Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сульфаты хроматографическое

    Широко применяются в хроматографии силикагели различных марок. Силикагели применяют для хроматографического разделения смесей нефтепродуктов, высших жирных кислот и их сложных эфиров, нитро- н нитрозопроизводных, ароматических аминов и других органических соединений. Нейтральный силикагель, который получают промыванием дистиллированной водой промышленного силикагеля, используют при хроматографировании нестабильных веществ. Несколько меньшее применение находят активированные угли, гидроокись кальция, силикаты кальция и магния, окись магния, гипс, сульфат магния, кизельгур, целлюлоза и др. [c.62]


    Приготовление хроматографической пластинки. 3 г силикагеля смешивают с 0,3 г сульфата кальция, растирают в ступке, постепенно добавляют 10 мл воды, тщательно перемешивают и ровным слоем наносят на стеклянную пластинку размером 13 X 18 см, которую после этого сушат на воздухе в течение суток или в сушильном шкафу при (= 120—140 0 в течение 30—40 мин. [c.49]

    Посторонние примеси. Проводят испытание, как описано в разделе Тонкослойная хроматография (т. 1, с. 92), используя в качеств сорбента силикагель Р1. Для приготовления подвижной фазы встряхивают смесь 2 объемов этилацетата Р, 2 объемов аммиака ( 260 г/л) ИР и 8 объемов гексана Р, дают слоям разделиться и используют верхний слой. Для приготовления испытательного раствора растворяют 0,10 г испытуемого вещества в смеси 100 объемов метанола Р и I объема соляной кислоты ( 420 г/л) ИР и разводят до 20 мл той же смесью растворителей к 2,0 мл раствора добавляют 1,0 мл салицил-альдегида ИР, центрифугируют и сливают надосадочную жидкость (раствор А). Для приготовления раствора сравнения растворяют 25,0 мг гидразина сульфата Р в Ш мл воды и разводят до 100 мл смесью 1 объема соляной кислоты ( 420 г/л) ИР и 100 объемов метанола Р разводят 1,0 мл полученного раствора до 100 мл той же смесью растворителей. К 2,0 мл этого раствора добавляют 1,0 мл салицилальдегида ИР, центрифугируют и сливают надосадочную жидкость (раствор Б). Наносят на пластинку отдельно по 40 мкл каждого из растворов А и Б. После извлечения пластинки из хроматографической камеры дают ей высохнуть на воздухе и опрыскивают ее 4-диметиламинобензальдегидом ИР6. Оценивают хроматограмму в ультрафиолетовом свете (254 нм). Любое пятно, которое даст раствор А, кроме основного пятна, не должно быть более интенсивным, чем пятно, которое дает раствор Б. [c.171]

    Хроматографическую колонку, заполненную катионитом КУ-2 в Н-форме, промывают 2—3 раза дистиллированной водой. Мерную колбу с раствором сульфата меди заполняют до метки дистиллированной водой и тщательно перемешивают. Пипеткой переносят исследуемый раствор сульфата меди в хроматографическую колонку. Раствор, прошедший через колонку, собирают в коническую колбу. При прохождении сульфата меди через катионит КУ-2 ионы Схг обмениваются на ионы Н . Колонку промывают дистиллированной водой и собирают ее в коническую колбу, проверяя содержание кислоты индикатором метиловым оранжевым. Промывание заканчивают, когда вода будет свободна от кислоты. Все пробы собирают и титруют 0,01 М раствором гидроксида натрия. [c.337]


    При низких концентрациях вредных веществ в воздухе и недостаточной чувствительности метода определения необходимо проводить концентрирование веществ из больших объемов воздуха, который затруднительно отобрать в жидкие среды вследствие улетучивания последних и потерь определяемого вещества. Для этого используют твердые сорбенты, которые помещают в специальные трубки различной конструкции. Вещества улавливают как на неподвижный, так и на кипящий слой сорбента. При отборе проб на кипящий слой в качестве сорбента часто используют кремнезем, так как его зерна обладают достаточной механической прочностью, а при отборе на неподвижный спой — активные угли, кремнезем, полимерные сорбенты, синтетические молекулярные сита (цеолиты), насадки для хроматографических колонок. Используют также непористые сорбенты — карбонат калия, сульфат меди, хлорид кальция и др. Преимуществом использования таких сорбентов является очень простая десорбция, в том числе одновременное переведение в раствор как самого сорбента, так и сорбированных на его поверхности веществ. [c.463]

    Высаливание. Высокие концентрации сульфата аммония, а также солей щелочных металлов осаждают белки. Механизм осаждения связан со способностью солей разрушать гидратную оболочку растворенных белковых макромолекул, что приводит к их агрегации и последующему осаждению. Далее используют ряд методов концентрирования и тонкой очистки белков, причем наиболее эффективными являются различные хроматографические процедуры. К преимуществам хроматографических методов следует отнести  [c.54]

    Выделяется Рт из смеси радиоактивных изотопов разл. элементов, образующихся в ядерных реакторах при делении ядериого горючего, отделяют в виде нитрата или сульфата хроматографически. Рт (мягкий р-излучатель)-компонент люминофоров, источник радиоактивного излучения в миниатюрных атомных батареях. [c.100]

    Методом комплексообразования выделена часть сернистых соединений из топлив ТС-1 (ГОСТ 10227—62) и ДА (ГОСТ 4749—49) [17]. Вначале из топлив хроматографически выделяли сернисто-ароматические концентраты, содержавшие 0,63 вес. % (ТС-1) и 0,183 вес. % (ДА) общей серы, которые затем обрабатывали 0,47 М раствором ацетата ртути. Образовавшиеся водорастворимые комплексы осаждали хлористым натрием. Кипячением с 8 п. раствором соляной кислоты комплексы разлагали. Выделившиеся сернистые соединения экстрагировали серным эфиром, нейтрализовали 3%-ным водным раствором щелочи и сушили над прокаленным сульфатом натрия. Остатки ртути отделяли перколяцией сернистых соединений через силикагель. Оказалось, что водный раствор ацетата ртути извлекая из нефтяных фракций не только сульфиды, но и некоторое количество сернистых соединений иного строения. [c.121]

    В хроматографическую колонку, представляющую собой стеклянную трубку диаметром 4 мм, высотой 15 мм, помещают 1 г ГДЦ с размером зерен 0,20—0,25 мм. Колонку промывают 10 мл дистиллированной воды, после чего вносят в нее раствор, содержащий от 0,2 до 15 мг молибдена (VI) и вольфрама (VI). Позволяют раствору вытекать из колонки со скоростью 1 м/ч. Далее промывают колонку 5 мл воды, а затем элюируют молибден (VI) 0,3 М раствором гидроксида натрия в 0,15 М сульфате натрия, а вольфрам (VI) 0,1 М раствором гидроксида натрия. Скорость протекания элюентов 0,2 м/ч. Для того, чтобы подготовить колонку к следующему циклу сорбция-десорбция, ее после элюирования вольфрама(VI) промывают водой до рН-10. Вольфрам(VI) и молибден(У1) в элюа-тах определяют фотометрически. [c.332]

    Гипс — сорбент, обладающий небольшой сорбционной емкостью и малой активностью. Используется для хроматографирования полярных соединений, а также соединений, содержащих большое число различных функциональных группировок применяется как связующая добавка к силикагелю для получения закрепленных слоев (не более 5%), а также для снижения активности силикагеля (до 20%). Хроматографически активный гипс получают осаждением из 10—15%-ного водного раствора хлорида кальция эквивалентным количеством 10%-ного раствора серной кислоты при 70—80 °С. Полученный таким образом сульфат кальция отфильтровывают, промывают водой до нейтральной реакции и сушат 48 ч при 115—120 °С. [c.58]

    Важным примером использования в количественном анализе катионного обмена является отделение анионов 501 от различных катионов. Так хроматографический метод определения серы в пиритах основан на поглощении трехвалентного железа катионитом. Выходящую из колонки серную кислоту можно легко определить обычным весовым способом в виде сульфата бария. Аналогично можно определить фосфаты в ( юсфоритах, поглощая кальций, магний, железо и алюминий катиони- [c.145]

    Во втором случае имеется возможность одновременного определения углерода. Содержание серы можно вычислить по площадям пиков сероводорода или двуокиси при использовании соответствующих калибровочных кривых или калибровочных факторов. При применении обоих методов необходимо, однако, выделение продуктов гидрирования или окисления при помощи охлаждаемых ловушек. Определение сероводорода производят на колонках с молекулярными ситами, причем получают результаты, хорошо совпадающие с результатами метода ASTM . Возникающие при гидрировании низшие углеводороды должны быть выделены при помощи включенной перед хроматографической колонкой охлаждаемой колонки с молекулярными сптами. При окислении, кроме двуокиси серы, возникают вода и двуокись углерода. Воду удаляют обработкой сульфатом кальция, а для разделения двуокиси углерода, кислорода и двуокиси серы хорошо подходит колонка, содержащая динонилфталат на хромосорбе. Метод окисления позволяет определять серу в сульфоксидах, сульфонах, сульфидах и дисульфидах но сульфаты не переводятся количественно в двуокись серы. Азот и галогены не оказывают в.лияния на результаты определения. Продолжительность анализа составляет только 20 мин. [c.253]


    Обессоливание и смена буфера с помощью гель-фильтрации широко используются в ходе очистки белков и пептидов для освобождения от сульфата аммония или в качестве промежуточной операции, подготавливающей препарат к последующему этапу хроматографии (ионообменной, аффинной или других видов). Если объем раствора белка изл еряется миллилитрами, то рутинную операцию его очистки нередко ведут вслепую . Однажды откалибровав небольшую колонку с сефадексом С-25, последующий отбор фракций, содержащих высокомолекулярные компоненты, производят по объему элюата, нередко просто путем отсчета капель. Соотношение объемов исходного раствора и колонки в этом случае может составлять примерно 1 10. В препаративных вариантах обессоливания, когда желательно максимально использовать объем колонки и избежать разбавления препарата, 5то соотношение можио увеличить до 1 3, контролируя выход хроматографических зон по УсГ-поглощению. Скорость элюции в таких опытах может быть значительной, порядка 20мл/см -ч (скорость продвижения фронта зоны очищаемого вещества по колонке — 20 см/ч). [c.137]

    П р и м е р 5. Очистка ДНК-полимеразы I из Е. oli [Rhodes et al., 1979]. На первых этапах здесь использовали грубую очистку осаждением полиэтиленимином и сульфатом аммония. Затем следовал этап хроматографической очистки на колонке фосфоцеллюлозы, уравновешенной 0,04 М К-фосфатным буфером (pH 6,9) с обычными добавками, включая 5% глицерина. Введение глицерина продиктовано лабильностью фермента — его активность снижается вдвое за сутки. Препарат вносили в том же буфере, им же промывали колонку, а затем вели элюцию линейным градиентом концентрации этого буфера (0,04—0,3 М). Таким образом, вытесняющий белок контрион (К+) поставлялся самим буфером. [c.304]

    Следует отметить, что в последние годы сульфат аммония все чаще используется в качестве солевого компонента элюентов, вытесняя привычные Na l и КС1. Это можно объяснить как мягкостью его воздействия на белки, так и удобством их осаждения из хроматографических фракций простым увеличением концентрации уже имеющейся там соли. [c.308]

    После окончания разделения в первом направлении пластинку высушивали, вымачивали в метаноле, снова подсушивали и начинали элюцию во втором направлении (тоже с удлинительным фитилем). Элюцию начинали водой до старта, а затем 0,3 М водным раствором сульфата аммония вплоть до продвижения фронта элюента на 4—5 см по фитилю. Пятна локализовали авторадиографией, затем вырезали и просчитывали радиоактивность методом регистрации черепковского излучения [Остерман, 1983]. На рис. 166 представлено окончательное расположение хроматографических пятен. Несколько неожиданным является сильно сдвинутое вправо положение пятна рТр. По-видимому, 0,3 М сульфат аммония легко вытесняет все нуклеозиддифосфаты из ионной связи с PEI, и решающую роль в определении скорости миграции начинает играть сорбция оснований на целлюлозе. Метильная группа тимина препятствует сорбции. В пользу такой трактовки говорит и соотношение положений пятен рСр и рт Ср. рТр обгоняет рт Ср вероятно, по той причине, что рТр уже движется вслед за фронтом элюции во втором направлении, когда этот фронт еще только достигает пятна рт Ср и начинается растворение находящегося в нем материала. [c.492]

    Полностью освобожденный от ацетона бензиновый раствор су-> 1ипт ([ ильтрованием через безводный сульфат натрия. После этого Хроматографической адсорбцией в бензиновом растворе отделяют Каротип от хлорофилла, ксантофилла, ликопина и других пигментов. [c.11]

    Тонкослойная хроматография является эффективным методом для разделения малых количеств веществ на небольшом слое адсорбента и за короткое время. Хроматографирование можно проводить в закрепленном и незакрепленном слое адсорбента. В качестве адсорбента для приготовления закрепленных слоев применяют оксиды магния, алюминия, кальция, карбонат магния, силикагель в смеси со связующими компонентами, такими, как сульфат кальция, рисовый крахмал и вода. Для приготовления хроматографической пластинки с закрепленным слоем адсорбента на стеклянную пластинку (9Х12 см, 13X7 см) наносят смесь адсорбента со связующим веществом (5% от массы адсорбента) и водой в виде кашицы Специальным валиком (см ниже) смесь равномерно раскатывают в слой толщиной 2 мм Затем пластинку высушивают при 110—120°С. После высушивания пластинки на ней не должно быть трещин [c.50]

    Хроматографические методы позволяют сравнительно легко отделять калий от анионов, мешающих его определению хпми-чрскнми методами Для отделения калия от сульфатов и фосфатов пропускают исследуемый раствор через колонку с анионитом в хлоридной форме При этом сульфат- и фосфат-ионы количественно обмениваются на ионы хлора, в фильтрате содержится калий в виде хлорида После промывания колонки водой в полученном растворе определяют содержание калия гравиметрическим способом в виде перхлората [1285]. Исследуемый раствор пропускают через колонку с катионнтом в Н-форме, калий (и натрий) полностью задерживается, а мешающие анализу анионы проходят в фильтрат в виде соответствующих кислот Колонку промывают затем водой, фильтрат и промывные воды отбрасывают Калий (и натрий) вытесняют из колонки промыванием соляной кислотой. В фильтрате содержится теперь калий (и натрий) в виде хлорида [2410]. Для отделения калия (и натрия) от анионов-окислителей нельзя пользо- [c.143]

    В почве происходит разделение в пространстве поступивших веществ в зависимости от степени их растворимости. По соотношению между ионами менее подвижные карбонаты фиксируются в почвах, ближайших к источнику загрязнения, сульфаты мигрируют несколько дальше, хлорицы создают внешний контур ореола загрязнения. Большое значение в распределении веществ имеют и хроматографические особенности [c.65]

    Навеску почвы 10—20 г обрабатывают 1 М раствором ацетата аммония. Раствор упаривают досуха, остаток прокаливают при температуре 550° С в течение 15 мин. Остаток растворяют в 1—5 мл 1 М НС1 и 10 мл воды при нагревании, -остаток отфильтровывают, раствор разбавляют водой до 100 мл. Сульфаты и фосфаты удаляют хроматографически. Для этого аликвотную часть раствора пропускают через колонку, наполненную анионообменником Дауэкс 1 в С1-форме. К 5—20 мл элюата добавляют 5 мл раствора хлорида магния, содержащего [c.160]

    Иногда при очрхтке растворы приходится подвергать ряду последовательных операций. В качестве примера одной пз таких методик приведена схема химической очистки сульфата цинка (схема 2). Этот метод раньше применялся в промышленности, в настоящее время он заменен хроматографическим методом (см. ниже). [c.64]

    В тонкослойной хроматографии адсорбентом служит тонкий, равномерный слой (обычно толщиной около 0,24 мм) сухого мелкоизмельченного материала, нанесенного на подходящую подложку, например на стеклянную пластинку, алюминиевую фольгу или пластмассовую тленку. Подвижная фаза движется то поверхности пластинки (обычно под действием капиллярных сил) хроматографический процесс может зависеть от адсорбции, распределения или комбинации обоих явлений, что в свою очередь зависит от адсорбента, его обработки и природы используемых растворителей. Во время хроматографирования пластинка находится в хроматографической камере (чаще всего изготовленной из стекла, чтобы можно было наблюдать движение подвижной фазы по пластинке), которая обычно насыщена парами растворителя. В качестве твердого носителя часто используются силикагель, кизельгур, окись алюминия и целлюлоза для лучшего сцепления с носителем к нему можно прибавлять соответствующие вещества, например сульфат кальция (гипс). Для изменения свойств приготовленного слоя его можно пропитать буферными материалами, чтобы получить кислый, нейтральный или основной слой можно использовать и другие вещества, такие, как нитрат серебра. В некоторых случаях слой может состоять из ионообменной смолы. Такой широкий диапазон различных слоев, используемых в сочетании с разными [c.92]

    А. Проводят испытание, как описано в разделе Тонкослойная хроматография (т. 1, с. 92), используя в качестве сорбента силикагель Р5 (подходит и предварительно покрытая пластинка из коммерческих источников) встряхивают вместе 1 объем хлороформа Р, 1 объем метанола А и 1 объем аммиака (- 260 г/л) ИР, дают слоям разделиться и используют нижний слой в качестве подвижной фазы. Наносят на пластинку отдельно по 1 мкл каждого из 2 растворов, содержащих (А) 20 мг испытуемого вещества в 1 мл и (Б) 20 мг гентамицина сульфата СО в 1 мл. После извлечения пластинки из хроматографической камеры дают ей высохнуть на воздухе, опрыскивают ее раствором трикетогидриндена в пиридине и ацетоне ИР и нагревают 2 мин при 105°С. Оценивают хроматограмму при дневном свете. Три основных пятна, которые дает раствор А, соответствуют 3 основным пятнам, которые дает раствор Б. [c.164]

    Посторонние примеси. Проводят испытание, как оппсано в разделе Тонкослойная хроматография (т. 1, с. 92), используя в качестве сорбента спликагель Р2, а в качестве подвижной фазы смесь 40 объемов толуола Р, 20 объемов хлороформа Р и 3 объемов диэтиламина Р. Наносят на пластинку отдельно по 5 мкл каждого из 3 растворов в метаноле Р, содержащих (А) 10 мг испытуемого вещества в 1 мл, (Б) 0,20 мг испытуемого вещества в 1 мл и (В) 10 мг стандартного образца винкристина сульфата СО в 1 мл. После извлечения пластинки из хроматографической камеры дают ей высохнуть на воздухе и оценивают хроматограмму в ультрафиолетовом свете (254 нм). Любое пятно, которое дает раствор А, кроме основного пятна, не должно быть более интенсивным, чем пятно, которое дает раствор Б. [c.376]

    Как выяснилось, для такого контроля очень удобна ЖХ, основанная на методе ХЛОХ с применением подвижной фазы, содержащей добавки хирального соединения (см. разд. 7.3, а также описанный ниже метод) [75]. Хроматографическая система состоит из колонки С, (4,6 X 250 мм), которую уравновешивают с подвижной фазой (водой), содержащей L-фeнилaлaнин (бмМ) и сульфат меди (II) (ЗмМ). Элюируемые соединения обнаруживаются УФ-детектором при 280 нм. [c.202]

    Приготовление хроматографической пластинки 6г полученного силикагеля смешивают с 0,6 г кальция сульфата (ч.д.а), растирают в ступке, постепенно прибавляя 17 мл воды, тщательно перемешивают и ровным слоем наносят на стеклянную пластинку размером 20X20 см, которую после этого сушат в строго горизонтальном положении на воздухе в течение суток или в сушильном шкафу при температуре 120—140 °С в течение 30— 40 мнн. [c.346]

    Сложные эфиры крахмала применяют в пищевой промышленности [224,225]. Для получения сложных эфиров полисахаридов, применяемых в качестве носителей для хроматографического разделения, используют ангидриды и хлорангидриды алифатических и ароматических карбоновых кислот [234—236]. Обработкой некоторых полисахаридов тетраполифосфорной кислотой [237] получают соответствующие фосфаты. Фосфоэфирные группировки можно использовать для сшивки полисахаридов так, крахмалы с фосфатными сшивками используют в пищевой промышленности. Получены сульфаты [238] многих полисахаридов некоторые из них, подобно гепарину, обладают антикоагулянтным и противовоспалительным действием (см. разд. 26.3.5.3). Получение эфиров сульфокислот, в частности эфиров п-толуолсульфокислоты, и их производных используют для защиты гидроксигрупп гликозидные связи таких эфиров обладают повышенной устойчивостью к действию кислот. [c.274]

    Эти приемы используются, например, при парофазном анализе водных растворов и сточных вод сульфатноцеллюлозных производств на содержание сернистых соединений сероводорода, метилмеркантана, этилмер-каптана, диметилсульфида и диэтилсульфида [2—5]. Проба воды (10—20 мл) набирается в стеклянный термостатируемый шприц (см. гл. 2) и смешивается с равным объемом насыщенного сульфатом натрия буферного раствора КС1 — НС1 с pH = 2. При этом подавляется диссоциация сероводорода, понижаются и стабилизируются значения коэффициентов распределения всех сернистых соединений и достигается почти двухкратное повышение чувствительности. Равновесный газ над раствором вытесняется поршнем шприца в дозирующую петлю газового крана, с помощью которого вводится в хроматографическую колонку. При дозах 0,3—0,8 мл с [c.106]

    Наличие оксид-ионов обусловливает основность поверхности АЬОз (по оценкам, pH 12). Кислоты с рКл < 13 отдают протоны этой поверхности, образуя заряженные сопряженные основания, которые сильно адсорбируются на поверхности. Сообщается, что при использовании сульфата кальция в качестве связующего поверхность оксида алюминия нейтрализуется и, следовательно, центры селективной адсорбции уничтожаются. Оксиды алюминия обладают уникальной селективностью к ароматическим углеводородам. Параметр а косвенно характеризует среднюю поверхностную энергию таких адсорбентов, как оксид алюминия. В ходе систематического исследования [112] было показано, что оксиды алюминия, приготовленные различными способами как при высокой, так и при средней температуре, характеризуются значениями а, равными 0.30-0.34 (отн. влажность 5%). К сожалению, имеются данные только при одном значении относительной влажности, для которой характерны близкие значения поверхностной энергии. Полученные результаты согласуются с данными ИК-спектров у- и Т1-А12О3 "хроматографические" полосы ОН занимают в спектре одно и то же положение. Более того, было найдено, что величина а для высокотемпературных а -А12О3 (удельная поверхность 32 мУг) практически постоянна во всем интервале изменения относительной влажности. Значение а для низкотемпературного ]-АЬОз (удельная поверхность 240 лУг) уменьшается при увеличении покрытия поверхности молекулами [c.376]

    Лантаноиды образуют полный набор солеобразных галогенидов МХ3. Трифториды лантаноидов практически нерастворимы в воде. Энергия кристаллических решеток остальных тригалогенидов значительно ниже, и они растворимы. Упомянутая выше склонность лантаноидов к высоким координационным числам проявляется, в частности, в том, что тригалогениды кристаллизуются из раствора с шестью или семью молекулами воды. С кристаллизационной водой выделяются из растворов оксалаты, нитраты, нитриты и сульфаты, что также свидетельствует об определенной склонности лантаноидов к комплексообразованию. Наиболее устойчивы хелатные комплексы с лигандами, координированными через кислород, например комплексы [M(H20) (EDTA)J с эти-лендиаминтетраацетатным ионом EDTA " (его структура показана на стр. 66), которые используются при хроматографическом разделении лантаноидов. Константы устойчивости таких комплексов заметно увеличиваются при переходе от La к параллельно уменьшению радиуса ионов. [c.381]

    Для качественного анализа 10—20 мл хлороформного извлечения упаривают до 0,5 мл и наносят на новую хроматографическую пластинку в виде полосы длиной 3—4 см. Метчик 0,5—2 мл извлечения. Хроматографируют при описанных выше условиях. Часть пластинки с метчиком проявляют 0,02% растворохМ дифенилкарбазона и сульфата ртути. С другой половины пластинки параллельно проявленным пятнам снимают участок сорбента площадью 4—5 см , на фильтре промывают 5 мл смеси спирта и эфира в соотношении 1 1 и подвергают исследованиям на тот или иной барбитурат (ориентирует предварительное исследование и соответствующее значение К ) микрокристаллическими реакциями. Для количественного определения барбитурата аналогичным путем подвергают хроматографированию 5—10 мл хлороформного раствора, с той только разницей, что элюирование производится 2 раза по 10 мл (настаивание 5 минут) борат-ным буфером pH 10,0 (для внутренних органов трупа). Элюаты отфильтровывают под вакуумом, доводят буфером до объема 25 мл и исследуют спектрофотометрически (стр. 150). [c.144]


Смотреть страницы где упоминается термин Сульфаты хроматографическое: [c.38]    [c.126]    [c.235]    [c.268]    [c.71]    [c.51]    [c.226]    [c.294]    [c.443]    [c.52]    [c.82]    [c.366]    [c.136]    [c.120]    [c.443]    [c.294]    [c.110]   
Определение анионов (1982) -- [ c.527 ]




ПОИСК





Смотрите так же термины и статьи:

Борная кислота, определение в присутствии сульфата никеля хроматографическое



© 2024 chem21.info Реклама на сайте