Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные процессы релаксации в полимерах

    ОСНОВНЫЕ ПРОЦЕССЫ РЕЛАКСАЦИИ В ПОЛИМЕРАХ [c.7]

    В случае аморфных полимеров, отжиг которых производится при температуре, превышающей температуру стеклования, естественно ожидать, что разупорядочение молекулярных цепей, являющееся следствием существования внутри- и межмолекулярных зацеплений, приведет к изменению размеров образца. Поскольку процесс дезориентации представляет собой, по существу, процесс релаксации деформаций, его основной характеристикой является время релаксации, увеличивающееся с понижением температуры (см. рис. 3.17 и 3.18). Величина усадки для полностью законченного процесса восстановления оказывается связанной как со степенью ориентации аморфной фазы /ам, так и с уровнем замороженных напряжений в неотожженном образце [см. (3.9-19)]. [c.76]


    Релаксационная спектрометрия полимеров в настоящее время находится в начальной стадии развития, но ей принадлежит, по-видимому, большое будущее. Важны развитие и разработка новейших методов получения непрерывных и дискретных спектров и применение их для расчетов и прогнозирования вязкоупругих свойств полимерных материалов. Очевидно, что разработка современных методов расчета и прогнозирования невозможна без знания всех релаксационных механизмов и их кинетических характеристик для различных полимерных материалов и особенно для тех, которые находятся в условиях длительной эксплуатации. В настоящее время можно считать установленными основные релаксационные пере ходы в полимерах, которые необходимо учитывать при прогнозировании их свойств. В частности, это относится к новым данным по релаксационным переходам (а -, Хг, кз- и ф-переходы), находящимся по шкале времен релаксации между а-процессом (стеклованием) и б-процессом (химической релаксацией). Для прогнозирования эксплуатационных вязкоупругих свойств эластомеров при относительно низких температурах наиболее важную роль играют медленные физические процессы релаксации ( - и ф-процессы), так как в течение длительного промежутка времени (до 50 лет) химической релаксации практически не наблюдается. Однако при высоких температурах для длительного прогнозирования основную роль начинает играть химическая релаксация. [c.144]

    Для экспериментальной проверки полученных соотношений были рассчитаны спектры времен релаксации для образца блок-сополимера полистирола с полибутадиеном с содержанием полистирола 62%. Эксперименты были выполнены при различных больших деформациях [55]. Результаты расчета приведены в табл. 5.1. Видно, что при длительности релаксационного процесса 180 мин экспериментальные кривые описываются пятью временами релаксации. При этом времена п и Т2 практически не зависят от деформации е и составляют в среднем <Т1> = 12,8 с и (т2>= 1,34-10 с. Остальные времена релаксации качественно согласуются с найденными зависимостями (5.80), хотя наблюдается значительное количественное расхождение. Это объясняется принятыми при выводе этих формул допущениями и упрощением исходных дифференциальных уравнений. Таким образом, полученное решение показывает, что предложенная модель правильно передает ход экспериментальных кривых и позволяет объяснить закономерное появление спектра времен релаксации. На самом деле поведение системы может характеризоваться двумя основными временами релаксации. Остальные времена являются комбинацией этих двух основных времен и зависят от деформации и упругих характеристик полимера. [c.176]


    Для полимеров, имеющих аморфную структуру (например, поликарбонат), упрочнение, наблюдаемое в начальный период экспозиции, также в основном объясняется релаксацией остаточных напряжений, приводящей к упорядочению структурных элементов в материале. Этот процесс наблюдается при температуре выше 50°С. [c.199]

    Если бы сопротивление разрушению обуславливалось бы только противодействием за счет сил главных химических валентностей, то в рассматриваемом случае значения разрушающих напряжений для всех трех типов полимеров были бы одинаковыми, так как характер химических связей в цепи и между цепями для всех трех типов образцов одинаков. Однако одинаковые сопротивления разрущению получались только при одном способе испытания, а именно при так называемом квазиравновесном способе деформации. При этом образцы подвергаются последовательной деформации, проходящей ряд дискретных значений вплоть до разрушения. Каждое из значений деформации поддерживается такое время, в течение которого в основном заканчивается процесс релаксации напряжения. Смысл такого метода заключался в том, что при заданной постоянной температуре испытания в результате флуктуаций тепловой энергии связи межмолекулярного взаимодействия рвутся чаще, чем связи сил главных химических валентностей. Поэтому, если в элементарном акте разрыва одновременно рвутся связи первого и второго рода, то при квазиравновесном способе испытания межмолекулярные связи не противодействуют разрыву, поскольку они были преодолены при значениях деформаций, предшествующих разрушающему. [c.224]

    Последующие процессы, завершающие стадию непосредственного формования изделия. Они сводятся в основном к релаксационным процессам и полному удалению низкомолекулярных летучих или вымываемых всществ. При этом не наблюдается существенного отличия от релаксации полимеров, перерабатываемых через расплавы, и поэтому обсуждение указанной проблемы в самостоятельные разделы не выделяется. [c.15]

    В переменных электрических полях наблюдаются аналогичные механическим диэлектрические дипольно-сегментальные потери, природа которых та же — сегментальная подвижность. В полимерных стеклах сегментальная подвижность играет важную роль, так как является причиной многих явлений (стеклование, вынужденная высокоэластичность, ползучесть, квазихрупкое разрушение, трещины серебра и т. д.). В кристаллических полимерах сегменты могут находиться в трех различных состояниях, а в наполненном аморфном полимере — в двух состояниях, что приводит к мультиплетности релаксационных спектров а-процесса релаксации. Основным при этом остается а-процесс, ответственный за стеклование. Его вклад, как можно судить по высоте максимумов на спектрах, существенно больше, чем остальных процессов этой группы. [c.199]

    На качество трехмерного полимера на основе ОЭА существенное влияние оказывают внутренние остаточные напряжения. Чем больше габариты изделия и чем выше жесткость олигомерной цепи, затрудняющая процесс релаксации напряжений в изделии, тем больше вероятность возникновения трещин и преждевременного разрушения изделия. Возникновение остаточных напряжений в процессе получения блоков — одна из основных причин невозможности изготовления из ОЭА крупногабаритных изделий. [c.14]

    Спектры токов ТСД, т. е. зависимости j = f[T i)], обычно содержат один или несколько максимумов, причем их положение и направление тока в максимуме могут зависеть еще и от характера контакта электрета с электродами [175]. Для полярных полимерных пленок некоторые максимумы тока ТСД могут быть связаны с релаксацией остаточной (замороженной) поляризации (например, дипольно-групповой р-релаксацией и дипольно-сегментальной а-релаксацией). Изучение этих пиков, которые должны быть связаны с гетерозарядом, является основой так называемого электретно-термического анализа [2, с. 132— 167]. Кроме того, в спектре токов ТСД обнаруживаются пики, связанные с освобождением носителей, захваченных на ловушках в полимере в процессе зарядки электрета, и дрейфом этих носителей в поле электрета (р-пики или пики, связанные с релаксацией объемного заряда). Наконец, существенную роль в процессе релаксации заряда может играть собственная проводимость у полимерных пленок, и для выделения этой составляющей требуется параллельное исследование температурной зависимости проводимости полимерных пленок у = Т) и спектров токов ТСД. По спектрам токов ТСД можно оценивать и стабильность электретов из различных полимерных пленок. Очевидно, стабильность тем выше, чем при более высокой температуре расположен основной максимум тока ТСД. [c.196]

    Релаксационные процессы в полимерах, связанные с тепловым движением различных элементов структуры, условно можно разделить на две группы, определяющие соответственно быструю и медленную стадии процесса релаксации. Этим группам соответствуют разные участки релаксационного спектра. С повышением температуры постепенно размораживается движение релаксаторов — сначала малых кинетических единиц (например, атомных групп в основных цепях и ответвлениях, боковых групп), затем более крупных (например, свободных сегментов, не входящих в микроблоки надмолекулярной структуры, связанных сегментов и различных элементов надмолекулярной организации и дисперсной структуры и т. д.). В наполненных эластомерах протекают, кроме того, медленные релаксационные процессы, обусловленные подвижностью структуры, образованной самими частицами активного наполнителя. В сшитых эластомерах регистрируется еще более медленный процесс химической релаксации, связанный с перестройкой пространственной вулканизационной сетки, образованной ковалентными связями. С повышением температуры облегчается реализация химического течения в пределе оно приводит к химическому распаду полимера. [c.75]


    Быстрый спад напряжения после деформации этих полимеров, малые времена релаксации и другие эффекты наводят на мысль о том, что растрескивание, возможно, является одной из основных причин интенсивного протекания не только процессов разрушения, но и релаксационных процессов. Возможно, также, что единый механизм процессов релаксации и разрушения приводит к аналогичным зависимостям долговечности [см. уравнение (V. )] и времени релаксации [см. уравнение (1.43)] от температуры и механического напряжения. [c.167]

    В каучукоподобных сетчатых полимерах процесс релаксации напряжения подразделяется на три основные стадии. На пер- [c.204]

    Таким образом, для полимеров характерно наличие двух основных процессов молекулярной релаксации, обусловленных движением (за счет тепловой энергии) различных кинетических единиц. Кинетические единицы могут быть достаточно велики (вплоть до нескольких повторяющихся звеньев полимерной молекулы) и сравнительно малы (например, боковые радикалы или группы атомов, участвующие в тепловом движении как независимые единицы). [c.177]

    Надмолекулярные структуры и кристаллические образования, которые могут присутствовать в блочных полимерах в довольно больших количествах (70—90% у ПЭ, 95—98% у политетрафторэтилена и даже до 100% у полимерных монокристаллов), влияют на характер релаксационных процессов. Главной особенностью деформационных свойств полимеров, находящихся в стеклообразном состоянии, является их сильная зависимость от величины прилагаемой нагрузки. Причем, если при малых напряжениях характер изменения физических свойств объясняется линейной теорией вязкоупругости, то при высоких напряжениях необходимо использовать нелинейную теорию [4]. С учетом основных процессов молекулярной релаксации деформацию стеклообразных полимеров можно описать, используя пятиэлементную модель (рис. II. 14), отдельным элементам которой соответствует конкретный физический смысл. Так, пружина с модулем Ео описывает идеально упругую составляющую деформации, связанную с деформацией валентных углов и изменением межатомных расстояний. Элементу Кельвина Ех — т] приписывается молекулярный процесс, связанный с подвижностью боковых привесков основной полимерной цепи. Если полимерный материал подвергается внешнему воздействию в температурном интервале, где реализуется такой релаксационный процесс, то это может привести к ориентации [c.169]

    В книге наряду с общей характеристикой полиэтилена рассмотрены основные вопросы прочности полимеров подробно освещены процессы ползучести, релаксации и разрушения полиэтилена. [c.2]

    Так как величина высокоэластичной деформации и скорость процессов релаксации определяются, как уже указывалось, б основном формой макромолекул в равновесном состоянии, то химическая природа полимера является главным фактором, [c.141]

    Для ряда органических твердых тел, особенно для аморфных высокополимерных соединений, в температурном интервале выше точки перехода в стеклообразное состояние была обнаружена возможность соотнести температурную и частотную зависимость релаксационных свойств. Соответствующий метод, развитый в основном Тобольским и др. [261] и Ферри и др. [56], основан на использовании так называемых приведенных переменных . Этот метод оказался весьма успешным при его применении к поведению каучукоподобных веществ. Хотя приближения, на которых основан метод, не могут быть применены к поведению органических твердых тел ниже точки стеклования, по-видимому, имеет смысл дать здесь краткое описание этого метода, так как, во-первых, были осуществлены некоторые попытки применить его к процессу релаксации в твердых аморфных и частично кристаллических полимерах и, во-вторых, область справедливости приближений, использованных при построении теории вязко-упругости и в методе приведенных переменных, может быть оценена. [c.336]

    В литературе описаны различные виды нестабильности течения в процессе вальцевания [18]. Основной причиной разрушения потока в данном случае является накопление эластической энергии в процессе деформации (переработки) полимера, а не только малая величина адгезии эластомера к материалу валков. Скорость накопления избыточной эластической энергии в сажекаучуковой системе определяется соотношением между максимальным временем релаксации соответствующих структурных элементов и скоростью внешнего воздействия (скоростью сдвига). [c.79]

    Закономерности ползучести в кристаллических полимерах также в целом напоминают таковые для стеклообразных полимеров. Как и при релаксации напряжения, основное отличие состоит в том, что в кристаллических полимерах предельная деформация при ползучести много больше, чем в стеклообразных, благодаря значительному содержанию аморфной части. В кристаллических полимерах ползучесть также может быть затухающей, когда деформация, достигнув при нагружении некоторого предела, далее больше не развивается. В таких условиях должен работать кристаллический полимер в нагруженных конструкциях и деталях. При превышении некоторого предела напряжения ползучесть становится незатухающей деформация нарастает постепенно вплоть до разрушения. Этот процесс соответствует растяжению без образования шейки. [c.190]

    Наблюдаемый результат связывается с медленной структурной релаксацией, а не со старением (если под старением понимать появление разрыва основной цепи), так как последний процесс обычно сопровождается изменениями интенсивности ,j (в качестве примера можно привести результаты наблюдения долговременного старения полиэтилена методом измерения времени жизни позитронов, хотя в полимерах старение обычно очень специфичный процесс). [c.67]

    Для аморфных полимеров, к которым относятся и эпокси.а-ные, установлено наличие двух основных видов релаксационных процессов. Первый связан с кооперативным движением сегментов макромолекул, реализуемом при переходе из стеклообразного состояния в высокоэластическое (а-процесс). В случае исследования диэлектрической (или дипольной) релаксации данный процесс называют дипольно-сегментальным. Он охватывает довольно большие молекулярные объемы и сопровождается изменением конформации цепей. [c.8]

    Модели, описывающие вращение диполей, связанное с преодолением потенциального барьера, ограничивающего вращение, широко используются для описания процессов диэлектрической релаксации в полимерах. Такого рода представления обычно используются для объяснения релаксационных процессов, обусловленных заторможенным вращением боковых групп, а также сегментальной подвижностью основных цепей. [c.191]

    Интересный пример влияния температуры и частоты на диэлектрическую проницаемость (е и е") полимеров с большим числом углеродных атомов приводит Фросини (1967), При исследовании на низкой частоте при постепенном повышении температуры наблюдается несколько пиков, соответствующих процессам релаксации (а, р, Я). Основным является пик, соответствующий а-р,елакса-ции, связанный с поляризацией смещения в основной углеродной [c.251]

    При приложении к образцу нагрузки (е = onst) наблюдается обратимая релаксация Ван-дер-Ваальсовых (вторичных) связей, приводящая к спаду напряжения. На этом основаны методы определения равновесного, а также условно-равновесного модуля на модульных рамках. Это относится в основном к трехмерным полимерам, имеющим сетчатую структуру. В нашем же случае рассматриваемые изоляционные материалы в исходном состоянии представляют собой полимеры с линейным строением макромолекул. Поэтому указанные структурные характеристики в применении к данным материалам будут не в полной мере отражать те структурные изменения, которые произошли в них под влиянием процессов старения. Тем не менее эти показатели с определенным приближением [c.38]

    Как указывалось в начале этой главы, почти все выполненные до сих цор исследования, касающиеся действия излучений на диеновые полимеры, носят в основном прикладной характер. В уже упоминавшейся работе Чарлзби проведено более детальное исследование. Другим тщательно выполненным исследованием является работа Борна [49] (стр. 73), которая нами до сих пор подробно не обсуждалась. Целью этой работы являлось прежде всего повышение радиационной стойкости каучуков. В работе Борна изучались не только обычные кривые растяжения вулканизованных эластомеров, но использовался также метод релаксации напряжения, предложенный Тобольским (стр. 76). Если не происходит изменения размеров образцов, этот метод позволяет определять степень протекания деструкции цепей независимо от процесса сшивания. Вулканизаты натурального каучука, наполненные сажей и ненаполненные, релакси-руют под действием -[-излучения. Напряжение уменьшается до 44% его первоначального значения при облучении в вакууме дозой 74 мегафэр. При облучении в присутствии воздуха напряжение -при той же дозе составляет только 4% его начального значения. Для вулканизатов со полимера бутадиена с акрилонитрилом наблюдается такой же процесс релаксации, который, однако, происходит медленнее. Для неопрена найдены лишь небольшие изменения напряжения, в то время как для 0Р-5 и полибутадиена обнаружено заметное его возрастание. Это последнее наблюдение показывает, какого рода ошибки и неточности могут происходить в интерпретации результатов измерений релаксации напряжения в том случае, если в результате облучения меняется масса и размеры образцов. Представляется маловероятным, чтобы количество элементов, создающих напряжение в полибутадиене и 0Р-5, возрастало в равновесных условиях по-видимому, в действительности в цроцессе облучения изменяются размеры о-бразцов. Поэтому скорость деструкции, вероятно, вообще выше, чем найденная по этому методу, если только не внесены поправки для учета изменения размеров. [c.184]

    Проведенные нами исследования методом изучения спин-решеточной релаксации радикалов, стабилизированных в объеме и в поверхностном слое кристаллических полимеров, показали, что поверхностный слой обладает значительно большей дефектностью по сравнению с объемом, что могкет быть результатом тех же причин, которые уже рассматривались в применении к поверхностным слоям полимеров на твердых границах [21, 22]. Изучение свойств поверхностных слоев в блочных полимерах значительно затруднено отсутствием подходящих методов, позволяющих провести эксперимент в условиях, когда вклад свойств поверхностного слоя в общие свойства системы достаточно велик. Этим объясняется тот факт, что сведений о структуре таких слоев очень мало по сравнению с данными о слоях на твердых поверхностях. Однако можно полагать, что основные принципы, управляющие структурой поверхностных слоев полимеров, сохраняются и в этом случае. Вопрос о структуре поверхностных слоев имеет особенно важное значение в том случае, когда процесс синтеза полимера совмещен с получением нолимерпого материала, т. е. когда он проводится в присутствии твердой поверхности. Примером является получение стекло- и армированных пластиков, лаков, наполненных полимеров и пр. [c.181]

    Уменьшение свободного объема сопровождается возрастанием плотности до 4—6% в наполненных полимерах и до 13% в смесях полимеров, уменьшением разности между термическими коэффициентами линейного расширения выше (аО и ниже (аг) 7 с (3—86%), повышением Тс (на 1—30°С), снижением скорости основных релаксационных процессов (до 10 раз), которое менее выражено у ненаполненных вулканизатов. Снижение скорости процесса релаксации оценивали по уменьше- [c.239]

    Возвращаясь к общей проблеме работоспособности полимерного тела в разных режимах механического и теплового воздействия, следует еще раз подчеркнуть значение экспериментов по ползучести при а = onst и по релаксации напряжения при е = onst. Представляется важным систематическое исследование этих основных типов релаксационных процессов в полимерах, особенно в связи с их структурой. Большое внимание должно быть уделено нелинейности деформационных и релаксационных процессов. [c.416]

    В качестве примера можно рассмотреть корреляционные диаграммы аморфных и частично кристаллических полимеров с полу-жесткими и жесткими цепями, а также полимерных композиций (статистические сополимеры, блоксополимеры, совместимые и несовместимые механические смеси высокомолекулярных веществ) (рис. 1.5). Локальная подвижность серного вулканизата натурального каучука (НК) (см. рис. 1.5, а) обусловлена боковыми группами (метильными) и примыкающими к ним метиленовыми группами СНг основной цепи [83]. Аналогичная зависимость наблюдается для ПММА (см. рис. 1.5,6), имеющего как боковые метильные группы, так и громоздкие боковые метилэфирные группы. Это определяет существование двух видов локальной подвижности [84], для которых характерны различные температурные коэффициенты времени релаксации. В полипропилене (ПП) высокой степени кристалличности (см. рис. I. 5, в) локальный процесс релаксации связан с подвижностью СНз-групп. [c.29]

    Несмотря на отсутствие энергетических условий, слияние микрочастиц жидкости, диспергированной в полимерной матрице, в микрокапсулы фактически осуществляется в интервале температур 80- 120 °С. Правомерно предположить, что перемещение жидкости в структуре полимерной пленки при термообработке связано с ослаблением электростатического взаимодействия между жидкостью и полимером, которое, как было показано в разд. 1.1, играет существенную роль в поглощении жидкой среды полимером при вытяжке. Известно, что при нагревании значительно ускоряются процессы деэлектризации полимеров [84]. Электрические заряды, возникающие при вытяжке в полимерной матрице и на поверхности контакта жидкости с полимером, релаксируют при повышении температуры. Температура, при которой релаксация заряда в полимере протекает наиболее интенсивно, определяется химическим строением и кристаллической структурой полимера и является характеристической величиной. Методом электротермического анализа [84] найдено, что процессы релаксации зарядов в политрифторхлорэтилене значительно интенсифицируются в температурном интервале 85- 120 °С. Именно этот интервал соответствует оптимальным условиям структурного капсулирования жидкостей в пленках из гомо- и сополимеров трифторхлорэтилена. По-видимому, одной из основных причин слияния микрочастиц жидкости в структурные капсулы при нагревании пленки является деэлектризация полимера при температуре 85- 120 "С. Совпадение температурных интервалов деэлектризации и высокоэластического состояния полимера с температурой, при которой упругость паров капсулируемых жидкостей достаточно велика, создает условия, необходимые для образования структурных капсул в полимерных пленках. При этом вследствие неизменности адсорбционного взаимодействия жидкости с полимером при термообработке высокоразвитая межфазная поверхность микрополостей и микрокапилляров сохраняется в пленке и после образования структурных капсул. Наличие микрокапилляров, [c.70]

    До настоящего времени основным резервом повышения модуля упругости изотропного частично кристаллического полимера считали увеличение степени кристалличности X в соотношениях (VI. 9) и (VI. 10) путем подбора оптимальных температурных условий кристаллизации образца из расплава. Теоретически [см., например, формулу (V. 8)] этот прием, однако, имеет принципиальные ограничения. В то же время есть основания рассчитывать на возможность повышения модуля упругости Е за счет увеличения модуля упругости межкристаллитных участков (Еа) путем регулирования их структуры. Это предположение вытекает из двух-стадийности процесса кристаллизации полимеров из расплава. На первой стадии образуются зародыши кристаллической фазы с их последующим ростом до столкновений, а на второй, более медленной заключительной стадии происходит релаксация проходных цепей и стабилизация структуры межкристаллитных прослоек (см. более подробно разд. VIII. 6). Таким образом, можно ожидать изменения структуры этих прослоек (и соответственно значений ЕаУ и Е) за счет изменения температуры кристаллизации рас- [c.176]

    Установлено, что данное выражение справедливо для ряда полимеров (ПВХ, ПК, ПММА, ПС, ацетата целлюлозы) в более или менее широких интервалах температур и скоростей деформации [154, 156, 158]. Значения у (зависящих от температуры) активационных объемов при комнатной температуре заключены в интервале 1,4 нм (ПММА) — 17 нм (ацетат целлюлозы). Это означает, что, согласно данному представлению, деформация полимеров при достижении предела вынужденной эластичности обусловлена термически-активированным смещением молекулярных доменов в объемах, размеры которых в 10 (ПММА) — 120 (ПВХ) раз больше длины мономерного звена. Ряд авторов указывал [155—158, 160], что приведенный выше критерий (8.29) соответствует критерию вынужденной эластичности Кулона To+ ip = onst. Коэффициент трения ц обратно пропорционален у. Анализируя свои экспериментальные данные по поликарбонату с учетом выражения (8.29), Бауэне— Кроует и др. [158] приходят к выводу о существовании двух процессов течения. Они связывают их с а-процессом (скачки сегментов основных цепей) и с механизмом механической -релаксации. [c.304]

    Медленная стадия релаксации, наблюдаемая в высокоэластическом состоянии, состоит из процесса медленной физической релаксации (Х-процесс), ср-процесса и процесса химического течения (б-процесс). Принципиальный интерес представляет обнаруженный нами Я-процесс, так как он связан с подвижностью суперсетки некристаллических полимеров и ее основных элементов. [c.63]

    Представляло интерес рассмотреть основные факторы, действующие на изоляцию трубопроводов и создающие в ней сложное напряженное состояние с точки зрения возн-икновения в изоляции нормальных и касательных напряжений (рис. 32, 33). Для более плотного прилегания изоляции к поверхности трубопровода изоляционные ленты и обертки наносят машинами с определенным натяжением. Для лент ПИЛ и ПВХ-СЛ при температуре от 17 до 25 °С оптимальным является напряжение растяжения около 4 МПа. Вследствие явления релаксации это напряжение постепенно уменьшается. Представляло интерес оценить кинетику протекания данного процесса во времени. Временная зависимость параметров механических свойств полимера выражается широким набором ( спектром ) времен релаксации. В простейшем случае для характеристики скорости релаксационного процесса можно использовать среднее время релаксации. Этот процесс протекает при практически постоянной деформации [c.95]

    Правда, развивая указанные представления, автор исходил из положения об изотропном аморфном строении свежесформованного волокна. Тем не менее, эти представления, по-видимому, верны для механизма релаксационных процессов в аморфно-кристаллических полимерах, когда релаксация, очевидно, осуществляется в основном за счет проходных цепей и цепей, расположенных в аморфных участках. [c.235]

    Разрыв и восстановление временных узлов под действием теплового движения, вероятно, являются одной из основных особенностей вязкого течения линейных и разветвленных полимеров и процесса медленной физической релаксации в пространственноструктурированных полимерах. С другой стороны, механизм [c.118]

    В настоящее время можно сформулировать следующие основные положения с учетом последних данных в этой области. Спад напряжения в деформированных резинах прн высоких температурах является результатом процессов разрушения и перестройки пространственной сетки полимера, протекающих с разрушением химических связей и их последующим возникновением в новых местах. Непосредственным доказательством такой перестройки является необратимое течение пространственно-структурированных полимеров с увеличением доли остаточной деформации. В некоторой степени это доказывают и большие значения энергии активации процесса химической релаксации. Так, по данным Тобольского , энергия активации этого процесса равна 30 2 ккал моль для вулканизованных серой резин нз натурального, бутадиен-стирольного, полихлороиренового и бутилкаучука. В недавно проведенной работе показано, что после предварительной выдержки в атмосфере азота при высокой температуре девяти различных вулканизованных серой резин из НК последующая химическая релаксация в присутствии кислорода протекала с энергией активации 29 ккал моль. Аналогичные данные получены также Берри и Ватсоном Энергия активации химической [c.251]

    Если принять в соответствии с теорией, что Igay зависит только от разности Т—Гс и не связан с механизмом того или иного релаксационного процесса, то можно воспользоваться теоретической зависимостью gaT — f T—Гс)- и, подставляя в уравнение (III. 6) значения экспериментально определенного коэффициента а/, вычислить /с- В этом случае значения свободного объема совпадают с универсальными значениями. Однако, как видно из табл. III.3, значения доли свободного объема, вычисленные нз экспериментально определенных зависимостей Igaj-= /(Г Гс), хотя и постоянны для всех исследованных систем, существенно больше универсального значения. Для объяснения этого факта напомним, что значение /с в теории Вильямса — Лэндела — Ферри для большинства систем определялось из данных о динамических свойствах полимеров, т. е. в условиях, в которых релаксационные процессы связаны в основном с проявлением сегментальной подвижности. Для этой группы времен релаксации и был экспериментально установлен факт одинаковой температурной зависимости Igflr, положенный в основу теории. Величина f при этом связывается с объемом дырок, необходимых для перескоков относительно небольших структурных единиц. Отсюда следует, что /с не может быть постоянной величи- [c.112]

    Тем не менее высокая кооперативиость молекулярного движения, которая наблюдается у ряда полимеров при стекловании, отнюдь не позволяет считать стеклование термодинамическим фазовым переходом. Многочисленными исследованиями было показано, что стеклование не является фазовым переходом, а представляет собой температурный переход релаксационного типа. С точки зрения релаксационной теории переход в стеклообразное состояние можно рассматривать как релаксационный процесс, который не мог завершиться в результате очень сильного повышения вязкости системы и связанного с этим резкого увеличения времени релаксации при понижении температуры. Таким образом, в стеклообразном состоянии оказывается зафиксированной структура, которая более или менее близка к равновесной для температуры более высокой, чем температура стеклования Т Следует заметить, что с точки зрения релаксационной теории стеклообразное состояние полимеров — это состояние, при котором выполняется условие oTj l (где со — частота периодического воздействия на полимер, X — время релаксации) для всех Tj, обусловленных сегментальной подвижностью основных цепей макромолекул. [c.92]


Смотреть страницы где упоминается термин Основные процессы релаксации в полимерах: [c.177]    [c.124]    [c.139]    [c.208]    [c.196]    [c.164]    [c.491]    [c.55]    [c.51]    [c.263]   
Смотреть главы в:

Релаксационные явления в полимерах -> Основные процессы релаксации в полимерах




ПОИСК







© 2024 chem21.info Реклама на сайте