Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масс-спектрометры циклотронные

    Масс-спектрометры циклотронного резонанса. [c.368]

    Для масс-спектроскопических определений атомных масс обычно использовались либо масс-спектральные приборы с двойной фокусировкой, либо масс-спектрометры циклотронно-резонансного типа. Известным исключением была работа Астона, проделанная на приборе с фокусировкой только по скоростям. В литературе имеется также единственный пример применения для точного определения масс прибора с фокусировкой только по направлениям. Это работа Нэя и Манна [1], которые использовали небольшой масс-спектрометр секторного типа для определения отношения масс Не " /Н . Так как прибор Нэя и Манна не имел фокусировки по скоростям, достижимая разрешающая сила (1 80 ООО) была ограничена не только геометрическим разрешением, но и разбросом ионов по энергиям. [c.11]


    ИОНИЗАЦИОННЫЕ МЕТОДЫ МАСС-СПЕКТРОМЕТРИЯ, ИОННЫЙ ЦИКЛОТРОННЫЙ РЕЗОНАНС И ФОТОЭЛЕКТРОННАЯ СПЕКТРОСКОПИЯ  [c.313]

    Спектрометр ИЦР, выпускаемый в настоящее время промышленностью, представляет собой по существу масс-спектрометр, в котором используется метод регистрации сигнала спектрометров магнитного резонанса. Как и в масс-спектроскопии, в этом методе генерируется положительный ион с массой т и зарядом е. В однородном магнитном поле Н этот ион ускоряется и движется по круговой орбите, плоскость которой перпендикулярна направлению магнитного поля. Движение иона по этой орбите описывается циклотронной частотой выражаемой как [c.329]

    Сольватация реагентов и продуктов р-щш значительно влияет на относит, силу к-т. Существуют методы исследования равновесий между протоном и основаниями в газовой фазе, иапр масс-спектрометрия высокого давления и ион-циклотронный резонанс, где отсутствуют эффекты сольватации На основании результатов указанных исследований составлена шкала сродства к протону - энергетич эффекта протонизации одного моля оснований в газовой фазе. [c.395]

    После ионизации вещества ионы разделяются в масс-анализаторе в соответствии с их отношением массы к заряду. В настоящее время используют пять типов анализаторов магнитный секторный анализатор, квадрупольный фильтр масс (квадрупольный масс-спектрометр), квадрупольная ионная ловушка, времяпролетный анализатор и циклотронно-резонансный анализатор (масс-спектрометр на основе ион-циклотронного резонанса, ИЦР-спектрометр). Детектирование ионов в большинстве случаев проводят при помощи электронного умножителя, хотя применяют также и другие детекторы. В процессе анализа формируется огромное количество данных, поэтому для их сбора, хранения, обработки и интерпретации используют наиболее современные мощные компьютерные системы и программное обеспечение. [c.259]

    Масс-спектрометрия ион-циклотронного резонанса с фурье-преобразованием [c.277]

    Реакцию между ионом аммония ЫН и триметиламином (СНз)зМ, аналогичную реакции (4.16), изучали методом импульсной масс-спектрометрии ионного циклотронного резонанса [115]. Представленная на рис. 4.2 диаграмма изменения энергии Гиббса объясняет, что происходит с реагентами при переходе от газовой фазы к водному раствору. В газовой фазе продукты реакции устойчивее исходных веществ на 92 кДж- МОЛЬ . В водном растворе вследствие преимущественной сольватации иона NH4 (за счет образования водородных связей) в ходе реакции энергия Гиббса уменьшается всего на 3 кДж- МОЛЬ , поэтому в состоянии равновесия в водном растворе концентрация ионов аммония в 10 раз выше, чем в газовой фазе. [c.139]


    Разработанные в течение последних двадцати лет три новых экспериментальных метода позволили изучать в газовой фазе и ионные реакции. К ним относятся импульсная масс-спектро-метрия с ионным циклотронным резонансом (ИЦР), импульсная масс-спектрометрия высокого давления и изучение послесвечения [469—478] (см. также литературу, приведенную в разд. 4.2.2). Хотя в основе этих методов лежат различные независимые физические принципы, полученные с их помощью результаты изучения кислотно-основных и других ионных реакций хорошо согласуются между собой (погрешность не превышает 0,4—1,3 кДж-моль или 0,1—0,3 ккал-моль ) и считаются не менее достоверными, чем результаты изучения реакций в растворах. [c.183]

    Масс-спектрометрические методы позволяют определить отношение массы к заряду, на основании которого можно судить о составе ионов, генерируемых, например, при использовании метода электронного удара или фотоионизации. Наряду с составом ионов можно определить энергии (потенциалы появления), которые требуются для образования ионов. Масс-спектрометрические методы не дают прямой информации о структуре ионов, однако она может быть выведена на основании последующей фрагментации ионов в масс-спектрометре [28] или при использовании двойного резонанса в случае ион-циклотрон-резонансной спектроскопии [29]. [c.525]

    Масс-анализатор ИЦР, называемый также масс-спектрометр с преобразованием Фурье (МС-ПФ), в последнее время находит все большее применение для аналитических целей [16, 22, 60]. Основным элементом спектрометра ИЦР (с наличием или без Ф)фье-приставки) является прямоугольная шестиэлектродная ячейка со стороной, равной нескольким сантиметрам, внутри которой создается высокий вакуум и сильное магнитное поле (рис. 7.14). В ней производится ионизация исследуемых молекул импульсным пучком электронов (в течение 1-5 мс) или другим методом. Образовавшиеся ионы движутся в магнитном поле по циклическим траекториям с так называемой циклотронной частотой со , определяемой указанным соотношением (7.13). Ионы удерживаются в ячейке с помощью потенциальной ямы, образованной наложением положительного напряжения 1,0 В) на боковые пластины и отрицательного напряжения (== -0,5 В) на верхнюю, нижнюю и две торцевые пластины. Разделение по массам достигается в результате подачи переменного радиочастотного поля с частотой оз на верхнюю и нижнюю пластины. Если частота электрического поля совпадает с циклотронной частотой (со/ = сом), то ионы будут поглощать энергию и их скорость и радиус траектории увеличатся. Все ионы с отношением М е будут циркулировать в фазе с радиочастотным возбуждением. Энергию, поглощаемую ионами в резонансе, измеряют с помощью специальной схемы. Однако схема работает только при частоте выше 75 кГц, что ограничивает анализ ионов с большими массовыми числами. [c.858]

    В усовершенствованном методе (с приставкой Фурье) проводится быстрое сканирование в пределах всего интересующего диапазона частот (20 кГц до 10 МГц при В = 1-2 Тл) за 1 мс. Это заставляет все ионы в заданном диапазоне массовых чисел циркулировать в фазе, т.е. поглощать энергию, когда их циклотронная частота совпадает с радиочастотой. Как результат такого поглощения энергии при резонансах на верхней и нижней пластинах ячейки индуцируется импульсный ток, который можно регистрировать, предварительно усилив его электронным усилителем. Величины сигналов обусловлены количеством ионов данной конкретной массы, находящихся в ячейке, циклотронная частота которых совпадает с радиочастотным электрическим полем. Полученные в результате сигналы в измеряемом промежутке представляют собой совокупность импульсов от ионов всех анализируемых масс и, следовательно, содержат всю информацию об образце, которую дает МС рассматриваемого типа. С помощью специального преобразования можно перейти от полученной временной зависимости величин импульсов за определенный отрезок времени к зависимости их ох частоты, которая непосредственно связана с массами ионов. В результате такого преобразования получается традиционный масс-спектр анализируемых ионов. Сама процедура перехода к масс-спектрам называется преобразованием Фурье. В МС-ПФ достигнуто рекордное для масс-спектрометрии разрешение 250000-280000 и более [22], Как следз ет из соотношения (7.13), в МС-ПФ не надо калиброваться по массам с помощью стандартов, т.к. этот метод дает точное значение масс анализируемых ионов. [c.858]

    Для точного определения массы иона целесообразно использовать масс-спектрометры высокого разрешения с магниторезонансными (ион-циклотронными) масс-анализаторами, на которых возможно измерение массы ионов с точностью до десятых долей миллиграмма. Это позволяет с большей вероятностью установить элементный состав соединений. [c.370]

    Изучалась возможность применения циклотронного резонанса в масс-спектрометрии предложены различные схемы [1219, 1716]. [c.40]

    В виде полного ионного тока. Так как движение ионов совершается по достаточно протяженной циклоидальной траектории, время их прохождения через анализатор составляет 5—10 мс при длине анализатора всего несколько сантиметров. Время такого пролета ионов в масс-спектрометрах других типов измеряется микросекундами. Большое время пролета в спектроскопии ион-циклотронного резонанса обусловливает повышение вероятности ион-молекулярных столкновений, которые могут происходить до попадания ионов на коллектор. Благодаря этому становится возможным исследование ион-молекулярных реакций. [c.217]


    Разделение ионов, движущихся во взаимно перпендикулярных постоянном магнитном и переменном электрическом полях, осуществлено в масс-спектрометре циклотронного типа — омего-троне, который впервые был применен для анализа газов [10, 11]. Возможность синхронного вращения ионов данной массы в однородном магнитном поле реализована в магнитоимпульсном масс-спектрометре [12—17]. Достоинствами этого прибора является высокая разрешающая способность и простота конструкции. [c.10]

    Ионоселективные электроды, пер. с англ.. М., 1972 Н и-кольский Б. П., Матероаа Е. А., Ионоселективные электроды, Л., 1980 К а м м а н К., Работа с ионоселективными электродами, пер. с нем., М., 1980. i5. П. Никольский. ИОН-ЦИКЛОТРОН ный РЕЗОНАНС, радиоспектроскопический метод измерения массы ионов. Камеру масс-спектрометра (см. Масс-спектрометрия) с исследуемым в-вом помещают в однородное магн. поле напряженностью Н. Ион с массой т и зарядом q перемещается по круговой орбите радиуса г со скоростью . Угловая частота этого движения (D = v/r — qHfm (с — скорость света) наз. циклотронной. Для ее измерения и вычисления т используют источник перем. электрич. поля метрового или дециметрового диапазона, частота к-рого изменяется в широких пределах. При совпадении частоты источника с циклотронной частотой энергия электрич. поля частично поглощается этот резонанс регистрируется чувствит. приемником. [c.227]

    В злектрич. спектроскопии газов регистрируют поглоще-ше злектрич. компоненты радиочастотного электромагн. воля, обусловленное переходами между уровнями энергии, соответствующими вращат. движению молекул, обладающих пост. электрич. моментом (микроволновая спектроско-вии). Электрич. радиоспектроскопич. методом является также ион-циклотронный резонанс, к-рый в равной мере относят и к масс-спектрометрии. [c.491]

    В газовой фазе И. р. образуются при электронном ударе, диссоциативной ионизации (см. Масс-спектрометрия), а также в условиях ион-циклотронного резонанса. Для жидкой фазы общий метод-электрохим. окисление или восстановление. АР получают также р-цией субстратов с сольватиро-ванным электроном или донорами электроноа, в качестве к-рых используют щелочные и щел.-зем. металлы, др. орг. АР, орг. анионы и нек-рые соед. с низким потенциалом [c.266]

    Циклотронно-резонансный масс-анализатор-ячейка в виде прямоугольного параллелепипеда или куба, помещенная в однородное магн. поле. Ионы, попадая в ячейку, движутся в ней по спиральной траектории (циклотронное движение) с частотой где Я-напряженность магн. поля, т. е. ионы с одинаковыми значениями m/z имеют определенную циклотронную частоту. Действие прибора основано на резонансном поглощении энергии ионами при совпадении частоты поля и циклотронной частоты ионов. На применении циклотронно-резонансного масс-анализатора основан метод ион-циклотронного резонанса, к-рый используют для определения массы ионов, в частности мол. ионов, образующихся при ионно-молекулярных р-циях в газовой фазе анализа структуры высокомол. ионов определения кислотно-основных св-в в-в. Для легких ионов R = 10 . Первый масс-спектрометр ион-цмслотронного резонанса построен Г. Соммером, Г. Томасом и Дж. Хиплом (США, 1950). [c.661]

    Важную роль в установлении М. р. играет исследование природы продуктов и промежут. в-в методами УФ, ИК и гамма-резонансной спектроскопии, ЭПР, ЯМР, масс-спект-рометрии, хим. поляризации ядер, электрохим. методами и т.п. Разрабатываются способы получения и накопления высокоактивных промежут. продуктов ионов, радикалов, возбужденных частиц с целью непосредственного изучения их реакц. способности. Для получения констант скорости тех стадий сложной р-ции, в к-рых участвуют высокоактивные частицы, информативно моделирование этих стадий в специальных ( чистых ) условиях, напр, путем проведения р-ций при низких т-рах (до 100-70 К), в ионном источнике масс-спектрометра высокого давления, в ячейке спектрометра ион-циклотронного резонанса и т.п. При изучении гетерогенно-каталитич. р-ций важно независимое исследование адсорбции всех участвующих в р-ции в-в на пов-сти катализатора, изучение спектров адсорбир. частиц в оптич. и радиочастотном диапазонах, а также установление их природы физ. и физ.-хим. методами (рентгеновская и У Ф фотоэлектронная спектроскопия, оже-спектроскопия, спектроскопия энергетич. потерь электронов и др.). [c.75]

    Элементарные реакции. Для установления М. р. привлекают как теоретич. методы (см. Квантовая химия, Динамика элементарного акта), так и мiioгoчи лeнныe эксперим. методы. Для газофазньк р-ций >io молекулярных пучков метод, масс-спектрометрия высокого давления, масс-спектрометрия с хим. ионизацией, ионная фотодиссоциация, ион-циклотронный резонанс, метод послесвечения в потоке, лазерная спектроскопия-селективное возбуждение отдельных связей или атомных групп молекулы, в т.ч. лазерно-индуцированная флуоресценция, внутрирезонаторная лазерная спектроскопия, активная спектроскопия когерентного рассеяния. Для изучения М. р. в конденсир. средах используют методы ЭПР, ЯМР, ядерный квадрупольный резонанс, хим. поляризацию ядер, гамма-резонансную спектроскопию, рентгено- и фотоэлектронную спектроскопию, р-ции с изотопными индикаторами (мечеными атомами) и оптически активными соед., проведение р-ций при низких т-рах и высоких давлениях, спектроскопию (УФ-, ИК и комбинационного рассеяния), хемилюминесцентные методы, полярографию, кинетич. методы исследования быстрых и сверхбыстрых р-ций (импульсный фотолиз, методы непрерывной и остановленной струи, температурного скачка, скачка давления и др.). Пользуясь этими методами, зная природу и строение исходных и конечных частиц, можио с определенной степенью достоверности установить структуру переходного состояния (см. Активированного комплекса теория), выяснить, как деформируется исходная молекула или как сближаются исходные частицы, если их несколько (изменение межатомных расстояний, углов между связями), как меняется поляризуемость хим. связей, образуются ли ионные, свободнорадикальные, триплетные или др. активные формы, изменяются ли в ходе р-ции электронные состояния молекул, атомов, ионов. [c.75]

    Совр. метод масс-спектрометрии с использованием Ц. р.-спектрометрия ИЦР с преобразованием Фурье (ИЦР ПФ). Резонансное поглощение ионами электромагн. энергии происходит в анализаторе. Высокочастотное электрич. поле Позволяет вдентифицировать ионы по резонансному поглощению энергии при совпадении частоты поля и циклотронной частоты ионов с послед. фурье-анаг1изом (см. Фурье-спектроскопия) сигнала. Интенсивность сигнала от фуппы ионов массы т,- и заряда представляет собой экспоненциально затухающую косинусоиду  [c.375]

    В масс-спектрометрии используют четыре различных принципа разделения ионов комбинация магнитного и электрического секторов, квадрупольный фильтр, времяпролетные анализаторы и циклотронно-резонанС1Ш1е системы. [c.274]

    Четвертый тип масс-анализаторов — циклотронно-резонансный масс-анализатор с фурье-преобразованием (ИЦР-ФП-спектрометр или МСФП, масс-спектрометр с фурье-преобразованием), еще пока не получил широкого распространения в аналитической практике. Для разделения ионов используют ячейки различной геометрии на рис. 9.4-7,е изображена кубическая ячейка. Ячейка находится в магнитном поле В. Ионы образуются либо внутри ячейки, либо во внешнем ионном источнике. Ячейка состоит из двух расположенных напротив друг друга пластин-ловушек, двух возбуждающих пластин [c.277]

    Для проведения микроанализа лазерный луч (обычно излучение учетверенной частоты К(1 АС-лазера, А = 266 нм, длительность импульса 10-20 не) фокусируют в пятно диаметром 1-2 мкм на поверхности образца при помощи оптического микроскопа. В результате лазерного импульса генерируются атомные и молекулярные ионы, которые анализируются во времяпролетном масс-спектрометре. Недавно в ЛММС-приборах стали использовать спектрометры ион-циклотронного резонанса с фурье-преобразованием. [c.321]

    В настоящее время определены кислотности и основность многих органических соединений в газовой фазе, чему способствовало освоение в течение последних 20 лет трех новых экспериментальных методов. К их числу относятся импульсная масс-спектрометрия высокого давления (0,1—1300 Па) (МСВД) [22, 23, 118J, послесвечение в быстром потоке газа, например гелия, при давлении около 10 —10 Па [119] и спектрометрия ионного циклотронного резонанса (ИЦР) с импульсным [c.133]

    Пентакоординированные карбониевые ионы образуются за счет присоединения, когда катион связывается с уже насыщенным центром молекулы. Наиболее достоверно такой процесс доказан для газофазных реакций (масс-спектрометрия высокого давления, ион-циклотронная резонансная спектроскопия), при которых протоны или крупные катионные (карбениевые) частицы взаимодействуют с насыщенными молекулами уравнение (И) [15]. Водородный изотопный обмен в растворе метана в РЗОзН/ЗЬРз можно объяснить промежуточным образованием пентакоординированного алкана, однако возможны и другие объяснения [16]. Протонированные алканы можно рассматривать как интермедиаты в процессах изомеризации и фрагментации [16], а также при анодном окислении [14] насыщенных углеводородов в суперкислой среде. [c.520]

    Было осуществлено также соединение капиллярной ГХ с масс спектрометром высокого разрешения ионного циклотрон ного резонанса с Фурье преобразованием [113] Струйный интер фейс обеспечивал давление в ионном источнике 6 10 Па при этом достигалось разрешение порядка 20 000 (на полувысоте пи ка) в области т/г 156 Хотя экспериментально невозможно получить полный масс спектр высокого разрешения из за слишком большого объема и скорости передачи информации в этих условиях (в соответствии с теоремой Хайквиста, устанавливающей необходимую скорость передачи данных), этот метод может использоваться в режиме селективного ионного детектирования, с переключением регистрируемых ионов в диапазоне более 80 а е м за время 300 мс при разрешении 20 000 Этого доста точно для воспроизведения профиля пиков при использовании капиллярных колонок [c.64]

    По темпам развития, по технической оснащенности и по использованию в различных областях науки МС-метод занимает в последнее десятилетие одно из первых мест [1]. Это стало возможным благодаря широкому применению искровой и лазерной масс-спектрометрии [10, 11, 25, 27], сочетанию МС-анализ с газовой хроматографией в режиме on-line [6, 26, 28] и особенно созданию масс-спектрометров, в которых для генерации ионов использованы тлеющий разряд и индуктивно-связанная плазма [2, 7-9, 21, 29-32]. С появлением приборов, работающдх на принцрше ионно-циклотронного резонанса с Фурье-преобразованием, стало вполне реальным получать разрешение по массе 290000 и более, что дает возможность легко разделять сложные ионы с одинаковыми массовыми числами, не прибегая к стандартным образцам [16,22,33-36]. [c.841]

Рис. 15.12. Масс-спектрометр, действующий по принципу циклотрона (по Зоммеру, Томасу и Гипплу [16])-1 к источнику высокочастотного напряжения 2 — ионный коллектор 5 —нить накала 4 — электронный коллектор 5—маг-ннтное поле. Рис. 15.12. <a href="/info/6125">Масс-спектрометр</a>, действующий по принципу циклотрона (по Зоммеру, Томасу и Гипплу [16])-1 к <a href="/info/486619">источнику высокочастотного</a> напряжения 2 — <a href="/info/14781">ионный коллектор</a> 5 —<a href="/info/3016">нить накала</a> 4 — <a href="/info/1333690">электронный коллектор</a> 5—маг-ннтное поле.
    Один из методов измерения времени полного оборота иона использован в омегатроне [930, 932, 1910], радиочастотном масс-спектрометре, работающем по принципу циклотронного резонанса ионов в магнитном поле, впервые описанном Хипплом, Соммером и Томасом. Этот прибор схематически показан на рис. 12. Радиочастотное поле направлено перпендикулярно к магнитному полю. Положительные ионы с низкой кинетической энергией образуются потоком электронов, движущихся вдоль направления магнитного поля. Рассмотрим однозарядный ион с массой т, начинающий движение из состояния покоя. Этот ион опишет некоторую кривую в плоскости радиочастотного и магнитного полей, и если его период вращения равен периоду радиочастоты, то он будет ускорен этим полем так, что радиус его кривизны будет увеличиваться, и ион начнет двигаться по спирали Архимеда к коллектору. Ион с несколько отличной массой будет выбит радиочастотным полем и пройдет последовательно через максимальный и минимальный радиусы, когда он достигнет максимальной и минимальной скорости. Таким образом, для коллектора, расположенного на определенном расстоянии R от точки образования ионов, имеется два критических значения масс т + 34б/п) я (т — УгЬт). Ионы с этими массами будут собраны на коллекторе. Можно показать, что т/Ьт = я/г/2, где п — число оборотов, сделанных резонансным ионом до попадания на коллектор. При R = 1 см, радиочастотном поле 0,1 в/см и магнитном [c.32]

    Исследование ион-молекулярных реакций методом спектроскопии ион-циклотронного резонанса представляет исключительный интерес для органической масс-спектрометрии, так как может дать значительную информацию о структуре ионов. Использование метода в указанных целях можно проиллюстрировать простым примером. Предполагается, что ион, образующийся при распаде гексанона-2 с перегруппировкой через шестичленное переходное состояние, представляет собой енольную форму ацетона [(1) на схеме (5.13)]. Считается также, что ион, образующийся в результате простого разрыва при фрагментации метилциклобутанола (2), имеет ту же структуру (1). Названные фрагментные ионы подвергались [c.218]

    В качестве масс-спектрометра применен 150 см циклотрон, настроенный для получения стабильного пучка ионов Не с энергией 24 Мое.) Phys. Rev., 56, 613 (1939). [c.614]


Смотреть страницы где упоминается термин Масс-спектрометры циклотронные: [c.605]    [c.636]    [c.308]    [c.308]    [c.457]    [c.711]    [c.138]    [c.645]    [c.97]    [c.227]    [c.230]    [c.777]    [c.9]    [c.593]   
Аналитические возможности искровой масс-спектрометрии (1972) -- [ c.10 ]




ПОИСК





Смотрите так же термины и статьи:

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры

Масса циклотронная

Циклотрон



© 2025 chem21.info Реклама на сайте