Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Флуоресцентный анализ качественный

    Практической целью методов атомной спектроскопии при анализе вещества является качественное, полуколичественное или количественное определение элементного состава анализируемой пробы. Еще 25—30 лет назад эти задачи решались, по существу, лишь одним из методов — атомно-эмиссионным методом спектрального анализа в оптическом диапазоне спектра, В настоящее время достаточно широкое применение получили также методы анализа по атомным спектрам поглощения и флуоресценции в оптическом диапазоне, а также по эмиссионным и флуоресцентным спектрам в рентгеновском диапазоне. Во всех случаях в основе этих методов лежат квантовые переходы валентных или внутренних электронов атома из одного энергетического состояния в другое. [c.53]


    Анализ. Обычно анализ а-А. основан на взаимод. с нин-гидрином, в результате к-рого А. расщепляется до альдегида, СО2 и NH3, а NH3 образует с нингидрином фиолетовый краситель. Для количеств, определения измеряют объем выделившегося Oj или, чаще, фотометрируют образующийся краситель. Последний метод используется в автоматич. хроматографах, позволяющих разделять на сульфокатионитах и количественно анализировать сложные смеси аминокислот и пептидов. Еще более чувствителен флуоресцентный анализ продуктов реакции А. с о-фта-левым диальдегидом. Быстро развивается лигандообменный хроматографический анализ А. и пептидов на си-ликагельных сорбентах в присутствии ионов меди. Бумажная и тонкослойная хроматография чаще используются для качественного анализа. Измерение объема N3, выделяющегося при дезаминировании А. азотистой к-той, а также титрование А. щелочью в избытке формалина (методы Ван Слайка и Сёренсена) сохранили лишь историческое значение. [c.138]

    Качественный флуоресцентный анализ заключается в изучении спектральных характеристик флуоресценции, определяемых спектрографическом методом. На рис. 265 приведены спектральные характеристики флуоресценции некоторых сложных органических веществ. Как видим, форма кривых флуоресценции, расположение максимумов флуоресценции специфичны для флуоресцирующего вещества. [c.424]

Рис. 264. Камера для качественного флуоресцентного анализа Рис. 264. Камера для качественного флуоресцентного анализа
    Продукты реакции анализировали качественно методом хроматографии на бумаге и количественно определением содержания азота по Кьельдалю и титрованием продуктов в неводной среде. Углеводородную часть продуктов реакции анализировали методом адсорбции с флуоресцентными индикаторами. Применявшиеся методы анализа продуктов реакции подробно описаны в приложении. [c.125]

    В качественном флуоресцентном анализе применяется прибор иной конструкции. Он представляет собой светонепроницаемую камеру, разделенную на две части. В одной части камеры укреплена ртутно-кварцевая лампа ПРК-4, в другой помещено исследуемое вещество. Обе части разделены светонепроницаемой перегородкой с отверстием. В отверстие вставлен никелевый черный светофильтр УФС-3. Ртутно-кварцевую лампу ПРК-4 включают за 10—15 мин до начала измерений, чтобы обеспечить устойчивый режим ее работы. Лампу включают в электроосветительную сеть напряжением 127 или 220 в. [c.484]


    Таким образом, при осуществлении качественного флуоресцентного анализа растворов, обладающих абсорбцией в видимой части спектра, т. е. окрашенных растворов, надо помнить если концентрация раствора недостаточно мала, то флуоресценция может оказаться измененной вследствие описанной выше реабсорбции флуоресцентного излучения самим флуоресцирующим веществом. [c.49]

    Приемы ПиП — качественные люминесцентные реакции и количественный флуоресцентный анализ — находят применение в фармации постольку, поскольку в ней решаются задачи химического характера. Как на один из примеров укажем на люминесцентно-хроматографический метод разделения тинктуры белладонны на атропин, скополамин и гиосциамин и на их раздельное количественное определение [8]. [c.305]

    Качественный флуоресцентный анализ заключается в изучении спектральных характеристик флуоресценции, определяемых спектрографическим методом. На рис. 194 приведены спектраль- [c.302]

    Рентгеновский спектральный анализ. Излучение рентгеновских лучей пробой происходит в рентгеновской трубке в высоком вакууме под действием бомбардировки пробы заряженными частицами (электронами или ионами) или под воздействием освещения рентгеновским излучением другого источника (рентгеновский флуоресцентный анализ). Последний метод обладает значительными преимуществами он проще И менее продолжителен. Излучение, идущее от пробы, разлагается в спектр в специальном рентгеновском спектрографе и фотографируется на пленку. Рентгеновский спектральный анализ может быть как качественным, так и количественным. [c.10]

    Детекторы. В качестве детекторов в жидкостной хроматографии обычно используют высокочувствительные спектрофотометры, которые позволяют детектировать до 10 М соединений, поглощающих свет в УФ или видимой части спектра (190—800 нм). В последнее время начали применять высокоскоростные спектрофотометры, регистрирующие спектр в течение 0,01—0,05 с, что весьма ценно при качественной идентификации соединений. Для детектирования неокрашенных веществ можно использовать дифференциальный рефрактометр. При анализе соединений, способных к окислению или восстановлению, применяют электрохимический детектор, по сути представляющий собой миниатюрный полярограф. Используют также флуоресцентные детекторы и детекторы по электропроводности. Последние используют главным образом в ионообменной хроматографии. Для уменьшения размывания хроматографической зоны объемы измерительных ячеек в детекторах сведены к минимуму (I—10 мкл). [c.596]

    Подобно галлию и индию, для галогенидных комплексов таллия характерно образование экстрагируемых бензолом ионных ассоциатов с красителями группы родаминов. Предложено качественное открытие ионов ТР+ с родамином С в солянокислой среде [221, 265]. Эта реакция использована и для количественного фотометрического определения [297], а для отделения от мешающих примесей таллий предварительно экстрагирует в виде дитизоната [298]. Несмотря на некоторые указания на то, что флуоресцентный вариант этого метода не имеет преимущества перед колориметрированием [299], он был успешно применен для анализа йодида натрия [37, 109]. После предварительного экстракционного отделения эфиром реакция с родамином С в 0,1 н. бромистоводородной кислоте использована при определении таллия в рудах [146]. Высокочувствительный метод его определения в минеральном сырье (тоже с предварительной эфирной экстракцией) основан на взаимодействии бромида одновалентного таллия с родамином 6Ж [44] (см. табл. 1У-17). Отмечена также реакция солянокислых растворов иона ТР+ с родамином ЗВ и с родамином Ж [84]. Как и для сурьмы, нет литературных указаний на флуоресцентные реактивы, содержащие р-дикетонную функционально-аналитическую группу для иона Т1+ [100]. [c.180]

    Почти исключительная особенность системы иО —ЫаР давать яркую желто-зеленую флуоресценцию под действием ультрафиолетового излучения делает флуоресцентный метод настолько избирательным, что в ряде случаев предварительного отделения примесей не требуется. Это особенно удобно для быстрых качественных анализов и, конечно, для количественных определений, которые подробно описываются в гл. IV. Хорошая избирательность флуоресцентных реакций сочетается с высокой чувствительностью, что делает метод полезным при анализе сбросных и природных вод и объектов с низким содержанием урана [239, 262, 364, 747, 8641. [c.35]

    Процесс возбуждения рентгеновской флуоресценции аналогичен процессу возбуждения характеристического рентгеновского излучения электронами. Спектры рентгеновской флуоресценции содержат информацию, необходимую для анализа элементного состава веществ и материалов. При качественном анализе определяют длины волн флуоресцентных линий, а затем с помощью таблиц (см. Приложение III) устанавливают принадлежность зарегистрированных линий тем или иным элементам. [c.7]

    В атомно-флуоресцентной пламенной спектрометрии, как и в молекулярных флуоресцентных методах анализа, мощность флуоресценции прямо пропорциональна мощности излучения первичного источника при длине волны, поглощаемой атомами в пламени. Для проведения качественного анализа первичный источник должен испускать излучение в широком спектральном диапазоне, чтобы обеспечить возбуждение флуоресценции максимального числа элементов. К сожалению, хотя [c.701]


    Затем было установлено, что при воздействии рентгеновских лучей на вещество возникает вторичное излучение, а образующийся спектр идентичен спектру, получаемому при бомбардировке электронами. Г. фон Хевеши [18, 31], Д. Костер [18] и другие исследователи рассматривали возможности флуоресцентной рентгеновской спектроскопии как средства качественного и количественного анализа, но натолкнулись на непреодолимые трудности из-за крайне низкой интенсивности флуоресцентных рентгеновских лучей. Единственным методом регистрации был фотографический процесс, причем требовались очень длительные экспозиции. [c.217]

    Спектральная характеристика дает возможность в ряде случаев отличить одно люминесцирующее вещество от другого, даже если они светятся одинаковым светом. Качественный люминесцентный анализ применяют для определения марок стекол,сортов смазочных масел, для исследования минералов и т. п. Для количественного спектрального анализа используют величину выхода флуоресценции или интенсивность флуоресцентного излучения. [c.151]

    Таким путем многие сорта обычной фильтровальной бумаги можно сделать пригодными для разделения различных смесей неорганических веществ. Елисеевой доказана возможность применения хроматографии на бумаге в качественном химическом анализе. Распределительную хроматографию целесообразно при этом сочетать с дробным методом анализа Н. А. Тананаева, употребляя специфические органические реактивы для открытия отдельных ионов. На одной хроматограмме можно обнаружить несколько катионов одним и тем же реактивом, например дающим характерные флуоресцентные реакции. Распределительная хроматография на бумаге для катионов показала большую разрешающую способность этого метода анализа. Можно разделять смеси, содержащие ионы щелочных металлов, благородных металлов от меди, разделять смеси ионов бериллия, алюминия, цинка и циркония и другие смеси. [c.115]

    Люминесцентный (флуоресцентный) качественный анализ. Люминесцентный анализ основан на наблюдении люминесценции (излучение света) анализируемых веществ, вызываемой действием ультрафиолетовых лучей. Метод применяется для анализа природных органических соединений, минералов, медицинских препаратов, ряда элементов и др. [c.129]

    При анализе загрязнений воздуха с помощью ТСХ в больщинстве случаев получают данные о качественном составе смесей и полу-количественную оценку содержания каждого из компонентов. Поскольку анализируемые смеси обычно имеют сложный состав, очень редко удается получить отдельные зоны, соответствующие какому-либо одному чистому веществу, даже если применяют предварительную препаративную очистку или многократное разделение. Это затруднение можно преодолеть, используя специальные методы идентификации, например флуоресцентную спектрофотометрию и, в случае необходимости, абсорбционную спектрофотометрию. Для этого зоны анализируемых веществ извлекают экстракцией из сорбента с помощью подходящего растворителя. В флуоресцентной спектрофотометрии можно изменять частоту возбуждающего излучения, благодаря чему удается исключить влияние мешающих определению примесей. Эха особенность метода и его высокая чувствительность делают его очень полезным для идентификации и количественного определения органических компонентов в загрязнениях воздуха. [c.195]

    Очень перспективным для решения задач элементарного качественного анализа оказался и другой спектральный метод — рентгено-флуоресцентный анализ. Суть метода состоит в том, что анализируемая проба облучается рентгеновскими лучами, которые выбивают электроны с ближайших к ядру орбиталей. Освоболаденные места занимают электроны, переходящие с более отдаленных орбиталей. Выделенная при этом значительная энергия освобождается в форме квантов с высокой частотой, также соответствующих области рентгеновских лучей, но с большей длиной волны, чем у возбуждающего излучения. Так как энергия излученных квантов является интенсивным свойством, характеризующим данный элемент, то при помощи исследования частоты вторичного рентгеновского излучения можно судить об элементах, входящих в состав пробы, т. е. хешать задачи качественного анализа. Принципиальная схема прибора для рентгено-флуо-ресцентного анализа представлена на рис. Vni.5. [c.193]

    Чувствительным и специфичным способом элементного качественного анализа является рентгеновская спектроскопия, которую точнее следует называть рентгеновским флуоресцентным анализом. Она основана на возбуждении электронов внутренних оболочек атомов и последующей эмиссии характеристического рентгеновского излучения вследствие электронных переходов между указанными оболочками эта эмиссия и является собственно рентгеновской флуоренценцией. [c.198]

    Подобные же заключения относительно качественного и количественного состава анализируемого вещества можно делать на основе рентгеновских вторичных (флуоресцентных) спектров, которые возникают при облучении анализируемого вещества не электронами, а рентгеновскими лучами более высокой энергии (т. е. более короткой длины волны), чем характеристическое рентгеновское излучение элементов, входящих в состав анализируё-мого образца (рентгеновский флуоресцентный анализ). Для воз-.буждения рентгеновской флуоресценции применяют рентгеновскую трубку с вольфрамовым анодом. При этом каждый возбуждаемый элемент в образце испускает излучение тех же самых частот, которые наблюдались бы, если он являлся анодом рентгеновской трубки. [c.143]

    Для наблюдения микропрепаратов можно воспользоваться обычным биологическим микроскопом. При малых увеличениях препарат освещают ультрафиолетовыми лучами сверху, а при больших — как обычно, снизу. При этом необходимо, чтобы кон-денсорная система микроскопа пропускала достаточно ультрафиолетовых лучей. На таких простых установках может быть проведен качественный флуоресцентный анализ. [c.424]

    При просмотре рефератов работ по люминесцентному анализу за 1950 г. становптся ясным, что химический флуоресцентный анализ прпзпап теперь достаточно надежным методом, являющимся иодчас незаменимым в тех случаях, когда исследователь обычными химическими методами не может разрешить поставленных задач. Естественно, что поисками новых флуоресяентных реакций заняты Н])ежде всего биохимики именно здесь актуальна задача качественного и количественного определения веществ, присутствующих в ничтожно малых концентрациях. [c.5]

    Качественный анализ с помощью РФС в принципе очень прост и основан на точном измерении энергии или длины волны наблюдаемых флуоресцентных линий. Так как спектрометры РФСВД работают последовательно, необходимо проводить сканирование 20. Идентификация следов элементов может осложняться наличием отражений более высокого порядка или сателлитных линий основных элементов. В РФС с энергетической дисперсией полный рентгеновский спектр может быть получен одновременно. Идентификация пиков, однако, затруднена из-за более низкого разрешения спектрометра с ЭД. Программное обеспечение для качественного анализа помогает спектроскописту, показьшая маркеры KLM на спектре. Маркеры KLM показывают теоретическое положение К-, L- и М-линий элемента как вертикальные линии. Когда эти линии совпадают с наблюдаемыми максимумами пиков в спектре, элемент идентифицируют положительно (как это принято в атомной эмиссии). [c.83]

    Установлено, что между концентрацией изучаемого вещества в растворе и измеренной интенсивностью флуоресценции существует прямая зависимость, что позволяет использовать данный метод в целях количественного определения производных кумарина, особенно учи-тьгаая возможность сочетатя данного метода с хроматографией на бумаге или в тех. Тем не менее, метод флуорометрии, несмотря на его высокую чувствительность, пока не нашел применения в количественном анализе кумаринов. Однако, флуоресцентные свойства производных бензо-а-пирона нашли широкое применение в качественном анализе, главным образом, при хроматографии на бумаге и в тонких слоях сорбентов. Следует отметить, что по характеру флу-оресце шии можно отличить фурокумарины от других представителей этого класса соединений. [c.76]

    Наряду с химическими свойствами вещества в качественном анализе широко используются и ряд их физических интенсивных свойств, т.е. свойств, которые не зависят от количества вещества. К ним относятдя некоторые характеристики атомных эмиссионных, молекулярных абсорбционных и флуоресцентных спектров, свойства, связанные с радиоактивностью и др. [c.189]

    Количественные определения проводят на тонком слое силикагеля, нанесенном на стандартные стеклянные пластинки. Качественный анализ веществ можно осуществлять на слайдах (слое силикагеля, нанесенном на предметные стекла), а также на силуфольных пластинках (Чехословакия), имеющих в своем составе флуоресцентный индикатор. Эти пластинки в качестве подложки имеют картон и фольгу. Наличие картона исключает возможность использования растворителей, содержащих воду. В силуфольных пластинках связующим веществом служит крахмал, поэтому при работе с такими пластинками нельзя проводить идентификацию парами иода. [c.6]

    Из водных проб ПАУ извлекают либо посредством твердофазной экстракции (ТФЭ), либо методом жидкостно-жидкостной экстракции. Полученные экстракты очищают с использованием препаративной хроматографии на силикагеле. Анализ экстрактов может выполняться методом КГХ/МС в режиме селективного детектирования ионов (СДИ) или с помощью ВЭЖХ. При анализе методом ВЭЖХ УФ-детектор позволяет проводить детектирование на нанограммовом уровне детектор на диодной матрице дает дополнительную качественную информацию. Флуоресцентный детектор более специфичен и примерно в 100 раз более чувствителен чем ультрафиолетовый, что позволяет определять ПАУ на пикограммовом уровне. [c.93]

    Органические реагенты находят все более и более широкое применение как в качественном, так и в количественном анализе. Это объясняется тем, что они обладают высокой чувствительностью и селективностью своего действия. Они широко используются как в обычном пробирочном методе анализа, так и в капельном, фотометрическом и хроматографическом методах анализа. В гравиметрическом (весовом) анализе они применяются в качестве реагентов-осадителей, обладающих большой молекулярной массой, при относительно небольшом содержании осаждаемого иона, что значительно повышает точность гравиметрических определений в тит-риметрическом (объемном) анализе — в качестве рабочих титрованных растворов, с помощью которых быстро и точно определяется значительное число катионов. На использовании органических ре-агентов-комплексонов основана комплексометрия. Еще большее количество органических реагентов используется в качестве индикаторов (индикаторы-реагенты, адсорбционные, редоксиметрические, флуоресцентные, комплексометрические и др.). [c.219]

    Жидкостный хроматограф Цвет-3110 (рис.П1.14) предназначен для качественного и количественного определения в лабораторных условиях следующих веществ афлатоксинов, дан-силпроизводных аминокислот, полиядерных ароматических соединений, в частности 3,4-бензопирена, обладающего канцерогенной активностью, лекарственных препаратов и других веществ с флуоресцентной активностью. Хроматограф может быть использован в режимах изократического и градиентного элюирования для выполнения анализов как в нормально-, так и в обращенно-фазном режиме. В качестве сорбента для обращенно-фазной хроматографии используют силасорб С-18 зернением 5-10 мкм, для нормально-фазной— силасорб 600 (5-10 мкм). [c.203]

    Для количественного определения германия флуоресцентным методом можно применять те же реактивы (кроме монооксинафтацен-сульфоновой кислоты), что и для качественного анализа. [c.317]

    Ряд реактивов, первоначально описанных для качественного открытия алюминия, затем был предложен и для его количественного определения (в их числе и З-окси-2-нафтойная кислота, позволяющая путем капельной реакции открывать 0,0002 мкг А1) [158]. Такие реактивы сведены в табл. IV-2. Морин применен для определения алюминия в воде [367]. При использовании 8-оксихинальдина для анализа окиси тория влияние мешающих элементов устраняют путем экстракции теноилтрифтора-цетоном и введения соответствующих комплексообразователей [228]. Известная флуоресцентная реакция алюминия с 8-оксихи-нолином применена для его прямого определения в воде [288], в бронзе [229], в вольфраме и его окислах [204], в металлических магнии [151] и уране [152], в солях висмута (после удаления последнего электролизом на ртутном катоде) [153] и в реактивных кислотах [320]. Реакция с понтахром сине-черным Р (эриохром сине-черным В) [360] использована при анализе сталей, бронз и минералов [355], морской воды [337], сульфида цинка (то же, после отделения мешающих примесей электролизом на ртутном катоде) [204], металлических магния [257, 259], германия [119] и сурьмы [123]. Отмечено применение для тех же целей понтахром фиолетового SW [327]. Салицилал-2-аминофенол, предложенный ранее для качественных целей [242], был использован для анализа реактивов высокой степени чистоты [35, 36, 76]. Указанная в табл. IV-2 чувствительность достигнута при условии тщательной очистки используемых буферных растворов. Для устранения помех со стороны больших количеств железа при анализе сталей предложено осаждать его избытком едкого натра в присутствии пергидроля [295], а при анализе силикатов — восстанавливать до двухвалентного состояния с последующей маскировкой 2,2 -дипиридилом [354] в обоих случаях определение алюминия производят путем его фотометри-рования в виде 8-оксихинолината. [c.143]

    При флуоресцентном возбуждении спектра достигается локальность порядка 5 мкм — при работе с кристалл-анализатором и 0,1 мкм — при использовании энергетической дисперсии. Качественный анализ микрообъемов менее 1 мкм можно выполнить на приборах ЭММА или рентгеноспектральных приставках к микроскопу (электронному) типа УЭМВ= 100. Большую роль при распространении микролокальиого анализа в различные области исследований сыграл отечественный микроанализатор МАР 1. На первых отечественных микроанализаторах был изучен характер взаимодействия элементов в сплавах при различных технологических процессах, исследованы метеориты, процессы пайки, сварки, кристаллизации, диффузии и т. п. [c.218]

    Рентгеновская флуоресценция используется в качестве рутинного качественного и количественного анализа для определения тяжелых металлов в партиях, подвергаемых освидетельствованию красителей. Неразбавленные красящие добавки таблетируют на гидравлическом прессе при давлении около 8000 кг/см , что повышает плотность элементов и способствует получению необхо--ДИМОЙ поверхности образца. Таблетку исследуемого красителй помещают на пути прошедшего через узкую щель рентгеновского луча, который возбуждает характеристические спектры рентгеновского излучения содержащихся в образце элементов. Флуоресцентное излучение через первичный коллиматор попадает на кристалл, служащий в качестве рассеивающего монохроматора. Кристаллическая решетка является в данном случае трехмерной дифракционной решеткой, причем дифракция рентгеновских лучей происходит в результате их отражения от параллельных атомных плоскостей. Связь между длиной волны подающего излучения %, углом между направлением падающего луча и отражающей кристаллической плоскостью 0, и постоянной решетки d (расстояние между отражающими параллельными атомными плоскостями) выражается уравнением Брэгга  [c.473]


Смотреть страницы где упоминается термин Флуоресцентный анализ качественный: [c.378]    [c.159]    [c.159]    [c.378]    [c.481]    [c.604]    [c.286]    [c.312]    [c.141]    [c.182]    [c.187]    [c.286]   
Физико-химические методы анализа Издание 3 (1960) -- [ c.424 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ качественный

Флуоресцентный анализ

флуоресцентное



© 2025 chem21.info Реклама на сайте