Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рост кристаллов зародыши

    Кристаллизация состоит из образования зародышей и роста кристаллов. Зародыши возникают только при условии пересыщения выше оптимального предела их образуется тем больше, чем больше степень пересыщения. Неодинаковая скорость роста кристаллов приводит к различию в их форме (игольчатая, пластинчатая, прямоугольная, ромбическая и т. п.). Анизометрия кристаллов, определяемая отношением длины I к ширине проекции кристалла уменьшается с увеличением скорости перемешивания и степени пересыщения. Величина частиц зависит от поверхностного натяжения раствора. Чем оно меньше, тем больше будет общая межфазная поверхность на границе раздела т/ж и будут образовываться преимущественно малые частицы. [c.55]


    Процесс кристаллизации начинается с выделения из пересыщенного раствора мельчайших частиц кристаллизующегося компонента — зародышей кристаллов. Они способны расти, причем рост кристаллов происходит преимущественно на острых углах первоначальных зародышей. При достижении достаточной концентрации кристаллов происходит их сращивание с образованием кристаллической сетки, ячейки которой иммобилизуют оставшуюся не застывшей жидкость. [c.251]

    Кривые для суммарных смол, выделенных из остаточного рафината, имеют больший тангенс угла наклона, чем для суммарных смол из депарафинированного масла и петролатума. Следовательно, при наличии в растворе полярных молекул ПАВ (присадок и смол) следует учитывать увеличение адсорбционной активности вследствие дополнительных электростатических сил взаимодействия ПАВ между собой и с поверхностью кристалла (адсорбента). При охлаждении такой системы с момента образования зародышей твердой фазы начинается процесс адсорбции смол и присадки на поверхности кристаллов. Наиболее вероятен в данном случае усложненный механизм построения адсорбционного слоя поверхностно-активных веществ на неоднородной поверхности твердой фазы. Насыщенный адсорбционный слой ПАВ для неоднородной в энергетическом отношении поверхности кристаллов, какой следует считать большинство реально существующих поверхностей твердых сорбентов в природе, может быть различной толщины на разных участках поверхности. При добавлении малых количеств присадки происходит адсорбция их молекул на наиболее активных участках гидрофобной поверхности кристаллов твердых углеводородов, при этом дифильные молекулы ПАВ ориентируются полярной частью в раствор, а углеводородным радикалом — на поверхности частиц твердых углеводородов. Это приводит к совместной кристаллизации молекул присадки и твердых углеводородов, которая способствует образованию крупных агрегированных структур, что, в свою очередь, увеличивает скорость фильтрования суспензии остаточного рафината. С увеличением содержания ПАВ в растворе одновременно с адсорбцией молекул на менее активных участках поверхности кристаллов происходит образование второго слоя молекул с обратной их ориентацией, т. е. полярной частью на поверхность твердой фазы. При этом присадка и смолы адсорбируются по всей поверхности кристаллов, не внося существенных изменений в их форму, но препятствуя росту кристаллов, а это снижает скорость фильтрования суспензии. [c.173]


    Известно, что кристаллизация из растворов включает в себя две основные стадии образование кристаллических зародышей и их дальнейший рост, взаимодействие между собой и с маточным раство-,ром. Соответственно, кинетика кристаллизации характеризуется двумя величинами скоростью образования зародышей и скоростью роста кристаллов. В зависимости от свойств веществ, условий проведения процесса и требований к конечному продукту обе или одна из этих стадий могут оказаться лимитирующими. [c.145]

    Предположим, что рост зародышей представляет собой диффузионный процесс, который можно ускорить, используя конвекцию. Тогда первоначально нужно создать максимальную относительную скорость движения кристалла и раствора. Для взвешенных в растворе кристаллов их относительное движение можно организовать, создавая колебания раствора на определенной частоте, изменяемой в ходе роста кристаллов. [c.149]

    Одним из основных вопросов, решаемых при расчете кристаллизаторов, является описание кинетики кристаллизации, состоящей из стадий создания пересыщения, -образований зародышей и роста кристаллов. Она также зависит от перекристаллизации осадка, коалесценции и дробления кристаллов в результате столкновения между собой и со стенками аппарата. На кинетику массовой кристаллизации существенно влияют температура, степень пересыщения раствора, перемешивание, наличие примесей, физикохимические свойства раствора, конструкция аппарата и т. д. Детальное описание явлений и факторов, сопровождающих процессы массовой кристаллизации из растворов и газовых смесей, дано в монографии [17]. Важное значение имеет также описание условий равновесия между сосуществующими фазами (твердое вещество—жидкость, твердое вещество—газ (пар)). На основании условий фазового равновесия в первом приближении возможен выбор необходимого растворителя для процессов кристаллизации, а также перекристаллизации. [c.90]

    Рассмотрим модель кристаллизатора [22]. Если вместе с возникновением пересыш,ения происходит рост кристаллов и образование новых кристаллических зародышей, то зависимость пересыщения Ai от времени t выражается уравнением [c.169]

    Зона испарения находится в верхней части подъемной циркуляционной трубы 3 (см. рис. 2.10), в которой происходит интенсивное испарение и за счет выпаривания части растворителя образуется пересыщенный раствор и поэтому возникают зародыши. Рост кристаллов происходит в последующих участках данного аппарата. Зона испарения описывается системой материальных и тепловых балансов [c.204]

    Зона роста кристаллов находится в участке циркуляционной трубы 6 (см. рис. 2.10), в котором пересыщение раствора снимается на рост и образование зародышей. С учетом допущений, принятых в начале гл. 2, математическая модель зоны роста кристаллов имеет вид [c.205]

    Авторы работы [101] предположили, что при некотором пересыщении раствора все зародыши образуются мгновенно (/ =0) и в дальнейшем процесс сводится лишь к росту кристаллов. [c.299]

    В настоящее время металлурги [17, 56, 158] объясняют образование и развитие зародышей кристаллов в металлах их электрическими свойствами, а направление сцепления и роста кристаллов— действием электростатического взаимного притяжения между ионами и электронами (или протонами). [c.54]

    Осаждение при образовании катализатора происходит вследствие химической реакции при сливании растворов исходных компонентов. Переход растворенного вещества в осадок — совокупность двух процессов образования зародышей твердой фазы и роста кристаллов [7, 30] или укрупнения гелеобразных частиц при одновременном их осаждении. Каталитически активными формами являются термодинамически неустойчивые состояния веи ества, процесс образования которых следует проводить в условиях, далеких от равновесия. Кристаллизация ускоряется при понижении температуры. [c.100]

    Процесс кристаллизации состоит из двух стадий — образования зародышей кристаллов и роста кристаллов. [c.513]

    Образование зародышей может происходить путем самопроизвольной кристаллизации. При этом оба процесса (образование зародышей и рост кристаллов) протекают одновременно. Если скорость образования зародышей больше скорости их поста, получается большое количество мелких кристаллов. Если же скорость роста больше скорости образования зародышей, получается меньшее количество крупных кристаллов. Изменяя факторы, влияющие на скорость образования зародышей и скорость их роста, можно регулировать размеры кристаллов. Быстрое охлаждение, перемешивание раствора, высокая температура и низкий молекулярный вес кристаллов способствуют образованию зародышей и получению мелких кристаллов. Наоборот, медленное охлаждение, неподвижность раствора, низкая температура и высокий молекулярный вес способствуют процессу роста и получению крупных кристаллов. [c.513]


    При одном и том же содержании углеродных атомов в молекуле наиболее высокой температурой плавления обладают нормальные алканы, где дисперсионному взаимодействию подвергаются все углеродные атомы соседних молекул. С разветвлением структуры молекул такая возможность вследствие их иной ориентации понижается, что объясняет более низкую температуру кристаллизации. В твердом состоянии молекула алкана расположена упорядоченно, образуя кристаллы различной структуры, преимущественно большие агрегаты достаточно гибких кристаллов. Процесс кристаллизации складывается из двух стадий стадия образования центров кристаллизации (или зародышей) и стадия роста этих центров. Вторая стадия кристаллизации — многоступенчатый процесс, который по различным причинам (например, вследствие возникновения механических напряжений) может останавливаться на любой промежуточной стадии. Монокристаллы образуются только в особых условиях. Обе стадии кристаллизации сильно зависят от температуры. Понижение температуры благоприятствует образованию зародышей кристаллизации, но в то же время уменьшает молекулярную подвижность, а вместе с ней и скорость роста кристаллов. Поэтому температурная зависимость скорости кристаллизации проходит через максимум. Большинство алканов имеет несколько аллотропических модификаций, кристаллизуясь в гексагональной, триклинной, моноклинной и орторомбической формах. Некоторые [c.190]

    Величина полученных кристаллов зависит от степени переохлаждения, а также от взаимного расположения кривых роста кристаллов и образования зародышей (рис. У-34). В случае а при низком переохлаждении (/) образуется много медленно растущих кристаллов, что дает мелкозернистый продукт. При более [c.399]

    Во всяком случае в зависимости от того, какой тип углеводородов выделяется из раствора в виде зародышей кристалла, в первую очередь будет определяться дальнейший рост кристаллов. [c.201]

    С повышением температурных пределов выкипания фракции растет ее вязкость, что существенно влияет на процесс кристаллизации твердых углеводородов, затрудняя их диффузию к образовавшимся центрам кристаллизации. В результате образуются новые зародыши кристаллов, уменьшая тем самым размеры конечных кристаллов. Таким образом, для обеспечения нормального роста кристаллов необходим оптимум концентрации твердых углеводородов в растворе и вязкости последнего. [c.168]

    Рост кристаллов. Кристалл растет на сформировавшемся, достигшем критического размера зародыше. Он обладает большой поверхностной энергией, за счет которой адсорбируются все новые частицы растворенного вещества. Адсорбировать частицы из раствора могут также твердые частицы другого обладающего соответствующей поверхностной энергией вещества. Они становятся, таким образом, центрами кристаллизации. В последнем случае процесс носит название кристаллизации на подложке. [c.635]

    Температура кристаллизации в общем оказывает положительное влияние на скорость роста кристаллов. При более высокой температуре сни-жаетсй вязкость раствора и, следовательно, облегчается диффузия. Однако в большей степени влияние температуры отражается на увеличении числа зародышей, что, как известно, приводит к образованию более мелких кристаллов. При положительной растворимости с повышением температуры кристаллизации уменьшается степень пересыщения раствора, что, в свою очередь, вызывает снижение движущей силы процесса. [c.636]

    Интенсивное перемешивание в условиях псевдоожижения увеличивает скорость подачи материала путем диффузии его к граням растущих кристаллов, что ускоряет их рост. При этом быстро уменьшается степень пересыщения раствора. При больших скоростях раствора, как известно, увеличивается скорость образования зародышей это может привести к снижению размеров кристаллов. При одинаковых температурах и гидродинамических условиях с уменьшением степени пересыщения скорость роста кристаллов возрастает в большей степени, чем скорость образования зародышей. Обычно таким способом осуществляют кристаллизацию относительно слабо пересыщенных растворов вблизи нижней границы метастабильной области, регулируя степень пересыщения, температуру. [c.642]

    Скорость протекания всего процесса в целом контролируется стадией, сопровождающейся наибольшими торможениями. Причинами торможения могут быть замедленная доставка разряжающихся ионов к катоду — концентрационное перенапряжение (1-я стадия) замедленный разряд ионов, который обусловлен медленным переносом заряда через двойной электрический слой и связанным с этим изменением физико-химического и энергетического состояния ионов (дегидратация, десольватация, распад комплексных ионов и др.) — электрохимическое перенапряжение (2-я стадия) трудности, связанные с построением кристаллической решетки замедленная диффузия ад-атомов (ад-ионов) по поверхности катода к местам роста кристаллов, задержка при вхождении атомов в кристаллическую решетку или при образовании двух- или трехмерных кристаллических зародышей, т. е. то, что характеризует так называемое кристаллизационное перенапряжение (3-я стадия). Величина последнего сравнительно невелика и зависит от природы металла и от состояния поверхности катода, которое в ходе электролиза меняется в результате адсорбции посторонних ионов, молекул и органических веществ. [c.335]

    Нормальный рост граней кристалла чрезвычайно чувствителен к возникновению диффузионной кинетики. Нарушение питания катионами активных участков кристаллизации вызывает изменение роста слоев, появление новых зародышей и усиленный рост кристаллов в направлении градиента концентрации. [c.94]

    Фильтруемость осадка зависит от размеров его частиц, которые в свою очередь определяются соотношением двух факторов скорости образования зародышей кристаллов и скорости роста кристаллов. [c.197]

    В качестве примера рассмотрим процесс кристаллизации в многоступенчатом реакторе смешения, в котором раствор поступает на первую ступень и в каждой ступени которого степень перемешивания достаточна для поддержания кристаллов в суспензированном состоянии. В алпаратах реактора могут иметь место два различных процесса возникновение зародышей и рост зародышей, приводящий к образованию кристаллов значительных размеров. Отсюда следует, что суспензированное в жидкости кристаллическое вещество на выходе из -й ступени кристаллизатора состоит из кристаллов, образо1вавшихся в данной ступени, и кристаллов, которые образовались в предыдущих ступенях, а в -й ступени лишь росли. Учитывая эти факторы и используя соответствующие выражения для скорости зарождения и роста кристаллов, можно теоретически айти распределе- [c.117]

    Процесс кристаллизации начинается с выделения из пересыщенного раствора мельчайших частиц кристаллизующегося вещества — зародышей кристаллов. Они способны расти, причем рост кристаллов происходит наиболее легко на острых углах первоначальных зародышей. На микрофотографиях при большом увеличении наблюдается спиральная структура поверхности кристаллов ларафиновых углеводородов. Механизм роста кристаллов индивидуальных парафинов нормального строения и их смесей объясня- ет дислокационная теория 1[4, 5]. [c.118]

    Присутствие жидких малоциклических ароматических углеводородов из-за наличия в их молекулах коротких боковых цепей не влияет на структуру и размер кристаллов парафиновых углеводородов. Повышенное их содержание приводит к увеличению размеров этих кристаллов вследствие уменьшения концентрации последних в растворе, что связано с облегчением условий роста кристаллов. Полициклические ароматические углеводороды в концентрации >25% (масс.) на смесь способствуют уменьшению размеров кристаллов парафинов, что объясняется повышением вязкости раствора, из которого проводится кристаллизация. Процесс кристаллизации твердых углеводородов из полярных и неполярных растворителей протекает в форме монокристаллических образований образуется структура, состоящая из кристаллов определенной формы, причем каждый монокристалл развивается из одного и того же центра. При такой форме кристаллизации отдельные кристаллы могут быть как разобщены между собой, так и образовывать в растворе пространственную кристаллическую решетку. С помощью электронного микроскопа при увеличении в 13 000 раз удалось проследить практически все стадии роста кристаллов от момента возникновения зародышей (центров кристаллизации) до полностью оформленного кристалла [25, 26]. Такое постадийное изучение процесса роста кристаллов проведено на примере пента-контана ( пл = 93°С) при кристаллизации в углеводородной среде (рис. 39, а—г). [c.131]

    Одним из основных факторов, определяющих степень выделения и скорость отделения твердых углеводородов от жидкой фазы в процессах депарафинизации и обезмасливаиия, является качество депарафинируемого сырья. Как указывалось выше, большая часть твердых углеводородов относится к изоморфным веществам, способным к совместной кристаллизации с образованием смешанных кристаллов, причем в зависимости от условий выделения из растворов эти кристаллы могут быть разных структуры и размеров. При прочих равных условиях форма и размер этих кристаллов определяются фракционным составом сырья. С повышением пределов выкипания фракции уменьшается полнота отделения кристаллов твердых углеводородов от растворов масляной части, что связано с повышением концентрации твердых углеводородов и изменением их химического состава. При охлаждении раствора сырья с большим содержанием твердых углеводородов в соответствующем растворителе в начальный момент кристаллизации образуется слишком много зародышей кристаллов, на которых при дальнейшем охлаждении кристаллизуются выделяющиеся из раствора твердые углеводороды. В этом случае конечные кристаллы имеют малые размеры, что приводит к уменьшению скорости фильтрования и выхода депарафииированного масла при увеличении содержания масла в твердой фазе. Рост кристаллов определяется типом углеводородов, выделяющихся из растворов в виде зародышей, на которых затем кристаллизуются остальные компоненты твердой фазы [6]. [c.136]

    Пусть пересыщения в системе недостаточно для образования зародышей гомогенным или гетерогенным путем и зародыши возникают за счет истирания кристаллов несущей фазой. Зародыши будем считать самостоятельной фазой, средняя плотность и объемное содержание которой р, и з (причем рз=р2"ПаЛ ЯзГз= = , Пз=/зГз —число зародышей в единице объема). Перейдем к выводу уравнений термогидромеханики для описания процесса массовой кристаллизации с учетом роста кристаллов и бесконтактного вторичного зародышеобразования. [c.39]

    Очень часто процесс объемной десублимацни проводят в вертикальных трубчатых (пустотелых) аппаратах [120, 121] методом смешения горячей ПГС с охлаждающим газом или в результате химической реакции смешивающихся компонентов. В начальном участке трубчатого реактора-десублнматора происходит смешение и взаимодействие газообразных компонентов. На дальнейших участках десублиматора происходит образование зародышей, рост кристаллов, падение пересыщения в связи с явлениями кристаллообразования. Тогда математическая модель процесса объемной десуб-.лимации примет вид (следствие из уравнений (1.58), пренебрегаем явлениями агломерации и рассматриваем стационарный случай работы аппарата) [c.241]

    Частный случай фазового перенапряжения — перенапряжение кристаллизации — отвечает процессу электрокристаллизацйи при катодном осаждении металлов. Образовавшиеся при разряде катионов атомы металла первоначально находятся в адсорбированном состоянии на поверхности катода (они называются ад-атомами). Перенапряжение кристаллизации вызывается торможением в стадии вхождения ад-атома в кристаллическую решетку. Согласно Фольмеру, процесс электрокристаллизации идёт в две стадии возникновение центров кристаллизации (кристаллических зародышей) и их рост. Центр кристаллизации — уплотнение атомов, вокруг которого начинается рост кристалла. Различают двухмерные (толщиной в один атом) и трехмерные (толщиной более одного атома) зародыши. [c.509]

    Как известно, при кристаллизации в системе сначала возникают мельчайшие частицы новой твердой фазы — зародыши, затем происходит рост кристаллов. Согласно современной термодинамической теории образования кристаллических зародышей изолированная система абсолютно устойчива (стабильна), если любое конечное изменение ее состояния (при постоянстве энергии) оставляет неизменной (или уменьшает) ее энтропию. Система относительно устойчива (метастабильна), если при некоторых конечных изменениях ее состояния энтропия возрастает. Примером метастабильной системы является пересыщенный раствор, энтропия которого возрастает на конечное значение при кристаллизации. В лабильной (резко пересыщенной) области происходит спонтанное зародыщеобразование. В тур-бидиметрии необходима агрегативная устойчивость дисперсной системы. Под устойчивостью дисперсной системы понимают постоянство ее свойств во времени, в первую очередь дисперсности и распределения частиц по объему, устойчивости к отделению раствора от осадка, к межчастичному взаимодействию. [c.88]

    Для получения высокодисперсной промывочной жидкости таким способом необходимо, чтобы раствор был пересыщенным по выделяемой фазе, и в нем надо создать условия, обеспечивающие одновременное возникновение огромного числа зародышей дисперсной фазы. При этом скорость образования зародышей должна быть намного больше скорости роста кристаллов. Практически это достигается путем введения химических реагентов (КМЦ, крахмала, КССБ и др.) при сильном перемешивании. Происходит не только достижение требуемой дисперсности, но и закрепление этого состояния, стабилизация системы. [c.41]

    В основе математической модели лежат представления о кластерах - это устоюшвые образования, которые формируются в 1гересыщенном растворе в ходе серии бимолекулярных реакций между ионами или молекулами растворенного вещества кластеры, достигшие критического размера, расходуются на образование зародышей и играют важную роль в росте кристалла кластеры диффундируют к поверхности растущего кристалла и ожидают в некоторой очереди кластеров со случайной ориентацией на поверхности, что приводит к значительной пленке кластеров, нуждающейся во встраивании в кристаллическую решетку [4 . По такому механизму рост кристаллов как бы квантуется порциями этих кластеров. Причем раствор то обедняется ими за счет роста и образования зародышей, то обогащается ими за счет создания пересыщения путем химической реакции. [c.164]

    Скорость роста кристаллов. Величина и структура частиц осадка зависят не только от скорости их образования, но также от скорости роста кристаллов. Каждый зародыш окружен адгезионным слоем насыщенного раствора. В момент образования первого зародыша раствор пересыщен. Скорость роста зародыша пропорциональна скорости переноса из пересыщенного раствора в насыщенный адгезионный слой. Изменения концентраций пересыщенного раствора в единицу времени dUjdt определяют из уравнения Нойеса — Нернста  [c.201]


Смотреть страницы где упоминается термин Рост кристаллов зародыши: [c.259]    [c.175]    [c.133]    [c.44]    [c.48]    [c.50]    [c.169]    [c.241]    [c.97]    [c.76]    [c.163]    [c.141]    [c.87]    [c.90]    [c.95]   
Физико-химическая кристаллография (1972) -- [ c.285 , c.296 ]




ПОИСК





Смотрите так же термины и статьи:

Зародыш

Зародыш кристаллов

Рост кристаллитов

Рост кристаллов



© 2025 chem21.info Реклама на сайте