Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Марганец растворимость

    К числу таких компонентов относятся цинк, олово, сурьма, серебро, марганец. Растворимость их, например, при температуре 300 °С, в меди, т. е. в металле, для которого главным образом применяют свинцовые припои, составляет 35% 2п 11% 5п  [c.92]

    Ко второй Группе можно отнести железо, никель, кобальт, хром н марганец, растворимость водорода в которых при обычных условиях невелика, но все же представляет собой измеримую величину. [c.36]


    Близкие по химическим свойствам и размерам атомов никель, кобальт, железо и марганец образуют друг с другом непрерывный ряд твердых растворов. В ряду Сг — V — Т1 по мере увеличения различий в химических свойствах растворимость металлов в никеле падает. Кальций и калий, которые резко отличаются от никеля по свойствам и атомным размерам, твердых растворов с ним практически не образуют. [c.254]

    Включения MnS имеют более низкую электропроводимость, чем FeS, к тому же марганец снижает растворимость серы в твердом железе, восстанавливая тем самым анодную поляризацию железа, пониженную благодаря присутствию серы [41]. Присутствие кремния слегка повышает скорость коррозии в разбавленной соляной кислоте (рис. 6.16). [c.126]

    При высоком pH электролита основное количество водорода образуется при разложении воды и восстановлении иона аммония. В результате последней реакции получается аммиак, с которым марганец дает растворимые комплексы типа Мп(ЫНз)п-504. Аммонийные соли и аммиак затрудняют образование твердой фазы. [c.281]

    Таким образом, сернистый никель в миллион раз менее растворим, чем сернистый марганец . Большое различие в растворимости отдельных сульфидов является основой многих методов разделения. [c.93]

    Чрезвычайно распыленный по горным породам марганец вымывается водой и сотнями тысяч тонн ежегодно выносится реками в океан. Между тем- содержание Мп в мор й)й воде очень мало (10" —10 %), тогда как ил глубоких мест океана содержит его значительно больше (до 0,3%). Обусловлено это постоянно протекающим окислением (за счет растворенного в воде кислорода) растворимых производных двухвалентного марганца до практически нерастворимого гидрата двуокиси (МпОг л НгО), который и осаждается на дно. В отдельных местах океанского дна обнаружены камнеподобные образования ( конкреции ), содержащие иногда до 45% марганца (а также примеси кобальта, никеля и меди). Возможно, что богатые месторождения подобных конкреций станут объектом промышленной эксплуатации. Ежегодная мировая добыча марганцовых руд исчисляется миллионами тонн. [c.300]

    Приведем пример дробного обнаружения катионов кальция. Лучше всего его обнаружить в виде оксалата. В этом случае алюминий, хром, марганец, железо и другие катионы маскируются в виде комплексных оксалатов, легко растворимых в воде. Некоторые катионы тяжелых металлов — серебро, сурьма, ртуть, свинец, висмут не дают растворимых оксалатных комплексов, но осаждаются металлическим цинком. В раствор переходит ион цинка, не мешающий реакции на кальций и образующий комплексный оксалат. Стронции и барий не мешают реакции, так как осаждаются в виде сульфатов растворимость сульфата кальция 2,5 г/л, что позволяет уверенно обнаружить кальций в фильтрате в виде оксалата кальция после осаждения мешающих катионов. [c.133]


    Показатели качества Основное вещество, % Растворимые примеси, % Хлориды (С1), % Марганец (Мп), % [c.341]

    Растворимость углерода в жидком металле существенно изменяется при введении добавки другого элемента, причем эти изменения могут быть как в сторону уменьшения, так и в сторону увеличения растворимости. С этой точки зрения исследовались в основном металлы, используемые при производстве стали железо, никель, кобальт и марганец. Добавки германия, мышьяка,. селена, меди, палладия, индия, серы, золота, теллура, бора и фосфора понижают, а хрома, вольфрама, молибдена и церия увеличивают растворимость углерода в таких сплавах. Для разбавленных растворов установлена зависимость, связывающая изменение растворимости углерода с количеством введенного металла-добавки ДЛ/ = -1 стах где А1 1д изменение раство- [c.128]

    При высоком pH электролита и, особенно, в приэлектродном слое, основное количество водорода образуется путем восстановления ионов КН4+ и частично разложения воды. В результате первой реакции получается аммиак, с которым марганец образует растворимые комплексы типа [Мп(ЫНз) ]504. Аммонийные соли и аммиак затрудняют образование твердой фазы гидроксида. [c.396]

    С плавление с едким натром. Способ заключается в переводе соединений ниобия и тантала в не растворимые в воде ниобат натрия и танталат натрия. Одновременно образуются вольфрамат, станнат, силикат и алюминат натрия. Их удаляют водным выщелачиванием.Также образуются Ре (ОН)а и Мп (0Н)2. Вместе с не растворимыми в воде ниобатом, танталатом и титанатом натрия они остаются в остатке от выщелачивания. При обработке остатка соляной кислотой железо и марганец переходят в раствор в нерастворившейся части остаются гидроокиси ниобия, тантала и титана. [c.66]

    При кислотном разложении минералов вольфрама необходимо присутствие в конце разложения окислителя, чтобы избежать образования растворимых соединений вольфрама низшей валентности и последующих потерь их с промывными водами. Восстановление вольфрама может происходить, в частности, за счет сероводорода, выделяющегося при разложении кислотой сульфидных минералов. При разложении вольфрамита необходимо, кроме того, окислять железо и марганец для более полного их отделения при последующей обработке раствором аммиака. [c.257]

    Напротив, из сульфида марганца растворимые соли таллня вытесняют марганец  [c.19]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    В общем виде, учитывая растворимость соединений различных тяжелых металлов, можно расположить их по токсичности в зависимости от степени кислотности в следующий убывающий ряд кадмий > никель > цинк > марганец > медь > свинец > ртуть. [c.175]

    Для этого применяют способ гидрирования в водной суспензии при высоких температуре и давлении, когда примеси переводятся в более растворимые соединения (оксикислоты) и переходят в воду. Предложено вести очистку терефталевой кислоты путем ее этерификации в диметилтерефталат и перекристаллизации последнего. Сообщается о возможности прямого синтеза достаточно чистой терефталевой кислоты (не требующей специальной очистки) благодаря применению кобальт-марганец-бромидного катализатора и оптимальных параметров процесса. [c.404]

    Марганец и репий хорошо растворяют водород, по-виднмому, без химического взаимодействия с ним. Растворимость водорода в марганце возрастает с повышени.ем температуры. С углеродом марганец взаимодействует в расплавленном состоянии с образованием карбидов, чаще всего МпзС. Рений также образует с углеродом карбиды, которые изучены еще недостаточно. Марганец и ре-нн 1 взаимодействуют также с бором и кремнием. [c.291]

    Сульфиды, как уже указано, легко образуются при непосредственном взаимодействии металлов с серой, а также в результате обменных реакции между солями этих металлов н растворимыми сульфидами, в том числе и сероводородом. Сульфиды цинка ZnS— белого, кадмия dS — желтого и ртути HgS — красного и черного цвета в поде нерастворимы. Кристаллический сульфид цинка, содержащий небольшие количества активаторов (медь, марганец, таллий), способен после освещения длительно светиться. [c.332]


    Уже давно в масла, на основе которых готовят к >аски и лаки, а также в алкидные смолы, чтобы ускорить их высыхание и твердение, добавляют катализаторы, известные под названием сиккативы, или сушки. Интересно сравнить действие сиккативов и катализаторов, описанных в предыдущем разделе, В обоих случаях используются одни и те же элементы с переменной валентностью и в обоих случаях они образуют с органическими молекулами растворимые соединения. Кобальт и марганец при комнатной температуре и церий при температуре затвердевания инициируют высыхание за счет образования промежуточьых продуктов, обладающих окислительными свойствами. Другие элементы типа свинца, цинка, кальция и циркония дополняют действие кобальта и марганца, облегчая процесс полимеризации. В отсутствие кобальта или марганца, иницируюших процесс высыхания, полная реакция полимеризации протекала бы значительно медленнее /40/. [c.291]

    Кобальт (в виде растворимого в масле соединения) используется в количестве 0,005-0,2% (в расчете на металл) от веса масла. Он способствует высыханию поверхностного слоя быстро образуется нелипкая пленка. Марганец обычно используют с катализирующим элементом, например свинцом 10,02% Мп (в виде металла ) и 0,6% РЬ в расчете на вес взятого масла . Применение Мп особенно эффективно в твердеющих покрытиях, где он исрользуется в количестве 0,005- [c.292]

    Электроотрицательность любого элемента можно считать зависящей от его степени окисления. Какой именно должна быть зависимость электроотрицательности от сге-пени окисления элемента Хотя марганец (Мп) как элемент по своим свойствам совершенно отличается от хлора, свойства оксианиона МПО4 сходны со свойствами СЮ4, Укажите по крайней мере два примера, иллюстрирующие это сходство (возможно, вам придется заглянуть в справочники обратите при этом внимание на такие свойства, как кислотно-основные характеристики, окислительно-восстановительные свойства, растворимость и т.п.), и обсудите установленные вами факты с учетом электроотрицательности центрального атома в каждом оксиа-нионе. [c.332]

    Определение железа и алюминия. При анализе силикатов, известняков, некоторых руд и других горных пород эти элементы часто определяют гравимеФрическим методом в смеси с титаном, марганцем и фосфатом как сумму так называемых полуторных оксидов. Обычно после отделения кремниевой кислоты в кислом растворе приводят осаждение сульфидов (меди и других элементов) и в. фильтрате после удаления сероводорода осаждают сумму полуторных оксидов аммиаком в аммиачном буферном растворе. Осадок гидроксидов промывают декантацией и переосаждают, после чего фильтруют, промывают и прокаливают. Прокаленный осадок содержит оксиды ЕегОз, АЬОз, ТЮг, МпОг. Иногда анализ на этом заканчивается, так как бывает достаточным определить только сумму оксидов и не требуется устанавливать содержание каждого компонента. При необходимости более детального анализа прокаленный осадок сплавляют с пиросульфатом калия для перевода оксидов в растворимые сульфаты и после растворения плава определяют в растворе отдельные компоненты — железо титриметрическим или гравиметрическим методом, титан и марганец — фотометрическим и фосфор — гравиметрическим (марганец и фосфор анализируются обычно из отдельной навески). Содержание алюминия рассчитывают по разности. Прямое гравиметрическое определение же- [c.165]

    На составе древних пород, несомненно, отразился состав атмосферы ранних периодов истории Земли. В частности, это касается соотношений между восстановленными и окисленньми формами различных соединений переходных металлов. В основном земная кора, как известно, сложена из силикатных и алюмосили-катных пород, а также кварца. Алюмосиликатные минералы в результате выветривания и действия воды частично разрушались, и возникшие при этом растворимые соединения металлов попадали в водоемы металлы в низших степенях окисления — марганец (И), железо (II)—подвергались окислению, которое в кислородную эру протекало интенсивно. [c.376]

    Большинство важнейших производных элементов подгруппы марганца растворимо в воде. Элементы подгруппы марганца не взаимодействуют с водородом. Специфическими производными элементов подгруппы марганца являются карбонилы [М(С0)5]г-Марганец является важной добавкой ко многим специальным маркам сталей и сплавов. Рений — важная добавка к иридию сплавы рення с иридием используются как заменители платины [c.539]

    Отношение к элементарным окислителям. Г и д р и д ы -металлов VH группы очень неустойчивы и водород в этих металлах находится в состоянии твердого раствора внедрения. Вообще растворимость водорода в марганце довольно велика, подчиняется закону Сивертса [Н] =kp и увеличивается с повышением температуры, что говорит об эндотермичности процесса растворения. Так как марганец не является основой сплавов, то при горячей обработке металлов (сварка, литье) это не сказывается. Сплавы, содержащие много Мп (БрМц-20), могут при сварке поражаться порами. [c.354]

    Элементы-металлы А и Б образуют растворимые соли А2СО3 и БЗО . При смешении растворов, которые содержат карбонат элемента А массой 6,36 г и сульфат Б массой 9,36 г, образовался осадок массой 6,9 г. Обе соли при этом прореагировали полностью. Назовите элементы А и Б. Ответ натрий и марганец. [c.294]

    Существуют также рекомендации после разложения шлака соляной кислотой осаждать скандий щавелевой кислотой, оставляя железо и марганец в растворе [50, 52]. В этом случае для более полной очистки от Ре, Мп, а также и от Са и РЗЭ, переведя оксалаты прокаливанием в окислы и растворив последние в соляной кислоте при pH 2,5—3,0, осаждают ЗсОНЗаОз, вводя тиосульфат натрия. От ТЬ и 2г отделяют, осаждая их в виде иодатов. Скандий из раствора после этого выделяют в виде оксалата [50]. При переработке более бедных растворов, содержащих много примесей, осаждение фторида и оксалата скандия не дает удовлетворительных результатов. В этом случае рекомендуется выделять скандий в виде фитата 5СбСеНбР0О2,-36Н2О. Фитат скандия очень плохо растворяется в воде и минеральных кислотах [53], он дает возможность извлечь 98% скандия и достичь 40-кратного обогащения. Возможно также осаждение плохо растворимого пирофосфата  [c.39]

    Катионы 3-й аналитической группы осаждаются в щелочной среде сульфидом аммония при pH 9 в присутствии буферного раствора — смеси гидроокиси и хлорида аммония. 3-ю группу делят на две подгруппы 1) подгруппу катионов, образующих гидроокиси, и 2) подгруппу катионов, образующих сульфиды. Гидроокиси металлов получаются из сульфидов в том случае, когда растворимость гидроокиси меньше, чем растворимость сульфида данного металла. В подгруппе катионов, образующих гидроокиси, ясно заметно влияние диагонального направления в системе Менделеева. По диагоналям расположены элементы, выделяющиеся в этих условиях в виде гидроокисей а) бериллия, алюминия, титана, ниобия б) скандия, циркония, тантала, урана (VI) в) иттрия, гафния, лантана, тория вследствие сходства в свойствах с лантаном и актинием вместе с гидроокисями указанных металлов выпадают также все лантаноиды и актиноиды. Может выпасть и гидроокись магния в отсутствие иона ЫН . Выпадение в этой же подгруппе гидроокиси хрома, Сг(ОН)з, объясняется существованием электронной конфигурации. .. ёЧзК По этой же причине медь с электронной конфигурацией. .. За 1"451 попадает не в 3-ю, а в 4-ю аналитическую группу, образуя сульфид Сы5, не растворимый в кислой среде. Появление внешнего подуровня наблюдается через четыре элемента калий 5, кальций скандий s титан s ванадий хром 5 марганец s железо s кобальт 5% никель 5% медь цинк 5 Поведение ионов ванадия и марганца отличается от поведения хрома, поведение никеля и цинка — от поведения меди. [c.28]

    Металлы целесообразно выделять цинком после отделения серебра, ртути и свинца в виде хлоридов и щелочноземельных металлов и свинца в виде сульфатов. В растворе остается достаточно кальция для его обнаружения, особенно если раствор упарить, так как растворимость СаЗО 2,5 г/л. Его можно обнаруживать в виде оксалата кальция. При этом алюминий, хром, марганец, железо дают растворимые комплексы (Ме(С204).. 1 , не мешающие обнаружению кальция. [c.151]

    По своим свойствам ионы отличаются от атомов. Так, атомы натрия взаимодействуют с водой, вытесняя из нее водород, а гидратированные ионы натрия этой способностью не обладают молекулы и атомы хлора имеют зеленоватую окраску, удущливый запах, а гидратированные ионы хлора бесцветны и запаха не имеют молекулы и атомы водорода образуют бесцветный горючий газ, плохо растворимый в воде, а ионы водорода не горят и существуют в водных растворах в виде сложной частицы НзО ион Мп04 имеет малиновую окраску, хотя входящие в его состав марганец сероватого цвета, а свободный кислород — бесцветный газ. [c.216]

    Титрование обычно ведут, не отфильтровывая осадка гидроксида железа. Если титруют марганец в отсутствие солей железа, а также в отсутствие свободных кислот, то в раствор можно ввoд iTь лишь очень мало оксида цинка (или даже вовсе не вводить его), так как титрование ведется в очень разбавленных растворах, но необходимо прибавить растворимую соль цинка, например ZnS04 или Zn U- [c.409]

    К другим элементам, обычно входящим в состав аустенитных нержавеющих сталей, относятся Мп (1—2 %), С (0,03—0,25%), N (0,02—0,30%) и Si (1—3%), Р (часто присутствует как загрязняющая примесь). Влияние марганца на стойкость аустенитных сталей против КР может быть различным. Наименее сом1штель-ные эксперименты [66] не показали никакого эффекта. [81], но за пределами обычного диапазона 1—2% наблюдались случаи как положительного, так и отрицательного влияния марганца [66, 68, 69, 82]. Есть данные о том, что при испытаниях во влажных условиях концентрации марганца >3% снижают стойкость против КР [83]. Эксперименты в газообразном водороде при еще более высоком содержании марганца в стали показали явный отрицательный эффект [39, 84]. Добавки марганца, часто предназначенные для замещения никеля, вводятся с целью повышения растворимости азота и, следовательно, потенциальной упрочняемости сплава. Поэтому наблюдаемые эффекты могут быть отчасти связаны с усилением планарности скольжения, вызываемым азотом, как будет показано ниже. Кроме того, марганец повышает ЭДУ в меньшей степени, чем никель. Очевидно, необходимы дополнительные исследования влияния марганца на стойкость аустенитных сталей против как КР, так и водородного охрупчивания. [c.70]

    При вскрытии едким натром извлекается 90—99% WO3. Процесс осуществляют в стальных реакторах с мешалкой и паровой рубашкой. Железо и марганец окисляют, продувая воздухом. После выщелачивания пульпа отстаивается 8—14 ч. Раствор декантируют, осадок промывают водой. Промывные воды используют для репульпации концентрата перед разложением. Кеки после выщелачивания должны содержать не более 4% WO3. Расход NaOH может быть снижен, если выщелачивать в шаровых мельницах, в которых шары снимают осадки гидратов, отлагающиеся на зернах минерала. Раствор NaOH частично действует на сопутствующие минералы. Его действие сильнее, чем действие раствора соды при тех же давлении и температуре. Образуются нерастворимые гидроокиси Fe(OH) 3, u(OH) 2 или растворимые натриевые [c.256]

    Растворимость других элементов не определена. Имеются лишь отрывочные данные о концентрациях примесей в порошкообразных люминофорах и монокристаллах халькогенидов. По данным спектрального и масс-спектрометрического анализов установлено, что щелочные металлы (Na, Li) часто встречаются в концентрациях 10" —10" ат. %. Концентрация примеси щелочноземельных металлов примерно такая же, хотя растворимость, например магния, может достигать 20 мол. % при 980° [33]. Переходные металлы и р. з. э. вводили в порошки и монокристаллы в концентрациях до 1 ат. %. Железо обычно содержится пли вводится в количествах от 10" до 10" ат. %, но известно, что его растворимость в сульфиде цинка достигает 40 мол. % (природные минералы — железистые сфалериты). Марганец вводят обычно в количестве 1%, но растворимость его составляет десятки процентов как в ZnS, так и в dS и dSe [34]. [c.35]


Смотреть страницы где упоминается термин Марганец растворимость: [c.397]    [c.45]    [c.541]    [c.101]    [c.517]    [c.368]    [c.424]    [c.43]    [c.24]    [c.118]    [c.119]    [c.42]   
Справочник по общей и неорганической химии (1997) -- [ c.79 , c.80 ]

Основы общей химии Т 1 (1965) -- [ c.296 ]

Основы общей химии том №1 (1965) -- [ c.296 ]




ПОИСК







© 2024 chem21.info Реклама на сайте