Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поликонденсация катализ

    Перспективы катализа необозримы. Благодаря тонкой избирательности некоторых катализаторов осуществлены и осуществляются различные многостадийные процессы, недоступные методам классической органической химии и осуществляющиеся как бы в одну стадию (синтез углеводородов, поликонденсации, полимеризации, синтезы на базе олефинов и ацетиленов и т, д.). Микрогетерогенные или ферментативные реакции, происходящие в организмах животных и растений, протекают очень сложны.ми и часто еще не достаточно ясными путями. Вероятно, в недалеком будущем настанет время, когда и эти процессы будут осуществлены обычными каталитическими путями, что явится, новой победной главой в эволюции катализа. [c.780]


    По такому типу протекают реакции гидратации, дегидратации, гидролиза, этерификации, поликонденсации в растворах. Примером кислотно-основного катализа в растворе может слул ить гидратация олефинов в спирты, катализируемая кислотами (НА). В общем виде [c.221]

    Проведение каталитических реакций в однородной среде технически легко осуществимо. Аппараты, в которых проводят гомогенные каталитические процессы в газовой фазе, могут быть камерами, колоннами, трубчатыми теплообменниками и т. п. Гомогенное окисление ЗОг оксидами азота осуществляется при нитроз-ном способе производства серной кислоты как в жидкой, так частично и в газовой фазе в свободном объеме насадки башен. Эндотермический процесс дегидратации уксусной кислоты в парах в присутствии катализатора парообразного триэтилфосфата ведут в трубчатых реакторах, обогреваемых топочными газами, циркулирующими в межтрубном пространстве. Жидкофазный катализ производят обычно в реакторах с различного рода перемешивающими устройствами. Например, поликонденсацию фенола и альдегида в водном растворе с катализатором соляной кислотой ведут в реакторах с механическими мешалками. [c.235]

    Высокотемпературный.- механизм образования продуктов уплотнения из гомологов метана. Поликонденсация ароматических углеводородов. Высокотемпературный механизм образования продуктов уплотнения из гомологов метана связан с поликонденсацией предварительно полученных тем или иным способом промежуточных ароматических углеводородов (И). Следовательно, обсуждение его может быть сведено к рассмотрению поликонденсации индивидуальных ароматических веществ, устанавливаемых в качестве мономеров поликонденсации в каждом конкретном случае. Этому вопросу посвящены работы [4, 5, 9—15, 25—27, 75 —771, выполненные в лаборатории органического катализа МГУ с индивидуальными [c.189]

    Важным моментом при рассмотрении элементарных актов процесса поликонденсации являются вопросы, связанные с катализом этих реакций. Несмотря на то, что в ряде случаев поликонденсация может протекать в отсутствие специально введенных катализаторов, катализ в поликонденсацни играет большую роль и широко применяется [3, 4, 180]. Общим свойством используемых катализаторов является их способность образовывать промежуточные продукты с реагентами и тем самым повышать их химическую активность. [c.40]

    Однако, поскольку область поликонденсации характеризуется большим разнообразием химических превращений, вовлечением в реакцию функциональных групп различных типов [3, 4, 12, 128, 129, 180], вопросы катализа в целом по этому способу получения высокомолекулярных соединений весьма сложны. К сожалению, в настоящее время подбор того или иного катализатора в поликонденсацни осуществляется обычно экспериментально. [c.40]


    Начальными продуктами поликонденсации фенола и формальдегида при кислотном катализе являются о- и и-гидроксиметильные производные [c.62]

    Обычно карбамидоформальдегидные смолы синтезируют поликонденсацией в водных и щелочных средах. В зависимости от конечного применения продукта используют 1,5—2-кратный избыток формальдегида. В качестве катализаторов можно применять все соединения основного характера при условии их достаточной растворимости в воде. Наиболее широко используются щелочи. Однако pH реакционной смеси не должен превышать 8—9 во избежание протекания реакции Канниццаро для формальдегида. Так как pH раствора уменьшается в процессе реакции, его необходимо поддерживать неизменным, либо используя буферный раствор, либо добавляя щелочь. При этих условиях продолжительность реакции составляет 10—20 мин при 50—60 °С. После завершения реакции необходимо оттитровать непрореагировавший формальдегид с гидросульфитом натрия [21] или гидрохлоридом гидроксил-амина. Титрование необходимо проводить очень быстро и при низких температурах (10—15 °С), так как иначе расщепление метилольных соединений с образованием формальдегида приводит к ошибке в анализе. Из-за этой обратимости реакции выделение растворимых продуктов конденсации оказывается возможным лишь при осторожном выпаривании воды в слабощелочной среде в вакууме при температуре ниже 60 °С. Дальнейшую поликонденсацию с целью получения сшитых продуктов обычно проводят в исходном водном растворе либо нагреванием нейтрального раствора до 120— 140 С (10—60 мин), либо проводя кислотный катализ при низких [c.212]

    Меламин загружают через дозатор в аппарат для растворения, куда одновременно поступает формалин, нейтрализованный содой. Растворение проходит при 85—90°С за несколько минут, и раствор непрерывно подается дозировочным насосом в трубчатый реактор, в котором при 110—120 °С за 30—40 с происходит поликонденсация. Конденсационный раствор частично выпаривается в трубчатке, а затем поступает в смеситель, где смешивается при 30—40 °С с измельченной сульфитной целлюлозой. Сырой мелалит высушивается в ленточной сушилке горячим (150 °С) воздухом, после чего измельчается в шаровой мельнице непрерывного действия, в которую загружают также красители, смазку и катализа- [c.190]

    Анализируя данные, приведенные в разделах IX 2, IX 3 и параграфе IX 4 1, в этом процессе можно выделить три стадии редкую сшивку, формирование жесткой пространственной сетки и накопление в последней полициклических бензоидных структур Все три стадии протекают в условиях гетерофазного кислотноосновного катализа, что очевидно из зависимости скоростей превращения от концентрации водородных и гидроксильных ионов Изучение механизма твердофазной трехмерной поликонденсации, приводящей к образованию пространственной сетки, со- [c.283]

    Физическая химия полимеров в настоящее время вполне определилась как самостоятельный раздел физической химии, с одной стороны, и химии высокомолекулярных соединении, с другой. Этот раздел современной химии можно рассматривать как физическую химию процессов полимеризации и поликонденсации (с традиционным изучением кинетики реакций и катализа) и как физическую химию растворов и твердых полимеров, связывающую физические характеристики растворов и твердых полимеров с их химическим строением. [c.3]

    Метод межфазного катализа дает возможность проводить реакции полимеризации в неполярных апротонных растворителях, используя инициаторы, которые обычно нерастворимы в таких средах и мало активны, чтобы инициировать полимеризацию. В разд. 6.4 мы обсудили поликонденсацию бисфенола А с фосгеном в условиях межфазного катализа, которая приводит к образованию поликарбонатов. Эта реакция является примером одного из первых и наиболее важных (с промышленной точки зрения) синтезов, в котором нашел применение метод межфазного катализа. [c.165]

    Жидкофазный гомогенный катализ производят обычно в реакторах с различного рода перемешивающими устройствами. Например, поликонденсацию фенола и альдегида в водном растворе с катализатором соляной кислотой ведут в реакторах с механическими мешалками. [c.255]

    Количественная сторона применения катализаторов в процессе поликонденсации в расплаве наиболее полно разработана для случаев кислотно-основного катализа. [c.100]

    Реакции поликонденсации в растворе могут катализироваться ионами, поэтому для катализа таких процессов целесообразно применять ионообменные смолы, в частности катиониты. Хотя данные по этому вопросу практически отсутствуют, опыт по применению ионообменных смол для катализа реакций монофункциональных соединений позволяет надеяться на эффективность этого способа и при проведении поликонденсационных процессов. Вероятно, возможно осуществление ионообменного катализа таких процессов, как полиэтерификация, поликонденсация с участием альдегидов и др. [c.129]


    Катализ реакций поликонденсации ионообменными смолами сулит большие технологические удобства легкость осуществления непрерывного процесса и высокую чистоту раствора полимера (отсутствие в нем примесей катализатора). [c.129]

    Кроме этого в кислых средах величина молекулярного веса может возрастать за счет увеличения т. е. за счет катализа основной реакции протонами. Из этого следует, что добавление щелочи в водную фазу не всегда является необходимым условием для синтеза высокомолекулярных соединений методом межфазной поликонденсации. [c.183]

    Скорость процесса ноликонденсации, как и всех химических реакций, увеличивается в присутствии катализатора. Целью проведения катализа поликонденсационных процессов является увеличение скорости реакций образования макромолекул. В случае обратимых процессов это приводит к сокращению времени синтеза полимера данной (равновесной) молекулярной массы, а в случае необратимых процессов — к увеличению максимальной молекулярной массы полимера. Число каталитических реакций поликонденсации велико. [c.99]

    Кинетика поликоиденсации в расплаве в присутствии катализатора становится более сложной, чем в его отсутствие в ряде случаев реакция начинает описываться уравнением не второго порядка. Изменение порядка реакции происходит в том случае, если каталитическими свойствами обладает один из реагентов. Так, поликонденсация карбоновых кислот с диолами катализируется анионами. Поэтому порядок реакции по мономерам становится равным 2,5 при катализе чун<ими ионами, например ионами введенных минеральных кислот, он равен 2. [c.125]

    Рассматриваемые катализаторы представляют собой смешанные окислы алюминия и кремния, содержащие в качестве активатора небольшие количества воды [46]. Они получили разнообразное применение в промышленности в процессах крекинга, алкилирования, полимеризации, изомеризации и т. д. Это типичные представители кислотно-основного катализа. В процессе приготовления происходит поликонденсация гелей AI2O3 и Si02 с образованием связей —Si—О—А1—. Это не исключает наличия в алюмосиликатах и связей типа —Si—О—Si— или —А1—О—А1—. [c.106]

    Для П. наиб, распространены мономеры с амино-, карбокси-, гидрокси-, меркаптогруппами, из к-рых получают важнейшие типы поликонденсац. полимеров. В отличие от полимеризации, при к-рой для получения определенного полимера обычно требуется один мономер, поликонденсац. полимеры одного типа можно синтезировать из мономеров с самыми разнообразными функц. группами. Напр., при получении сложных полиэфиров гидроксилсодержащие мономеры м. б. заменены на галогенсодержащие или сложные эфиры, а вместо карбоновых к-т можно использовать их хлораигидриды, эфиры, соли, ангидриды и т. п. Естественно, что при такой замене меняются закономерности и условия П., тип катализа, характер концевых групп в образующихся макромолекулах и, кроме того, появляются возможности [c.632]

    В настоящее время механизм переэтерификации и поликонденсации нельзя считать полностью раскрытым. Не до конца выясненным остается механизм при кислотном и основном типах катализа и при вполне вероятном гетерогенном катализе. Такая каталитическая универсальность этих реакций указывает на возможность протеканий их по многим различным механизмам. Ьыла даже сделана попытка рассмотреть поликонденсацию дигликольтерефталата с позиций классической конденсационной схемы прямой этерификации кислот спиртами [9]. Авторы наблюдали, что только при добавке воды в исходный чистый дигликольтерефталат может быть без катализатора получен полиэфир достаточно высокой молекулярной массы. Но процесс изучали [c.59]

    Катализ применяется при получении важнейших неорганических продуктов основной хи.мической промышленности водорода, аммиака, серной и азотной кислот. Особенно велико и разнообразно применение катализа в технологии органических веществ, прежде всего в органическом синтезе — в процессах окисления, гидрирования, дегидрирования, гидратации, дегидратации и др. При помонги катализаторов получают основные полупродукты для синтеза высокополимеров. Непосредственное получение высокомолекулярных соединений полимеризацией и поликонденсацией мономеров также осуществляется с участием катализаторов. На применении катализаторов основаны многие методы переработки нефтепродуктов каталитический крекинг, риформинг, изомеризация, ароматизация и алкилирование углеводородов. Жидкое моторное топливо из твердого (ожижение твердого топлива) получают при помощи катализаторов. [c.210]

    Можно предположить, что дальнейшее развитие работ в этой области будет связано с химической и физической модификацией соединений металлов, которая не только повысит их каталитическую активность и будет способствовать образованию более высокомолекулярных полимеров, но и приведет к получению композиций с еще более существенными преимуществами в свойствах. Перспективным развитием работ в этой области, несомненно, представляется получение нанокомпозиций. В последнее время такие работы получили заметное развитие, так как нанодиспергирование небольших количеств (до 5 мас.%) наполнителя, например слюды, в полимере позволяет получать композиции с комплексом интересных свойств. В этом аспекте поликонденсация в присутствии наполнителя представляется весьма перспективным направлением, так как дает возможность решить сразу несколько проблем, связанных не только с диспергированием наполнителя, но и с катализом поликонденсационного процесса [20]. [c.313]

    Наконец, отметим еще один возможный путь термокаталитического разложения спиртов, который связан уже с полимеризацией и поликонденсацией остатков распавшейся молекулы. Чаще всего он ведет к смолообразованию и отложению на стенках реакционного сосуда карбенов, карбоидов и угля, т. е. к нежелательным явлениям. Однако и здесь все зависит от катализатора. В своих опытах Ипатьеву, как правило, всегда удавалось избегать засорения реакционных сосудов нежелательными высокомолекулярными углеродистыми продуктами. В случаях же, когда неизбежно образовывалось некоторое количество углистой массы, она всегда изучалась с точки зрения участия ее в процессе катализа. Вместе с тем указанный путь термокаталитического разложения спиртов может привести и к таким продуктам, которые являются очень важными в химии л, следовательно, весьма желательными. Впервые такая возможность была открыта п1ри изучении дегидратации опиртов. Ипатьев в соответствии со своей гипотезой об окислительно-восстановительных реакциях как промежуточных фазах каталитического процесса испытал наряду с АЬОз также и металлический алюминий как катализатор разложения этилового опирта. В результате было устамов-лено новое направление процесса [27] [c.38]

    Серию интересных исследований по получению дивинила на основе спирта и ацетальдегида провели в Японии Иноуэ, Итикава и Фурукава [246]. Пользуясь в качестве катализатора окисью тантала на силикагеле (2 98), они изучили кинетику реакции, выделили ряд продуктов, которые были приняты за промежуточные, исследовали их взаимодействие в условиях катализа. Удовлетворительное совпадение теоретически рассчитанной и экспериментально найденной скорости образования дивинила из спирта и ацетальдегида привели авторов к выводу о том, что при синтезе дивинила основными являются конкурентные реакции а) поликонденсация альдегидов (ацетальдегида и кротонового альдегида) и б) восстановление — дегидрогенизация кротонового альдегида с помощью спирта. Кроме того, Иноуэ, Итикава и Фурукава разработали метод синтеза дивинила  [c.246]

    Угельстад и де-Йонге [52] на основании исследования кинетики реакции амидов с формальдегидом пришли к выводу, что формальдегид реагирует в дегидратированной форме и связь С — N образуется за счет электронной пары атома азота. При кислотном катализе активируется молекула формальдегида, а при основном — молекула амида. Основной реакцией поликонденсации мочевины с формальдегидом является присоединение амидной группы к двойной связи формальдегида и затем последующее отщепление воды при реакции метилольных групп с амидными [53—59]. [c.21]

    Важной в промышленном отношеншГ и одной из первых ре-акций, в которой применен катализ четвертичными солями аммония в двухфазной системе, является синтез поликарбонатов [13]. В типичном примере 2,2-(4,4 -диоксидифенил)пропан (бис-фенол А) растворяют в концентрированном водном растворе едкого натра и обрабатывают фосгеном в растворе хлористого метилена. Соли типа бензилтриэтиламмонийхлорида или третичные амины катализируют поликонденсацию [13—18]. Двухфазная полимеризация изображена ниже. [c.116]

    Выяснение комплекса природных условий, влияющих на ход полимеризации продуктов конденсации, представляет важную за-дaчyf которая еЩе далека от разрешения. Есть все основания предполагать, что среди этих условий важное значение приобретают абиотические факторы гидротермические условия, химический, механический и минералогический состав почвы, непосредственно влияющие на развитие или ингибирование радикально-цепных реакций полимеризации и поликонденсации, сопровождающих формирование молекул гумусовых веществ (о формах абиотического катализа, в частности на гидроокиси железа, крем-некислоте, анионитах [25]). [c.309]

    Катализ применяется при получении важнейших неорганиче ских продуктов основной химической промышленности водорода аммиака, серной и азотной кислот. Особенно велико и разнооб разно применение катализа в технологии органических веществ прежде всего в органическом синтезе — в процессах окисления гидрирования, дегидрирования, гидратации, дегидратации и дру гих. При помощи катализаторов получают основные полупродукты для синтеза высокополимеров синтетического каучука (бутадиен стирол, изобутилен), пластических масс (метанол, формальдегид фталевый ангидрид), а также полупродукты для синтеза красите лей, ядохимикатов и других химических продуктов. Непосредст венное получение высокомолекулярных соединений полимериза цией и поликонденсацией мономеров также осуществляется с уча стием катализаторов. [c.230]

    Зависимость характеристической вязкости полиэтилентерефталата от природы катализах ора при поликонденсации бис-( 3-оксиэтил)-тереф1алатав расплаве [c.99]

    Катализ поликонденсацин. Для укорения процессов поликонденсации в расплаве применяют катализаторы. Учитывая возможность моделирования иоликонденсации, подбирают катализатор для синтеза полимеров на основе данных о катализе реакций монофункциональных соединений. Так, было показано [16], что для катализа реакции поликонденсации диизоцианатов с глико-лями третичными аминами во многих случаях выполняется соот-нощение типа уравнения Бренстеда [17] для кислотно-основного катализа  [c.123]

    В более узком интервале влияние температуры на поликонденсацию в растворе может быть весьма разнообразным молекулярная масса полимера может уменьшаться или увеличиваться с повышением температуры синтеза, причем наблюдались даже случаи экстремальной зависимости. Рядом авторов были получены кривые с двумя максимумами (рис. 5.7). Все зависит от температурной зависимости скоростей реакций, составляющих процесс поликоиденсации. Так, данные, приведенные на рис. 5.7, можно объяснить [18] аналогичным температурным ходом константы скорости реакции роста, которая определяется тремя реакциями некаталити-ческой реакцией, каталитической за счет основного катализа и каталитической за счет нуклеофильного катализа. Изменение соотнощения этих трех реакционных потоков дает бимодальную кривую зависимости общей скорости от температуры, что копируется температурной зависимостью вязкости полимера от температуры. [c.139]

    Специальные мастики. Феноло-формальдегидные смолы и бакелитовые лаки обладают весьма существенным недостатком для перевода их в неплавкое и нерастворимое состояние требуется вестн длительный и сложный процесс термической обработки при температурах, доходящих до 160—170°. Для снижения температуры и ускорения процесса отверждения феноло-формальдегидиой смолы реакцию поликонденсации фенола с формальдегидом вед /т в присутствии специальных катализа-, торов. [c.260]


Библиография для Поликонденсация катализ: [c.15]   
Смотреть страницы где упоминается термин Поликонденсация катализ: [c.289]    [c.124]    [c.59]    [c.295]    [c.311]    [c.366]    [c.124]    [c.432]    [c.449]    [c.140]    [c.246]   
Основы синтеза полимеров методом поликонденсации (1979) -- [ c.123 ]

Химия и технология плёнкообразующих веществ (1981) -- [ c.22 ]




ПОИСК





Смотрите так же термины и статьи:

Внешний катализ поликонденсации

Катализ реакций поликонденсации

Основной катализ поликонденсации фенола с формальдегидом



© 2025 chem21.info Реклама на сайте