Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гиббса скорости

    RT nK = G = hH-ThS На диаграмме (рис. 1-1) приведен профиль энергии Гиббса для равновесия Ач Б. Энергия Гиббса реакции AG определяет константу равновесия, а значения энергии активации Гиббса — скорости реакций А->Б и Б А. Изменить состояние равновесия или подвижность системы можно варьированием структуры соединений или внешних условий (температура, растворитель и др.). [c.12]


    Скорость, с которой меняется свободная энергия при изменении концентрации отдельного вещества, называется химическим потенциалом системы, и Гиббсу удалось показать, что именно химический потенциал является движущей силой химических реакций. Химическая реакция идет самопроизвольно от точки с высоким химическим потенциалом к точке с низким химическим потенциалом, подобно тому как теплота самопроизвольно передается от точки с высокой температурой к точке с низкой температурой. [c.113]

    Оствальд был среди тех европейских ученых, которые открыли и оценили работы Гиббса. В 1892 г. он перевел статьи Гиббса по термодинамике на немецкий язык. Оствальд почти сразу же начал применять теории Гиббса при изучении катализа. Катализ (термин, предложенный Берцелиусом в 1835 г.) — изменение скорости химической реакции в присутствии небольших количеств веществ (катализаторов), которые не принимают видимого участия в реакции. Так, в 1816 г, Дэви установил, что порошкообразная платина [c.114]

    Одна из основных задач химии — установить зависимость между строением, энергетическими характеристиками химических связей и реакционной способностью веществ, изучить влияние различных факторов на скорость и механизм химических реакций. О принципиальной осуществимости процесса судят по величине изменения энергии Гиббса системы. Однако эта величина ничего не говорит о реальной возможности протекания реакции в данных конкретных условиях, не дает никакого представления о скорости и механизме процесса. Например, реакция взаимодействия оксида азота (II) с кислородом [c.191]

    Из табл. 8-4 и 8-5 следует, что независимо от числа компонентов для одной фазы А = I. Другими словами, только скорость потока можно свободно выбирать в качестве единственной степени свободы, остальные переменные определяются с помощью правила фаз Гиббса. [c.110]

    Расчеты константы равновесия химической реакции и изменения энергии Гиббса играют важную роль в оценке химической концепции нового метода, поскольку дают возможность определить максимально возможное количество целевого продукта. Отрицательный итог расчета заставляет отказаться от рассматриваемого процесса или искать новый способ проведения химического превращения, например, используя рециркуляцию, введение вспомогательного исходного вещества и т. д. Положительные результаты расчета еще не гарантируют возможности использования предложенного метода (скорость реакции может быть очень мала для промышленных целей), но указывают на то, что нужно провести соответствующее исследование (отыскать катализатор, ускоряющий превращение, и т. д.). [c.154]


    Для химической реакции движущую силу нельзя представить в виде, удобном для подстановки в уравнение (1Х-1). Величиной, определенным образом связанной с движущей силой, является изменение энергии Гиббса, которое как термодинамическая, а не кинетическая величина определяет только качественно направление хода реакции. Выше изменение э.той энергии позволило нам рассчитать концентрации (т. е. величины, оказывающие влияние на скорость реакции), которые могут быть достигнуты системой в состоянии равновесия. [c.348]

    Скорость процесса в этой области, зависящая от изменения энергии Гиббса и обратно пропорциональная кинетическому сопротивлению, будет оказывать решающее влияние на скорость всего превращения. Установим сначала, какие условия проведения процесса влияют на значение энергии Гиббса, а следовательно, и [c.349]

    Скорость гомогенного зародышеобразования определили по формуле Гиббса — Фольмера [26] [c.355]

    Заиисимость константы скорости реакции от электростатической составляющей энергии Гиббса активизированного комплекса выражаете ураинением [c.415]

    Формулы (91.14) или (91.16) и являются ответом на поставленный вопрос (см. с. 293) и называются формулами канонического распределения Гиббса для дискретных квантовых состояний. Это достаточно общие формулы. Из них следует и квантовый закон распределения Больцмана и закон распределения скоростей Максвелла. Каноническое распределение в форме (91.14) или (91.16) определяет вероятность одного квантового состояния I. Возникает вопрос, какова вероятность рп п) реализации одного энергетического состояния с энергией Еп- Эта вероятность будет больше в раз вероятности реализации [c.294]

    Изменение энергии Гиббса при образовании активированного комплекса может быть выражено через энергию Гиббса реагентов, активированного комплекса и растворителя, находящихся в стандартном состоянии. Это позволяет проанализировать влияние растворителя и свойств реагентов на константу скорости реакции. [c.594]

    Таким образом, связь изменения энергии Гиббса при реакции с ее константой равновесия позволяет определить возможную глубину реакции, допускаемую термодинамикой — термодинамическую возможность осуществления реакции. При этом необходимо иметь в виду следующее. Термодинамика дает возможность установить, что реакция в данных условиях неосуществима (если при реакции ДО О), но термодинамическая осуществимость реакции еще не означает ее реальной осуществимости, так как величина ДО (и константа равновесия реакции) совершенно не связана со скоростью реакции. [c.7]

    Согласно уравнению (11.1) lg/< p>3 только при условии AGo <0. Таким образом, необходимым условием протекания реакции в прямом направлении является отрицательное значение энергии Гиббса. Чем больше числовое отрицательное значение AGr, тем выше скорость прямой реакции. [c.223]

    Согласно сказанному выше, сталь, прошедшая холодную механическую обработку, корродирует в природных водах с той же скоростью, что и отожженная [1]. Однако в кислотах скорость коррозии нагартованной стали увеличивается в несколько раз (рис. 7.1). Традиционно многие авторы приписывали этот эффект остаточному напряжению в металле, которое увеличивает склонность к коррозии. Но эта интуитивная концепция, вероятно, неверна, так как остаточная энергия, приобретенная в результате холодной деформации (по калориметрическим данным обычно <7 кал/г), недостаточна, чтобы обусловить значительное изменение энергии Гиббса [3]. Вероятно, наблюдаемое увеличение скорости коррозии обусловлено скорее сегрегациями атомов углерода или азота по дефектным местам, образовавшимся вследствие пластической деформации (рис. 7.2), чем влиянием самих дефектов (рис. 7.3). На этих участках водородное перенапряжение ниже, чем на цементите или на железе [2], и это, возможно, наиболее важный фактор. Второстепенными факторами являются [c.130]

    Агрегативная устойчивость пен характеризуется скоростью укрупнения частиц дисперсной фазы за счет коалесценции и изотермической перегонки. Стабилизация пен достигается с помощью ПАВ. В зависимости от природы ПАВ и свойств образуемых ими адсорбционных слоев, устойчивость пен обусловливается действием общих для дисперсных систем факторов стабилизации (ионно-электростатический, структурно-механический барьер и др.) и специфическим для пен и эмульсий эффектом Гиббса — Марангони [c.175]

    Слабое эмульгирование может быть получено с любым ПАВ, т. е. с любым соединением, которое понижает поверхностное натяжение между двумя жидкостями. Последнее связано с адсорбцией ПАВ на межфазной поверхности и влияет как на легкость диспергирования при получении эмульсии, так и на скорость разрушения жидкой пленки между каплями. Согласно некоторым взглядам, существенным фактором стабилизации является эластичность пленки. Ниже изложена хорошо известная теория этого явления Марангони и Гиббса .  [c.84]

    О принципиальной осуществимости процесса судят по значению изменения энергии Гиббса системы. Однако оно ничего не говорит о реальной возможности протекания реакции в данных условиях, не дает представления о скорости и механизме процесса. Например, реакция взаимодействия оксида азота (II) с кнслородом [c.148]


    Теория переходных состояний связывает скорость реакции с изменением свободной энергии Гиббса ДО при образовании переходного состояния из основного состояния. Эту теорию можно использовать для количественной оценки реакционной способно- [c.190]

    Величина энергии активации Гиббса ДО есть разность стандартных энергий Гиббса переходного и основного состояния системы. Эта величина определяется экспериментально из значений константы скорости при различных температ> рах [c.267]

    Появление новой фазы в пересыщенной системе представляет собой кинетическую проблему. Кинетика этого процесса (скорость образования новой фазы) очень существенно зависит от величины некоего энергетического барьера, получившего название работы образования зародыша новой фазы. Гиббс [4] показал, что эта работа может быть рассчитана термодинамическим путем, и нашел, что она равна 1/3 свободной поверхностной энергии капли такого размера, при котором давление ее пара равно давлению пара в пе- [c.94]

    В заключение отметим, что все теории фазообразования, которые мы затронули выше, не учитывают отклонения свойств малых фаз от свойств больших масс вещества. Поскольку зарождение новой фазы определяется скоростью образования очень малых частиц, естественно допустить, что подобные отклонения должны оказывать влияние на этот процесс. Основываясь на упомянутой поправке к уравнению Гиббса—Томсона, Щербаков и его сотрудники (1958—1961 гг.) произвели термодинамический анализ скорости образования зародышей в гомогенной системе и показали, что уравнение Гиббса—Томсона с поправкой приводит к выводу [c.104]

    Количество и разнообразие исследований, лежащих в области, пограничной между физикой и химией, постоянно возрастало в середине и в третьей четверти XIX века. Было развито термодинамическое учение о химическом равновесии (Гульдберг и Вааге, Гиббс). Исследования Вильгельми положили начало изучению скоростей химических реакций (химическая кинетика). Исследовался перенос электричества в растворах (Гитторф, Кольрауш), изучались законы равновесия растворов с паром (Д. П. Коновалов) и развивалась теория растворов (Д. И. Менделеев). [c.14]

    Расчет изменения энергии Гиббса, константы равновесия и предельной температуры полимеризации. Если теплоты и изменения энтропии при полимеризации установлены, то расчет изменения энергии Гиббса или Гельмгольца, константы равиО" весия и предельной температуры выполняется по известным, соотношениям (АОм=АЯм—ГАХм, АО°и= —ЯТ п К, 7 пр= = АЯм/А5м) и не вызывает затруднений. Нужно лишь подчеркнуть, что для высокомолекулярной полимеризации константа равновесия есть отношение констант скоростей роста полимерной цепи и деполимеризации  [c.265]

    Ветчина энергии активации Гиббса, 40 есть разность стандартных энергий Гиббса иереход1Юго и основжц-о состояния системы. Эта величина определяется экспериментально из зт1ачеиий константы скорости при различных температурах. [c.95]

    Для описания явлений четвертого уровня иерархической структуры ФХС могут быть использованы методы статистической теории механики суспензий, гидромеханические модели, основанные на представлениях о взаимопроникающих многоскоростных континиумах, методы механики взвешенных, кипящих дисперсных систем модели, построенные на основе математических методов кинетической теории газов, и др. В частности, для ФХС с малыми параметрами (давлениями, скоростями, температурами, напряжениями и т. д.) при описании процессов в полидисперсных средах эффективен прием распространения метода статистических ансамблей Гиббса на совокупность макровключений (твердых частиц, капель, пузырей) дисперсной среды. Та или иная форма описания стохастических свойств ФХС, дополненная детерминированными моделями переноса массы, энергии импульса в пределах фаз, в итоге приводит к общей математической модели четвертого уровня иерар- [c.44]

    В области малых параметров (давлений, градиентов скоростей, температур, напряжений) эффективный метод анализа всех перечисленных явлений с единой точки зрения представляет метод статистических ансамблей Гиббса [35]. В статистической ыеха- [c.67]

    Уменьшение свободной энергии Гиббса по мере приближения системы к химическому равновесию представляет диссипацию химической энергии системы. Пусть v . — стехиометрический коэффициент при А -м компоненте, участвующем в реакции. Тогда скорость химического превращения можно выразить через скорость изменения количества к-то компонента Д. = dnikldt с помощью соотношения [c.118]

    Вследствие того, что по условию процесс перемешивания зазнородных газов проводится при Т, Р=сопз1, убыль энергии иббса при обратимом проведении процесса равна максималь-но-полезной работе и просто работе — в необратимых процессах. Следовательно, в прямом процессе преобладает доля самопроизвольного, в обратном процессе — разделение смеси газов на отдельные компоненты, который может проходить только при затрате работы и в таком количестве, которая должна компенсировать уменьшение энергии Гиббса в прямом процессе, преобладает доля несамопроизвольного процесса. В обратимом процессе затраченная работа будет минимальной. Фактически же процесс разделения газов проводят с конечной скоростью, поэтому на него затрачивается гораздо больше работы, чем в обратимом процессе. Однако затрачивая в необратимом процессе избыток энергии на разделение газов, значительно выигрывают время на их разделение. [c.127]

    Иа основании общей термодинамической теории Гиббса было строго показано (см. [ Ю]), что формула (2.3), выран вющая закои действуюн их масс, справедлива на пределами ее кинетического вывода, т. с. и тогда, когда скорости арялшй и обратной реакций не описываются уравнениями вида (1.7) [c.9]

    Значение Afi° не зависит от катализатора. Следовательно, константа равновесия К° не зависит от катализатора. Константа равновесия реакции (а) К° может быть выражена через отношение констант скоростей прямой fej и обратной реакций К° = kjk . Отсюда вытекает положение о том, что катализатор в одинаковой степени увеличивает (или уменьшает) константы скоростей прямой и обратной реакций. Кинетический критерий реакционной способности AG° представляет собой изменение энергии Гиббса в процессе образования активированного комплекса (Aj — Аг — Х) из исходных веществ и катализатора  [c.619]

    F R ) — объемная (массовая) скорость потока твердого вещества состоящего из частиц радиусом R , mVmuh (кг мин). Af — стандартная свободная энергия реакции по Гиббсу, ккал. [c.15]

    Уравнение Гиббса часто применяют для вычисления адсорбции на межфазных поверхностях эмульсий М/В. Благодаря значительной межфазной поверхности, эмульсии являются удобными системами для определения адсорбции посредством измерения падения концентрации эмульгирующего агента. Кокбейн (1954) успешно измерил поверхностные концентрации додецилсульфата натрия на межфазной поверхности эмульсии типа М/В и показал применимость уравнения Гиббса. Трудности возникают, когда замедляется достижение постоянного значения поверхностного или межфазного натяжения, например, в случае сильно разбавленных растворов, следов высоко поверхностно-активных примесей или при наличии макромолекул. Во-первых, все методы, связанные с увеличением межфазной поверхности — например, метод счета капель или метод дю Нуи — дают завышенные результаты (Педдэй и Расселл, 1960). Во-вторых, применение равновесной формулы к системе, поверхностное натяжение которой все еще медленно уменьшается (например, протеины), является сомнительным, так как скорость понижения а может быть [c.85]

    Энергетика химических превращений. Внутренняя энергия. Энтальпия. Энтальпия образования. Закон Гесса. Термохимические расчеты. Направление химических реакций. Энергетический и энтропийный факторы. Энергия Гиббса, Энергия Гиббса образования. Химическое равновесие. Характеристика глубины протекания процесса. Константа химического равновесия. Смещение химического равновесия. Химическая кинетика. Энергия активации. Активированный комплекс. Механизм химических реакций. Катализ. Управление глубииой и скоростью химического процесса. [c.112]

    При помощи адсорбционного уравнения Гиббса поверхностное давление можно выразть также как функцию от скорости испарения атомов. Из численных значений поверхностного давления можно рассчитать дипольные [c.131]

    Укрупнение частиц может происходить по нескольким причинам. Как известно, мелкие капельки и кристаллики имеют повышенное давление пара и соответственно повышенную растворимость. Увеличение давления пара или растворимости связано с линейными размерами частиц уравнением Гиббса—Томсона. Согласно этому уравнению, эффект должен быть заметен даже для частиц коллоидных размеров, поэтому в гетерогенной системе с достаточно высокой степенью дисперсности большие частицы растут за счет меньших. Так как скорость этого процесса определяется скоростью диффузии растворенного вещества от одной частицы к другой, то он наблюдается только в золях достаточно растворимых веществ. Известно, что Ag l и Ва304, которые сравнительно хорошо растворимы в воде, образуют не очень устойчивые золи. При добавлении спирта растворимость Ва804 понижается, а устойчивость золя повышается. Процессы рекристаллизационного укрупнения играют важную роль в весовом анализе и во многих других случаях. Этим же процессам приписывают, например, рост частиц галогенидов серебра при приготовлении фотоэмульсий.  [c.192]


Смотреть страницы где упоминается термин Гиббса скорости: [c.742]    [c.221]    [c.14]    [c.118]    [c.580]    [c.127]    [c.8]    [c.109]    [c.104]    [c.176]    [c.114]    [c.535]   
Аналитическая химия Часть 1 (1989) -- [ c.28 ]




ПОИСК





Смотрите так же термины и статьи:

Гиббс

Гиббса изменений равновесий на скорость

Гиббса—Дюгема дифференциальное скорости химической реакции

Гиббса—Дюгема интегральное скорости химической

Гиббсит



© 2024 chem21.info Реклама на сайте