Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сольватация области

    В кинетической области протекают главным образом процессы на малоактивных катализаторах мелкого зернения с крупными порами при турбулентном течении потока реагентов, а также при низких температурах, близких к температуре зажигания катализатора. Однако для реакций в жидкостях переход в кинетическую область сопровождается понижением вязкости, а известно, что вязкость уменьшается с ростом температуры. С повышением температуры уменьшается также степень ассоциации, сольватации, гидратации молекул реагентов в растворах, что приводит к росту коэффициентов диффузии и соответственно к переходу из диффузионной области в кинетическую. Для реакций, общий порядок которых выше единицы, характерен переход из диффузионной области в кинетическую при значительном понижении концентрации исходных реагентов. [c.30]


    Наиболее очевидный способ, с помощью которого фермент увеличивает скорость бимолекулярной реакции,— способствовать простому сближению реагирующих молекул в активном центре фермента. В этой связи возникают два важнейших вопроса во-первых, какого увеличения скорости можно ожидать при таком сближении реагентов и, во-вторых, каков механизм этого увеличения скорости. В настоящей главе мы постараемся прояснить эти вопросы. Изменение степени сольватации также способно вызвать значительный эффект увеличения скорости как в меж-молекулярных, так и в ферментативных реакциях. Неполярная внутренняя область фермента напоминает своей низкой диэлект- [c.202]

    Сведения о характере явления сольватации ионов в растворах можно получить на основании оптических исследований этого процесса. Однако в большинстве случаев оптические исследования ионов в растворах проводились с целью изучения равновесий, в которых участвуют ионы, а не с целью выяснения природы сольватации ионов. К этому следует добавить, что оптические исследования процесса сольватации типичных ионов, для которых хорошо известны числа и энергии сольватации, трудно осуш ествить, так как они поглош ают свет в далекой ультрафиолетовой области, где большинство растворителей уже не прозрачно. [c.180]

    Рассмотренное перераспределение заряда иона оказывает влияние и на молекулы растворителя в области дальней сольватации. Смещение электронной плотности от молекул растворителя, ближайших к катиону, создает дефицит ее на этих молекулах, который частично будет покрываться смещением электронной плотности от следующих молекул растворителя и т. д. Около анионов [c.240]

    Интересно, что несмотря на существенные различия между газом и жидкостью в газах можно обнаружить явления, напоминающие растворение и сольватацию в жидких системах. Речь идет о так называемых кластерах в системах иои — газ. Систематическое изучение кластеров, состоящих из молекул растворителя, например воды и иона (катиона или аниона), началось с исследования продуктов, получающихся в масс-спектрометрах при сравнительно высоких давлениях (В. Л. Тальрозе). С конца пятидесятых годов и до настоящего времени в этой области накоплен довольно большой материал, позволяющий сделать общие выводы. Доказано, что катионы водорода и металлов, а также анионы галогенов в газовой фазе взаимодействуют с молекулами воды, причем собственно химическое взаимодействие, отличное от явлений гидратации в растворе, происходит сравнительно редко (так, ион лития образует дативную связь с неподеленной электронной парой кислорода молекулы воды за счет своей незаполненной орбитали химические связи с водой дает также ион фтора). [c.234]


    Исследование межмолекулярных взаимодействий. В ИК-спектрах веществ в жидкой фазе часто обнаруживаются полосы, которых нет у отдельных компонентов смеси. Такие полосы объясняются межмолекулярными взаимодействиями с образованием новых связей. Типичным примером может служить водородная связь, когда атом водорода, который связан в молекуле с электроотрицательным атомом, взаимодействует с атомом другой молекулы, имеющим неподеленную пару электронов. Так, в растворах спиртов полоса свободной гидроксильной группы наблюдается в области около 3625 см . Эта узкая полоса четко проявляется в разбавленных растворах (<0,01 моль/л) в инертных растворителях, когда все межмолекулярные связи разорваны. При увеличении концентрации спирта наблюдается широкая полоса, которая относится к ассоциированным гидроксильным группам, и интенсивность ее зависит от концентрации спирта. Наличие межмолекулярных взаимодействий необходимо учитывать при сравнении спектров веществ, снятых в разных растворителях, так как характеристические частоты некоторых групп могут изменяться в результате сольватации вещества растворителем. [c.219]

    Такая температурная зависимость ближней сольватации Ы связана с разрушением структуры спиртов, происходящим при повышении температуры. Более низкое значение температуры, при которой изменяется знак ближней сольватации у этанольных растворов по сравнению с наблюдаемой в метанольных, обусловлено тем, что при данной температуре метанол более структурирован, чем этанол. Отрицательная ближняя гидратация ионов сменяется положительной и в воде при повышении ее температуры. Вследствие того что с повышением температуры собственная структура воды разрушается тепловым движением молекул, такие ионы, как K Сз" и МОз", становятся менее отрицательно гидратированными. При некоторой температуре их гидратация сменяется на положительную. При этом чем сильнее выражена отрицательная гидратация, тем большее разрушение структуры воды требуется для перехода иона из области отрицательной гидратации в область положительной. [c.276]

    Образование зоны а сопровождается выделением энергии (энергия сольватации, в случае растворителя-воды — гидратации), т. е. понижением энтальпии системы одновременно уменьшается и энтропия вследствие упорядочения в этой области. Образование зоны б, так же как и разрыв связей в растворяемом веществе при его растворении, требует затраты энергии одновременно увеличивается энтропия системы как из-за разрушения структуры растворяемого вещества, так и из-за появления зоны деструктурированного растворителя. [c.235]

    Существенный сдвиг в подходе химиков к сольватам произошел в последние годы. Сегодня мало кто из химиков сомневается, что сольват [Ь (Н20)4 —такое же равноправное комплексное соединение, как, например, [Со(МНз)бР Знаменательно, что конференции специалистов в области растворов, регулярно проводимые Институтом химии неводных растворов АН СССР, называются Комплексообразование и сольватация в растворах . [c.28]

    Изменение скорости хим. процессов м. б. обусловлено также влиянием Д. на физ. св-ва среды. Так, вследствие возрастания вязкости с повышением Д. р-ции могут перейти из кинетич. области протекания в диффузионную, когда скорость р-ции контролируется диффузией реагирующих частиц (см Макрокинетика). Изменяя е среды, Д. влияет на скорость ионных р-ций. При этом объемные эффекты, вызванные сольватацией ионов или заряженных групп молекул, учитываются с помощью ур-ния Друде-Нернста-Борна  [c.621]

    К настоящему времени в мировой научной литературе накопилось не так уж много работ, посвященных проблемам биофизики [1-4], в которых проведены систематизация и обобщение поистине колоссального числа исследований, выполненных в данной области. Приведенные в качестве примера и некоторые другие книги "страдают" существенным, на наш взгляд, недостатком. В них крайне скудно, вскользь затрагиваются вопросы сольватации биомолекул и функций растворителя (прежде всего воды) в метаболизме. Исключением являются кол- [c.3]

    Иод в парах и в растворе (в насыщенных углеводородах) имеет полосу поглощения в видимой области около 520 нм, а в ультрафиолетовой области в районе 230 нм. Спектральные характеристики растворов иода представлены в табл. 1.7, 1.8, 1.9. При образовании комплексов полоса 520 нм сдвигается в сторону меньших длин волн и ее интенсивность несколько увеличивается. Сдвиг полосы поглощения иода от фиолетовой области к голубой наблюдается при образовании любых стабильных а-комплексов. Он сильно увеличивается с ростом диэлектрической проницаемости растворителя. Установлено, что величина сдвига растет с увеличением устойчивости комплексов с алифатическими аминами. Высказывается мнение, что решающее влияние на сдвиг полос поглощения оказывает универсальное взаимодействие, т.е. неспецифическая сольватация, определяемая полярностью и поляризуемостью растворителя [15]. Малликен [29] объяснил наличие двух полос в электронных спектрах молекулярных соединений на основе концепции переноса заряда. При этом волновая функция основного состояния молекулярного комплекса представлялась в виде двух слагаемых. Первое характеризует систему, когда в комплексе молекулы донора и акцептора имеются такие же геометрические параметры, что и в свободном состоянии, а взаимодействие между донором и акцептором определяется силами электростатической природы диполь-диполь, диполь-индуцированный диполь и др. Второе слагаемое характеризует состояние, в котором электрон перенесен от донора к акцептору, при этом перенос заряда осуществляется с наиболее высокой занятой орбитали донора на наиболее низкую свободную молекулярную орбиталь акцептора. Из теории следует, что энергия полосы переноса заряда определяется величинами потенциалов ионизации донора и сродства к электрону для акцептора. Для отдельных групп растворителей родственного характера удалось установить линейную зависимость между сдвигом полосы поглощения иода и потенциалом ионизации [30]. Детально изучена связь длинноволновой полосы поглощения иода со свойствами растворителей и показано, что для ст-доноров наблюдается связь с потенциалом ионизации функции универсальных взаимодействий, а для случая замещенных пиридинов срК. Сдвиги полос для я-доноров не описываются этими зависимостями [31]. Отмечено, что для комплексов иода с ст- и л-донорами зависимость сдвигов полос поглощения в ультрафиолетовой области от основности растворителя не может быть описана общим уравнением. [c.22]


    Этот способ характеристики энергии сольватации сложных молекул был впервые применен Б.Д. Березиным при изучении сольватации красителей в неводных растворах [83]. Молекулы порфина и его производных (порфиринов) имеют обширные области с неспецифической сольватацией. Это - все атомные группировки и химические связи С==<2 и С= =N, входящие в контуры сопряжения, а также инертные функциональные группы (-СН3, -СН=СН2 и другие алкилы, F" и другие галогены, - Hj и другие арильные остатки и т.д.). [c.274]

    Особенности специфической сольватации хитина и хитозана в растворах оказывают большое влияние на выбор растворителей и переработку указанных полимеров в растворах. Наличие кристаллических областей в структуре полимеров обусловливает существо- [c.388]

    Книга посвящена научному обобщению и анализу новых результатов современных теоретических и экспериментальных исследований в области термодинамики, структуры и реакционной способности биологически активных веществ в растворах. Принципиальным в данной монографии является подход, при котором системы биологически активное вещество-растворитель рассматриваются с единых позиций концепции определяющей роли растворителя и сольватации в биофизических явлениях и процессах. Большое внимание уделяется необычным явлениям в растворах - "молекулярному узнаванию" взаимодействующих частиц и стереоспецифической гидратации. Рассматривается широкий круг взаимосвязанных вопросов, касающихся общих теоретических проблем химии растворов и относящихся к исследованиям отдельных биообъектов - биомолекул веществ, входящих в состав живого организма. [c.403]

    В неводных растворителях область устойчивости соединений, конечно, меняется. Величина реакции определяется энергией ионизации (отрыва электрона) и энергией сольватации ионов или молекул. От относительного вклада того и другого вида энергии зависит окислительно-восстановительная способность веществ. Влияние неводных растворителей на редокс-системы еще недостаточно изучено. [c.184]

    Амфотерные растворители, такие, как Н2О, ROH, NH3 или R O2H, не только ограничивают область возможных значений рКа, но через сольватацию и диэлектрические эффекты оказывают сильное влияние на ионизационное равновесие. Например, сильные кислоты, растворенные в уксусной кислоте, хотя они не целиком ионизованы, образуют сольватированный протон СНзСОгН2% обладающий гораздо большей силой ки- лоты, чем НзО .  [c.37]

    За пределами строгой количественной теории Дерягина остались такие факторы устойчивости, как сольватация поверхности ч1стиц и структурно-механические свойства адсорбционных слоев. Один из возможных путей учета сольватации в рамках теории устойчивости предложен Ю. М. Глазманом. По его мнению, электростатическое отталкивание соль-ватированных частиц можно рассматривать с позиций расположения внутренней обкладки двойного ионного слоя на внешней стороне сольватного слоя, что равносильно увеличению радиуса действия электростатических сил. Сольватные слои, по определению Дерягина, представляют собой пограничные с дисперсной фазой области среды, обладающие отличными от остальной среды механическими и термодинамическими (или теми и другими) свойствами. [c.8]

    Известно, что молекулярная масса характеризует степень ассоциации асфальтенов в растворах, поэтому становится понятным, почему точка минимума теплоты плавления лежит в области более низких значений концентрации асфальтенов в смеси в случае первичных асфальтенов. Исходя из значений молекулярной массы асфальтенов, выделенных из сырой нефти, можно предположить, что на первом этапе (до точки первичного минимума) формирование надмолекулярных структур первичных асфальтенов идет гораздо быстрее, чем вторичных. Однако сильная сОу ьватирующая способность вторичных асфальтенов вследствие их большей ароматичности выше, чем первичных. При этом теплота сольватации первичных асфальтенов меньше, чем для вторичных. Вторичные асфальтены формируют более плотные сольватные оболочки, и, следовательно, более интенсивно должны разрушать кристаллическую решетку нафталина. Также за счет более плотной сольватной оболочки и, очевидно, интенсивного сближения структурных образований возникает сильное коагуляционное взаимодействие между их внутренними областями [168], приводящее к появлению коагуляционного каркаса и дальнейшей аморфизации смеси. Таким образом, точка первичного минимума теплоты плавления характеризует активность асфальтенов или их склонность к структурообразованию. [c.151]

    Если в правильно разомкнутой электрохимической цепи (см. рис. VI.2,а) на всех трех фазовых границах М1—Мг, Мг—раствор и раствор — М] имеет место электронное равновесие, определяемое равенством электрохимических потенциалов электрона в этих фазах, то на первый взгляд кажется непонятным, за счет чего возникает ЭДС цепи, равная разности в двух частях одного и того же металла Мь Анализ этой проблемы показывает, что электрохимические потенциалы электрона в двух областях одного и того же раствора вблизи металла М1 и вблизи металла М2 — не одинаковы. В самом деле, выше было показано, что равновесная концентрация электронов в абсолютно чистой воде у поверхности медного электрода равна 9,36моль/л. Аналогичный расчет показывает, что в абсолютно чистой воде у поверхности цинкового электрода [е ] =2,31 10 моль/л. Следовательно, в воде между двумя электродами имеет место градиент концентрации гидратированных электронов. Как следует из уравнения (IV.34), градиент концентрации сольватированных электронов возникает в любом растворе, если только не равны друг другу электродные потенциалы двух металлов. Поэтому, строго говоря, разомкнутая электрохимическая цепь, ЭДС которой не равна нулю, не является равновесной даже при наличии равновесия на всех ее фазовых границах. Чтобы строго определить равновесную электрохимическую цепь, кроме условия электрохимического равновесия на каждой фазовой границе дополнительно указывают, что ЭДС цепи скомпенсирована разностью потенциалов от внешнего источника тока (см. с. 116). При подключении этой внешней разности потенциалов происходит компенсация электрическим полем градиента химического потенциала электронов в электролите, так что и в растворе при этом Ар,1,=0. Отсюда следует, что ЭДС электрохимической цепи можно представить как разность величин вблизи двух электродов и ввести определение отдельного электродного потенциала как реальной свободной энергии сольватации электрона (выраженной в эВ) при электронном равновесии электрода с раствором. [c.138]

    К. П. Мищенко и А. М. Сухотин ввели понятие границы полной сольватации, т. е. такой концентрации, при которой число молей воды, приходящихся на один моль соли, равно сумме х оординационных чисел сольватации ионов. Эта граница является как бы рубежом между зоной более разбавленных растворов, приближающихся по своей структуре к структуре воды, нарушенной присутствием и действием ионов, и зоной концентрированных растворов с нарастающим дефицитом воды, где строение системы все более приближается к структуре твердых кристаллогидратов. Некоторые термодинамические свойства растворов претерпевают заметные изменения в области границы полной сольватации. [c.149]

    Первые порции электролита оказывают наибольшее воздействие на структуру растворителя—вокруг ионов формируется структура раствора, определяемая строением сольватированного иона и структурой растворителя. Добавление электролита приводит к последовательному исчезновению структуры чистого растворителя, дальней и частично ближней сольватации. Исчезновение структуры чистого растворителя происходит при концентрациях электролита, отвечающих границе дальней сольватации (ГДС) или границе раздела 111—111 (IV. 16). Дальнейшее добавление влектролита способствует постепенному исчезновению молекул растворителя в. области дальней сольватации. Они участвуют в формировании сольватного окружения вновь появляющихся в растворе ионов. Этот процесс протекает до границы полной сольватации (ГПС). При достижении ее рее молекулы растворителя находятся в ближайшем окружении ионов. Это состояние характеризуется границей раздела II—И (IV.16). Последующее увеличение концентрации электролита из-за конкуренции ионов за растворитель приводит к тому, что все молекулы растворителя координируются вокруг катионов (в этом случае их сольватация энергетически более выгодна, чем сольватация анионов). От ГПС до ГНС имеет место неполная сольватация аниона. Граница неполной сольватации (ГНС) отвечает границам раздела 1—1 для анионов и И—П для катионов (IV. 16). Дополнительное увеличение концентрации электролита приводит либо к выпадению кри-сталлосольватов, либо к исчезновению области ближней сольватации для катиона. Вид сольватированных частиц по концентрационным областям приведен в табл. 35. [c.245]

    Говоря о структуре растворов, нельзя обойти вопрос о координации ионов в области ближней и дальней сольватации. Первая определяется числом молекул растворителя ближнего окружения и пространственным расположением их вокруг иона с четко выраженной симметрией. В литературе приводятся различные величины координационных чисел ионов. Наиболее часто они равны четырем, шести и восьми. Для ионов лантаноидных элементов характерны более высокие значения этих чисел. Координация ионов в области дальней сольватации изучена слабее. Для этих целей успешно применяются методы ЯМР, дериватографический, термохимический и др. В частности, для растворов МХ (/—/) электролитов показано, что числа молекул растворителя в / и //областях дальней сольватации для стехиометрической смесл ионов равны 30 и 60. [c.245]

    Величина А5сольв представляет изменение энтропии при сольватации иона (1У.32) Д5а — изменение энтропии растворителя при образовании в нем полостей для размещения ионов А5в изменение энтропии при переходе газообразного иона в имеющуюся полость растворителя Д51 — изменение энтропии при образовании полости и размещении в ней иона Л5ц — общее изменение энтропии растворителя в процессе сольватации иона Д5с — электростатический вклад в Д5ц, представляющий собой изменение энтропии растворителя за счет перераспределения зарядов Д5бл и Д5дальн —изменения энтропии растворителя за счет перераспределения зарядов в области ближней и дальней сольватации. [c.247]

    К а б л у к о И Иван Алексеевич (1857—1942)—советский физико-химпк, почетный член АН СССР. Работал в области электрохимии неводпых растворов. Ввел представление о сольватации ионов. Применил термический анализ для исследования систем из расплавленных солей. [c.256]

    Методы электрохимии могз т быгь использованы для анализа и синтеза органических соединений, установления или подтверждения структуры, исследования природы каталитической активности, изучения промежуточных продуктов, генерирования хс-милюминесценции, исследования механизма процессов переноса электрона, изучения связи между структурой и электрохимической активностью, инициирования полимеризации, синтеза катализаторов и их компонентов, процессов деструкции, изучения биологических окислительно-восстановительных систем и т. д., а также для исследования кинетики, механизмов реакций, солевых эффектов, сольватации, влияния электрического поля на химические реакдии и в ряде других областей науки. Поэтому весьма отрадно, что нашелся целый ряд исследователей, которые решили направить свои усилия на развитие органической электрохимии [1] Объединение усилий больгиого числа специалистов сделало возможным достижение успеха одновременно на многих направлениях. Благодаря тому, что данная область химии находится иа стыке нескольких паук, большинство [c.21]

    T min(H20) = 337 К . (ОгО) = 338К [15]) находятся в температурных областях, в которых вода как растворитель обладает достаточно отличающимися структурными свойствами. По указанной причине сольватация молекул Н(0)-связанного неэлектролита в H20(D20), как видно из рис. 3,10, индуцирует не только различающиеся по величине, но и (при Т > 308 К) даже противоположные по знаку изотопные эффекты в К 2 и s.2 Обращает на себя внимание и то, что в области температур выше 318 К величина К 2 > по существу остается неизменной. Это наряду с очевидной корреляцией максимума на зависимости А,Д 2 (рис. 3.10) с минимумами изотермической сжимаемости изотопомеров воды onst [116]), позволяет предположить, что при Т 320 К структура гидратного комплекса дейтеромочевина-тяжелая вода образована D-связями не менее (а может, даже и более) прочными, чем в объемной сетке D2O. Аналогичное предположение сделано нами выше на основе обнаруженной перемены знака (с положительного на отрицательный) у величины 1/22(020) (рис. 3.8). [c.155]

    Все структурно-химические изменения порфиринов и их комплексов проявляются в электронных спектрах поглощения (ЭСП). Типичным примером является деление порфиринов по типам ЭСП [5]. У большинства порфиринов ЭСП в видимой области четырехполосный. У металлокомплексов он двухполосный. Причины этого явления неоднократно обсуждались в литературе [6]. Явление экстракоординации молекул растворителей на металлопорфиринах по физической сущности совпадает с сольватацией. Сольватация хромофорных систем, каковыми являются металлопорфирины, будет различной в основном и возбужденном электронных состояниях. Поэтому экстракоординация, как составная часть сольватации МП, четко проявляется в ЭСП [1, 2, 3] и обусловлена изменением геометрической структуры и прочности химических связей в МК4. Показано, что первая (самая длинноволновая) полоса в ЭСП МП сдвигается гипсохромно или батохромно в зависимости от образования и прочности координационных а- и л-связей и искажения плоского макроцикла. Эти сведения приведены в табл. 5.9. [c.282]

    Вычислены энтропийные характеристики ближней и дальней сольватации натрия в одноатомных спиртах [234] А сольв — изменение энтропии при сольватации иона в одноатомных спиртах А5ц — изменение энтропии молекул одноатомных спиртов под действием ионов А5дальн и А 5ел — соответственно изменение энтропии в области дальней и ближней сольватации (табл. 6). [c.12]

    Если анион мал (К = Н, СНз, СаНб, СзН ), то он нормально растворяется в воде, хотя это и происходит за счет сольватации только карбоксильной части аниона. Если же К — длинная углеводородная цепь, например СхбНзх, С17Н35 и т. п., то такой остаток, как и углеводороды, нерастворим в воде (гидрофобен), в то время как карбоксильная часть аниона сохраняет свою гидрофильность. В силу этой противоположности молекулы мыла концентрируются на поверхности воды, покрывая последнюю лоем, в котором карбоксил-анионы погружены в воду, а жирные радикалы обращены к поверхности. Если на воду налить слой углеводорода или масла, жирные радикалы растворятся в нем и все молекулы мыла будут стремиться разместиться ва поверхности раздела. При этом поверхностное натяжение, являющееся мерой сил, стремящихся сократить поверхность, резко уменьшится. Поверхность раздела возрастет, что может быть достигнуто лишь распределением одной жидкости в другой капельками (эмульгирование). При добавлении мыла к смеси воды и несмешивающейся с ней органической жидкости образуются стабильные эмульсии, что широко применяется в разных областях народного хозяйства. Таким способом готовят, например, эмульсии высших углеводородов нефтяных фракций для борьбы с вредителями садов. Поскольку загрязнения на теле и белье являются в основном жировыми загрязнениями, нерастворимыми в воде, водой они не отмываются, но при эмульгировании жира в мыльной воде уносятся с струей воды. [c.171]

Рис. 2.9. Схематическое изображение моделей сольватации иона с образованием нескольких характерных областей а — растворители с низкой структурной упорядоченностью (например, углеводороды), в которых образуется только сольватная оболочка А и имеется неупорядоченный свободный раствори тель В [98] б—высокоупорядоченные растворители (например, вода), в кс торых создается сольватная оболочка А с иммобилизованными молекулами растворителя, окруженная областью В с нарушенной структурой растворителя, а затем упорядоченным свободным растворителем С (Франк и Вен [16]). Рис. 2.9. <a href="/info/376711">Схематическое изображение</a> <a href="/info/1038997">моделей сольватации</a> иона с <a href="/info/391644">образованием нескольких</a> <a href="/info/1585712">характерных областей</a> а — растворители с <a href="/info/1388951">низкой структурной</a> упорядоченностью (например, углеводороды), в <a href="/info/1493562">которых образуется</a> только <a href="/info/9394">сольватная оболочка</a> А и имеется неупорядоченный <a href="/info/103451">свободный раствори</a> тель В [98] б—<a href="/info/31239">высокоупорядоченные</a> растворители (например, вода), в кс торых создается <a href="/info/9394">сольватная оболочка</a> А с иммобилизованными <a href="/info/101400">молекулами растворителя</a>, окруженная областью В с <a href="/info/490662">нарушенной структурой</a> растворителя, а затем упорядоченным <a href="/info/128840">свободным растворителем</a> С (Франк и Вен [16]).
    С обычной упорядоченной структурой чистого растворителя. Согласно Франку и Вену [16], между А и С располагается промежуточная область В с неупорядоченными, подвижными молекулами растворителя. Эта гипотеза призвана объяснить тот факт, что в водных растворах различные по величине и заряду ионы могут как воссоздавать, так и нарушать структуру воды. Гипотеза о существовании вокруг растворенного иона различных областей развита Герни [116], который, в частности, для расположенной вокруг сферического иона особой зоны, где следует ожидать значительного изменения структуры и свойств растворителя, предложил термин косфера. В отличие от обычной эффективной положительной сольватации небольших сферических ионов, оказывающей упорядочивающее воздействие на растворитель (рис. 2.9,а), в ряде случаев молекулы воды, окружающие растворенный ион, даже более подвижны, чем в чистой воде. Другими словами, частота обмена молекул воды вблизи ионов выше, чем в чистой воде (см. область В на рис. 2.9,6). Именно этим явлением объясняется тот известный экспериментальный факт, что водные растворы некоторых солей, например иодида калия, обладают большей текучестью, чем чистая вода при той же температуре. Соответствующий эффект, получивший название отрицательной гидратации [85], связан с нарушением структуры растворителя под влиянием больших однозарядных сферических ионов 1[91, 117]. Большие ионы могут нарушать структуру не только воды, но и других растворителей. Так, некоторые соли, проявляющие деструктурирующий эффект в водных растворах, точно так же действуют на этиленгликоль и глицерин [117]. Вместе с тем корректность многозональной модели сольватации иона, предложенной Франком и Веном [16], а также другими исследователями, до настоящего времени экспериментально не подтверждена [117]. По этой причине, а также в силу отсутствия данных о детальной структуре растворителей и удовлетворительных молекулярных теорий ассоциированных жидкостей все попытки детального описания сольватных оболочек пока еще далеки от совершенства. [c.64]

    Для изучения избирательной сольватации применяются различные методы [118, 120], основанные на определении электропроводности и вольтамперометрических характеристик (метод Хитторфа) [119], спектроскопия ЯМР (в первую очередь изучение влияния состава растворителя на химические сдвиги резонансных сигналов растворенного вещества) [106—109], оптическая спектроскопия, в том числе изучение смещения полос поглощения в ИК-спектрах [111], а также в УФ- и видимой областях в растворах сольватохромных красителей в бинарных смесях растворителей [124, 249]. [c.67]

    Свобода и др. [140] выполнили факторный анализ матриц, данных, содержащих 35 физико-химических констант и эмпирических параметров полярности (см. гл. 7) 85 растворителей. На этой базе был получен ортогональный набор четырех параметров, которые можно связать с полярностью растворителя, выраженной в виде функции Кирквуда (е,-—1)/(2бг+1), поляризуемостью растворителя, выраженной в виде функции показателя преломления пР-— )1 п + ), а также с льюисовой кислотностью и основностью растворителя. Отсюда следует, что для количественного эмпирического описания влияния растворителя на химические реакции и поглощение света в общем случае необходимы четыре параметра два для описания неспецифической сольватации, обусловленной полярностью и дисперсионными взаимодействиями, а два других — для описания специфической сольватации, связанной с электрофильной и нуклеофильной активностью растворителя. Для корреляции эффектов растворителей с помощью только одного эмпирического параметра лучше всего пользоваться параметром т(30), значения которого определяют, изучая поглощение сольвато-хромного красителя в УФ- и видимой областях (см. разд. 6.2.1 и 7.4). [c.120]

    Амфотерные растворители, такие, как Н2О, ROH, NH3, R OOH, не только ограничивают область возможных значений рК , но через сольватацию и диэлектрические эффекты оказывают сильное влияние на ионизационное равновесие. Например, сильные кислоты, растворенные в уксусной кислоте, хотя они не целиком [c.408]


Смотреть страницы где упоминается термин Сольватация области: [c.16]    [c.96]    [c.208]    [c.49]    [c.56]    [c.150]    [c.52]    [c.253]    [c.380]    [c.395]    [c.223]    [c.279]    [c.389]    [c.446]    [c.56]   
Вода в полимерах (1984) -- [ c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Сольватация



© 2025 chem21.info Реклама на сайте