скалярных констант спин-спинового взаимодействия, если ввести предположение о преимущественной ориентации на основании известной молекулярной структуры. Наконец, следует подчеркнуть, что относительно простая форма оператора Гамильтона появляется только в том случае, если межмолекулярные диполь-дипольные взаимодействия могут быть исключены как следствие быстрых процессов диффузии в жидком кристалле. Заметим, что эти процессы отсутствуют в твердом теле. Кроме того, спектр самой жидкокристаллической фазы не наблюдается, или, точнее говоря, ои исчезает в шумах. Это объясняется относительно высокой степенью упорядоченности, которую обнаруживают сами жидкие кристаллы во внешнем поле Во, и большим числом протонов в этих молекулах. В результате тонкая структура спектров исчезает. [c.364]


    Можно предположить, что протоны в алкинах экранированы в меньшей степени, чем в алкенах или аренах, поскольку электронная плотность меньше. Однако это не так. Тройная связь углерод-углерод обладает большей магнитной анизотропией. Это означает, что магнитная восприимчивость неодинакова по трем направлениям в пространстве. Следовательно, магнитные моменты, индуцируемые внешним полем Во, не равны в различных направлениях. Экранирование ядер, таким образом, зависит от их геометрического расположения в молекуле. Этот эффект для тройной связи был рассчитан (рис. 9.3-25,а). [c.230]

    Прочность материала труб и сосудов с учетом конструкционных, металлургических, технологических и эксплуатационных факторов объединяют понятием конструктивная прочность. Различие ха-ракте,ристик работоспособности обуславливается масштабным фактором, концентрацией напряжений, анизотропией, внешней средой, жесл косгью и запасом упругой энергии, режимом нагружения и др. [c.32]

    Стерические эффекты. Отталкивание атомов, находящихся поблизости друг от друга, создает магнитную анизотропию внешних электронных облаков атомов. В результате этого протон дезэкрапируется и резонирует в более слабом поле. Безусловно, этот факт можно использовать при изучении конморфацион-ных стереохимических проблем. Нанример, хотя циклогексан при комнатной температуре дает синглет из-за очень быстрого взаимопревращения кресло — кресло, которое усредняет во времени различие ме>кду аксиальными и экваториальными протонами до нуля, для менее симметричных производных с предпочтительным экваториальным расположением заместителей найдено, что на самом деле между аксиальным и экваториальным протоном имеется вполне определенное различие. Так, аксиальные и экваториальные ОН-нротоны в цис-и тп/)акс-4-трепг-бутилциклогексанолах дают различные резонансные сигналы в растворе диметил-сульфоксида, причем протон экваториальной группы резонирует в более слабом поле, чем аксиальный протон (рис. 7.7). Точно так же анализ ЯМР-спектра бромциклогексана и хлорциклогексана в растворе сероуглерода при температурах от —104 до —86 °С подтверждает, что относительно объемистый атом галогена предпочтительно занимает экваториальное положение. Среднее содержание экваториальной конформации при равновесии в пределах этих температур составляет 821 менее объемистого хлора, причем по мере снижения температуры эти величины несколько возрастают. [c.139]

    Изотропные вещества в однородном электрическом поле большой напряженности обладают способностью к двулучепреломлению монохроматического линейно поляризованного луча света, распространяющегося перпендикулярно приложенному полю. Это явление было открыто в 1875 г. Керром в экспериментах со стеклом (прозрачное изотропное вещество), а также с жидкостями. Лишь в 1930 г. наблюдали эффект Керра в газах и парах. Таким образом, эффект Керра представляет электрооптическое явление, которое состоит в том, что изотропное вещество, помещенное в электрическое поле, приобретает свойство оптически одноосного кристалла с оптической осью, направленной вдоль приложенного поля, т. е. внешнее электрическое поле вызывает искусственную анизотропию вещества. Такое воздействие поля обусловлено тем, что анизотропные молекулы изотропного вещества под влиянием поля преимущественно ориентируются вдоль поля (рис. XIII.1). Наличие постоянного электрического дипольного момента молекул усиливает этот эффект. [c.234]

    Кристаллическое состояние вещества. Один из основных нризнаков кристаллического состояния вещества заключается в наличии анизотропии, сущность которой состоит в том, что кристалл в различных направлениях обладает неодинаковыми свойствами (векториальность в свойствах кристаллов). Сюда, в частности, относятся такие свойства, как твердость, тепло- и электропроводность, коэффициент теплового расширения. Например, если из какого-нибудь кристалла путем шлифования изготовить шар, а затем его нагревать, то при этом сферическая форма тела перейдет в эллиптическую— образуется эллипсоид. Подобное изменение внешней формы тела является результатом того, что коэффициент линейного расширения кристалла в одном направлении имеет одну величину, а в другом — иную. Неодинаковы также механические (в частности, упругие) оптические и другие свойства . Аморфные же тела и з о-тропны , их свойства одинаковы в любом направлении внутри данного тела. [c.112]

    Воздействие внешнего электрического поля также создает ориентацию частиц, обладающих постоянными или индуцированными диполями и приводит к оптической анизотропии, изменяющей свойства системы. Изучение электрических свойств коллоидных частиц посредством исследования оптических явлений во внешнем электрическом поле составляет основу электрооптики дисперсных систем. Успешное развитие этого направления в работах советской (Цветков, Духин, Толстой и др.) и болгарской (Шелудко, Стоилов и др.) научных школ способствовало становлению электрооптики в качестве одного из плодотворнейших методов изучения дисперсных систем (подробней см, гл. ХИ). [c.44]

    В разделе У11.5 отмечалось, что многослойные адсорбционные смачивающие пленки на твердой поверхности в известной мере сходны с граничными жидкими слоями, несмотря на то, что внешней границей пленок является фаза пара, тогда как граничные слои переходят по мере удаления от твердой подложки в объемную жидкость. Для исследования граничных слоев применяются равновесные и неравновесные методы. К первым относятся измерения плотности (пикнометрия) теплового расширения жидкостей в пористых телах оптической анизотропии граничных слоев сил взаимодействия при равновесном сближении твердых тел с перекрытием граничных слоев. Вторые связаны с измерениями вязкости, скорости течения и диффузии в граничных слоях. Большие достижения в разработке и использовании всех этих методов принадлежат Дерягину, Чураеву и сотр. [c.179]

    Влияние анизотропии д-фактора на положение и и форму спектра ЭПР. Представим себе монокристалл, в котором все парамагнитные центры ориентированы одинаково относительно кристаллографических осей. При любой ориентации кристалла по отношению к внешнему магнитному полю спектр будет регистриро- [c.24]

    Большая магнитная анизотропия характерна для галогенов, тройной и двойной связи, карбонильной группы, ароматических колец. Важнейшим источником магнитной анизотропии являются кольцевые токи л-электронов, во щикающие под влиянием внешнего магнитного поля. При этом считают, что л-электронное облако бензола построено в виде двух колец, расположенных по обе стороны плоскости молекулы симметрич- [c.71]

    Оптическая анизотропия среды может быть обусловлена анизотропией составляющих ее частиц (атомов или молекул) и характером их взаимного расположения. Так, молекула водорода оптически анизотропна, но в результате беспорядочного расположения молекул газообразный водород ведет себя как оптически изотроп-пая среда. В большинстве случаев оптическая изотропия тел является результатол усреднения, обусловленного хаотическим расположением составляющих нх молекул, Одиако под влияниел внешних воздействий возможна перегруппировка аиизотроппьт) элементов, приводящая к макроскопическому проявлению оптической анизотропии. Поэтому у многих тел, в частности у полимеров, при деформации можпо наблюдать явление двойного лучепреломления. [c.122]

    Явление двулучепреломления может иметь место в естественных анизотропных телах, а также в изотропных телах под влиянием внешнего воздействия под действием электрического (эффект Керра) и магнитного поля (эффект Коттона—Мутона), механической деформации в твердых телах, в ультразвуковом поле, двулуче-преломление в потоке (эффект Максвелла) и т. д. Явление двулучепреломления в твердых телах под влиянием механического воздействия впервые было открыто Брюстером в 1816 г. Одной из первых теоретических работ, посвященных анизотропии в твердых телах, была работа Шмидта. В дальнейшем работами Куна и Грю-на, Кубо, Исихары, Трелоара и другими была разработана статистическая теория фотоупругости материалов, подтвержденная многочисленными экспериментальными данными. В некоторых работах отмечается важная роль химических и ван-дер-ваальсовых связей в проявлении [c.80]

    При конструировании установок использованы высокоэнергетические магниты из сплава неодим-железо-бор (Кс1-Ге-В). Эти магниты обладают уникальными свойствами, они имеют относительную магнитную проницаемость, равную единице не только в первом и во втором, но и частично в третьем квадрантах петли магнитного гистерезиса. Гистерезисные свойства, выгодно отличающие высокоэнергетические магниты, являются следствием основных физических характеристик — высокого магнитного момента атомов в кристаллической решетке и чрезвычайно больших значений энергии константы кристаллографической анизотропии. Последнее свойство определяет повышенную устойчивость высокоэнергетических магнитов к размагничивающему воздействию внешних магнитных полей. В магнитном гистерезисе высокоэнергетических магнитов наблюдается практически полное совпадение линий возврата на характеристике В (Н) с предельной кривой размагничивания в полях, даже превышающих значение коэрцитивной силы по индукции. Основные характеристики редкоземельных магнитов типа М(12ре14В следующие-. [c.102]

    Ориентация высокополнмеров приводит к существенному изменению их физико-механических и структурных свойств. Так, например, при ориентации волокнообразующпх полимеров повышается разрывная прочность и термостойкость, понижается температура хрупкости и т. п. С физической точки зрения, ориентация волокнообразующих полимеров представляет собой процесс, при котором изотропная полимерная система, состоящая из беспорядочно расположенных структур, переходит в анизотропную (ориентированную), т, е. приобретает анизотропию физических свойств. Сама по себе анизотропия молекул или структурных элементов не приводит к анизотропии полимерной системы в целом, так как она сглаживается в среднем беспорядочным расположением молекул друг относительно друга, и материал остается изотропным. Для возникновения макроскопической анизотропии свойств необходимо какое-то внешнее воздействие, которое создает преимущественное направление в расположении структурных элементов [50]. Внешние силы могут вызвать в полимере такое перемещение отдельных структурных элементов, что он не сможет вернуться в прежнее ио- [c.76]

    Прн наложении внешнего электрнч. или магн. поля происходит расщепление вращат. уровней энергии молекул соотв. усложняются правила отбора и B. . Появляется возможность получения дополнит, информации, в частности об электрич. дипольных и квадрупольных моментах, магн. моментах и анизотропии магн. восприимчивости молекул. B. . парамагнитных молекул можно наблюдать избирательно в смесн с др, молекулами. [c.430]

    Разнообразную информацию о строении и св-вах М. дает изучение их поведения во внешних электрич. и магнитных полях. В электрич. поле претерпевает изменения прежде всего пространств, распределение электронной плотности, что приводит к появлению у М. дополнительного, индуцированного полем дипольного момента, величина и направление к-рого определяются по.гяризуемостью М. В поле М. ориентируются, у них снимается вырождение энергетических уровней (см. Штарка эффект). Измерения дипольного момента М., поляризуемости и анизотропии поляризуемости позволяют судить о распределении электронной плотности, наличии в М. системы сопряженных кратных связей, отдельных функц. групп и характерных структурных фрагментов. [c.109]


Смотреть страницы где упоминается термин Анизотропия внешняя: [c.227]    [c.54]    [c.271]    [c.193]    [c.229]    [c.255]    [c.44]    [c.276]    [c.985]    [c.348]   
Физико-химия коллоидов (1948) -- [ c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Анизотропия



© 2025 chem21.info Реклама на сайте