Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение алюминия и хрома III в виде

    Вторым методом разделения металлов третьей аналитической группы, также известным с давних пор, является аммиачный метод [4]. При анализах, проводимых по данному методу, металлы, соли которых легко гидролизуются, выделяются в виде гидроокисей, другие же металлы, образуя в присутствии хлористого аммония растворимые аммиачные комплексы, остаются в растворе. Хотя образующиеся осадки менее дисперсны и легче фильтруются, нежели при ацетатном методе, разделение проходит хуже, и требуется иногда четырехкратное переосаждение для получения более или менее удовлетворительных результатов. Значительное загрязнение осадка металлами, дающими растворимые аммиачные комплексы, может быть объяснено не только адсорбцией, но и образованием соединений, по типу близких к шпинели, чему способствует также сравнительно высокая величина pH раствора, весьма трудно поддающаяся регулировке. Это особенно сказывается при выделении гидроокисей, имеющих амфотерный характер, например гидроокисей алюминия, хрома, а также галлия и индия, которые увлекают с собой марганец, кобальт, никель и цинк в значительных количествах. Поэтому исследователи стремились снизить величину pH раствора при осаждении аммиаком и, поскольку возможно, регулировать ее. Однако работы даже совсем недавнего времени [5], хотя и улучшили несколько аммиачный метод, не привели к устранению его крупных недостатков. [c.6]


    Амфотерность гидроксидов широко используют для разделения смесей, а также при выполнении отдельных реакций на Zn +, А1 +, Сг + и другие ионы. Так, отделение А1 +, Сг + и Zn " от остальных катионов З-й группы (по щелочному методу) основано на различном характере гидроксидов. Сначала при действии едкого натра (на холоду) все катионы З-й группы осаждаются в виде гидроксидов, но при добавлении избытка щелочи гидроокиси алюминия, хрома и цинка растворяются с образованием анионов АЮг", СгОа и ZnO . Гидроокиси других катионов З-й группы остаются в осадке и легко могут быть отделены от раствора. Далее алюминат- и цинкат-ионы переводят в катионы А1 + и Zn +, подкисляя анализируемый раствор, например  [c.58]

    Брандт. Нас также интересовала возможность разделения ионов металлов. В связи с этим год или два назад мы пытались разделять с помощью хроматографии хелатные соединения металлов. Оборудование было очень примитивным и не приспособленным для работы при температурах выше 225°. При 210° на колонке длиной 92 см с силиконом на целите мы разделяли при весьма коротких временах удерживания ацетилацетонаты бериллия, алюминия и хрома. Они вводились в виде растворов в бензоле или же в самом ацетилацетоне оба эти вещества оказались подходящими растворителями. [c.393]

    Способ разделения добавлением аммиака в присутствии солей аммония. Осаждение проводят в аммиачно-аммонийной среде. Если присутствует алюминий, то pH раствора доводят до 7,5. В этих условиях осаждаются количественно титан (IV), цирконий (IV), торий (IV), ниобий (V), тантал (V), галлий, индий, уран (VI), железо (III), хром (III), алюминий и бериллий (группа аммиака) остаются в растворе вследствие образования комплексных амми-нов цинк, кобальт, медь, никель и марганец (группа цинка), а также кальций, магний, барий и стронций, которые при этом значении pH не образуют малорастворимых гидроокисей (кальций не осаждается даже в присутствии большого количества сульфат-ионов). Марганец (II) затем медленно окисляется кислородом воздуха и выпадает в осадок в виде водной двуокиси. Обычно представляется желательным осадить марганец полностью вместе с группой аммиака. Это достигается добавлением небольшого количества персульфата аммония (если нет бария, стронция и свинца) или перекиси водорода или брома. При этом хром (III) пре-врашается в хром (VI), а кобальт (II), окисляясь до кобальта [c.102]

    Разделение катионов основано на склонности ионов кобальта, железа (П1), цинка, меди, кадмия, висмута, олова, сурьмы, ртути (И) образовывать хлоридные комплексы, взаимодействующие с анионитом в С1-форме, и способности катионов алюминия, марганца, хрома, никеля осаждаться в виде гидроксидов на анионите в ОН-форме .  [c.201]


    Удаление H.2S и последующее прибавление NH OH дает возможность наблюдать образование гидроокисей этим путем удается сделать предварительное заключение в отношении элементов, которых можно ожидать при дальнейшем разделении. При дальнейшей обработке HjS алюминий и хром остаются в виде гидратов окислов. [c.85]

    Хорошим методом для получения галогенидов металлов в самой низшей степени их окисления является действие галогенида металла на раскаленный металл, например действие трихлорида хрома на хром или тетрахлорида титана на титан. Недавно этим методом были получены низшие хлориды даже алюминия, для которого характерно трехвалентное состояние в соединениях. Метод довольно прост по выполнению и сводится к медленному пропусканию паров галогеноводорода или галогенида при высокой температуре через слой соответствующего металла или неметалла, взятого в виде порошка. Недостаток этого метода заключается в трудности отделения галогенида от непрореагировавшего металла. Осуществить разделение их можно путем возгонки полученного галогенида при высокой температуре в атмосфере азота или в вакууме. [c.198]

    Проводя разделение едким натром, добавляют персульфат натрия и этим достигают количественного перехода никеля в осадок в виде водной окиси никеля (III). Если при этом хотят провести отделение от хрома, то последний предварительно окисляют до хрома (VI) в кислой среде. Если присутствует уран (VI), добавляют карбонат, чтобы удержать его в растворе. Отделение от алюминия едким натром не проходит количественно. [c.734]

    Нефтяной нафталин получают из фракций каталитического газойля, выкипающих в пределах 200—300 °С. Нафталин содержится в них в виде алкилпроизводных моно-, ди-, три- и тетраметил-нафталинов. Экстракцией растворителями получают концентраты каталитических газойлей с содержанием до 90% и выше ароматических углеводородов, которые подвергают каталитическому или термическому деалкилированию в атмосфере водорода при температуре примерно 675 °С и давлении до 70 ат. Процесс ведут в присутствии катализаторов, содержащих окислы кобальта, молибдена, алюминия, хрома. После разделения продуктов деалкилиро-вания получают нафталин высокого качества (т. пл. 79,9—80,0° С). [c.20]

    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]

    Поэтому заслуживает внимания фосфатный метод разделения катионов, при котором анион Р0 не является веществом, осложняющим разделение катионов и подлежащим удалению, л наоборот, фосфаты прибавляют к анализируемому раствору в качестве группового реактива. Метод основан на том, что алюминий, хром, марганец, железо, барий, стронций, кальций и нагний осаждаются ионами Р0 " из аммиачного раствора в виде фосфатов или двойных аммонийно-фосфатных солей. При этом другая группа катионов — цинк, никель и кобальт — образует растворимые аммиачные комплексные соли. В результате применения фосфатного метода вместо группы сульфида аммония. (А1, Сг, Мп, Ре, 2п, Со и N1) получают фосфатную группу (А1, Сг, Мп, Ре, Ва, 8г, Са и Mg). Комплексные соединения можно разрушить, и цинк, никель и кобальт выделить в осадок. В фильтрате останутся только щелочные металлы. Число и объем аналитических групп остаются почти без изменения. [c.37]


    В промышленном масштабе осуществлены два других процеса риформинга с движущимся слоем в обоих процессах применяются пеплатиновые катализаторы. Использование системы термофор циркуляции шарикового катализатора между реактором и регенератором привело к разработке процесса каталитического риформинга термофор. Шариковый катализатор для этого процесса содержит около 32% окиси хрома и 68% окиси алюминия. По этому процессу работают две установки (па заводах Магнолия петролеум в Бомонте, шт. Техас, и Дженерал петролеум в Торрансе, шт. Калифорния). На второй установке — гиперформинга — таблетированный катализатор с размером зерна 4,8 мм циркулирует в виде плотного псевдо-ожиженного слоя в однокорпусном аппарате, разделенном на зоны реакции и регенерации. В качестве катализатора применяют молибдат кобальта на стабилизированной кремнеземом окиси алюминия как носителе. По этому процессу работает одна промышленная установка (на нефтеперерабатывающем заводе Кал-стейт рифайнинг в Сигнал-Хилле, шт. Калифорния). [c.187]

    Разделение изотопов водорода и спиновых изомеров водорода относится к одной из наиболее удивительных возможностей газовой хроматографии [479]. В препаративных целях изотопы могут быть разделены методами фронтальной или вытеснительной хроматографии [713—718] на нанесенной на целит палладиевой черни. Последовательность выделения тритий, дейтерий, водород. В этом случае имеющийся НВ, соответственно НТ и ВТ, подвергаются диспропорционированию и никогда пе существуют в виде чистых фракций. Для аналитических целей более подходящим оказался проявительный метод. Разделение с успехом осуществляли на молекулярных ситах 5 Л ж 13 X [719—724], окиси алюминия [725—731], окиси алюминия с папесенными окислами трехвалентного хрома [727] и трехвалентного железа [72(1, 732—736] при температуре —196° С. хотя в некоторых случаях и при более высокой температуре —160° С [737] и при более низкой температуре, ниже —200° С [725, 731]. Ядерно-спиновые изомеры молено разделить лишь в случаях отсутствия катализаторов, обеспечивающих их равновесие при температуре опыта [738]. По этой методике р-водород элюируется перед о-водородом, а о-дейтерий перед р-дей- [c.279]

    Разделение метилхлорсиланов очень затруднено вследствие их близких температур кипения, а также потому, что четыреххлористый кремний и триметилхлорсилан образуют азеотропную смесь с т. кип. 54,5°, содержащую эквимолекулярные количества обоих хлорсиланов [1782, 1787]. Метилхлорсиланы, за исключением их азеотропных смесей, можно разделить фракционированием на колонке в шестьдесят—сто теоретических тарелок [816, 1339, 1833, G1]. В остатке после перегонки метилхлорсиланов были обнаружены метилхлордисиланы [D55, D56]. Остаток после перегонки расщепляют хлором или хлористым водородом при 200—900° и давлении 100 ат. При этом образуется ряд продуктов с метиленовыми мостиками [D8, D54, D57]. Во время перегонки метилхлорсиланов следует иметь в виду, что они легко гидролизуются под действием влаги из воздуха. Образующийся при гидролизе хлористый водород вследствие высокой местной концентрации вызывает коррозию латуни, стали, меди, хрома, алюминия- и свинца. Поэтому полученные продукты следует собирать, разделять и транспортировать в отсутствие влаги. Все сосуды, трубопроводы и ап харатура для перегонки должны быть совершенно сухими. При соблюдении таких предосторожностей можно всю аппаратуру изготовлять из обыкновенной стали. [c.103]

    Экстракцию теллура из растворов НС1 диэтиловым эфиром и слоя ными эфирами использовали для разделения золота и теллура [И, 834, 841]. Экстракция метилизобутилкетоном была применена для отделения и определения теллура в висмуте [1583], отделения теллура от кадмия, меди, никеля, свинца и цинка при анализе полупроводникового теллура [1582], для отделения от алюминия, висмута, хрома, кобальта, меди, железа, никеля и селена [606, 1581], от примесей, мешаюш,их определению теллура в виде элементного теллура [1580], от железа при анализе стали [1575]. Извлечение теллура бутилацетатом и затем метилизобутилкетоном использовали для отделения следов теллура от железа при анализе стали [763], трибутилфосфатом — для разделения теллура и селена [1584], для отделения теллура от сульфат-ионов [1585], разделения теллура(1У) и теллура(У1) [1404, 1570, 1572, 1573], отде-.пения теллура(ХУ) от теллура(УХ) и иода [1571], от железа [1586, 1587], для разделения радиоактивных изотопов теллура и молибдена [1031]. Т13Ф, ДАМФК и ТОФО применяли для разделения теллура и селена [1405], смесь ТБФ с диэтиловым эфиром — для разделения малых количеств теллура(1У), золота(И1) и железа(П1) [805]. Реэкстракция при помощи 10 Af H l из раствора в дибутиловом эфире (генератора) с последующей промывкой водной фазы дает возможность получать Те без носителя в радиохимически чистом состоянии [1591а]. [c.269]

    При аммиачном методе разделение на подгруппы основано на действии NH OH в присутствии солей аммония, причем катионы А1+ +, Сг+++ и Fe+ + - " осаждаются в виде гидроокисей, а катионы Мп++, [Zn(NHg) J +, 1 Со(ЫНз) ]++ и [Ni(NH3),.]"" остаются в растворе. Вместо аммиака можно применять органическое основание пиридин H N в присутствии соли аммония, создаюш,ий pH=6,5, при котором гидроокиси алюминия, железа (III) и хрома (III) осаждаются, а остальные катионы III группы остаются в растворе в виде растворимых комплексных солей с пиридином (см, стр. 280). [c.321]

    Осаждение Zr в виде Нз2гОз неполно и небольшое количество его попадает в раствор. При дальнейшем отделении катионов III группы действием (NN4)28 в а.ммиачной среде цирконий полностью осаждается. При разделении III группы на подгруппы он окажется в осадке вместе с гидроокисями железа (III), алюминия и хрома (III). При последующей обработке осадка избытком NaOH и HjO.2 очень небольшое количество циркония может перейти в раствор вместе с ионами гO " и AlO. -. С присутствием циркония приходится считать- [c.536]

    Значительно проще производится разделение по способу извлечения эфиром по Rothe. Этот способ особенно пригоден для отделения больших количеств железа от малых количеств марганца, хрома, никкеля, алюминия, меди, кобальта, ванадия, титана, т. е. от всех металлов, сопутствующих железу в его рудах или в сплавах. 5тот способ основан на способности хлорного железа с эфиром и с соляной кислотой давать легко растворимое в эфире соединение, между тем как хлористые соли других названных элементов этой способностью не обладают. Благодаря этому удается почти количественно выделить эфиром из раствора хлорное железо и таким образом освободиться от большого избытка его. При этом необходимыми условиями являются 1) присутствие железа в виде хлорного 2) определенной плотности кислота 3) отсутствие воды. [c.24]

    Одновременно появлялись работы по практическому применению газовой хроматографии -дикетонатов алюминия для количественного определения алюминия в различных объектах. Первые работы по количественному газохроматографическому определению алюминия рассмотрены в книге Мошьера и Сиверса [42]. Морие и Свит [119] описали определение алюминия и железа в сплавах в виде трифторацетилацетонатов экстракционно-хроматографическим методом при содержании алюминия 0,5%. Ошибка определения не превышала 0,8 отн.%. Разделение проводили на стеклянной колонке длиной 100 см, наружным диаметром 0,7 см с 0,5% силикона D -550 на силанизированных стеклянных шариках при 128° С. Генти и сотр. [120] разработали метод газохроматографического определения следов алюминия и хрома в уране. [c.85]

    Гидроокись хрома также является амфотерным соединением, но в присутствии ионов Мп+ и 2п++ образует нерастворимые в щелочах хромиты цинка и марганца п Сг02)2 и Мп(Сг02)г-Поэтому при разделении катионов третьей группы, кроме щелочи, к раствору прибавляют перекись водорода для окисления Сг= + в Сг . После окисления хром, так же как алюминий и цинк, находится в растворе, но в виде ионов Сг07 . [c.89]

    Группа сульфида аммония. Зейлер и Зейлер [2] использовали смешанный растворитель ацетон — концентрированная соляная кислота—ацетонилацетон (100 1 0,5) для разделения железа, цинка, кобальта, марганца, хрома, никеля и алюминия на слоях из специально очищенного силикагеля. Для обнаружения пятен хроматограммы подвергали воздействию газообразного аммиака, а затем опрыскивали раствором 0,5 г 8-оксихинолина в 100 мл 60 %-ного спирта и после этого наблюдали в УФ-свете. Расположение пятен после разделения смеси зависело от состава этой смеси (рис. 33.1). Эти же авторы [32] отделили иС + от смеси ионов Fe +, Си +, Со , Ni + Сг +, АР+ и Th +, использовав сложный растворитель, содержащий 50 мл этилацетата, 50 мл насыщенного водой эфира и 2 мл три-н-бутилфосфата. При проведении указанного разделения проба наносилась в виде раствора в 4,7 н. азотной кислоте. В результате взаимодействия пробы с элюирующим растворителем происходило образование комплекса уранилнитрата с три-н-бу-тилфосфатом, который легко перемещался в элюирующем растворителе, тогда как другие катионы оставались на старте или около него. После опрыскивания 0,25 % -ным этанольным раствором пиридилазонафтола удавалось обнаружить 1 мкг урана. Ион галлия Ga + был отделен от стократного избытка иона алюминия при элюировании 100 мл ацетона, содержащего 0,5 мл концентрированной соляной кислоты. Для обнаружения галлия необходимо опрыскивание 0,5 %-ным раствором 8-оксихинолина в 60 %-ном этаноле. После опрыскивания пластинку подвергали действию концентрированного аммиака и затем наблюдали под ультрафиолетэвым облучением. Лезинганг-Бух- [c.484]

    Осаждение аммиаком—одна из самых обычных операций, применяемых в анализе. Опа проводится либо для определения осажденного соединения весовым путем, либо для совместного отделения двух или нескольких металлов от других металлов. Если эта операция выполняется для количественного весового определения, то ей должно предшествовать выделение кремнекислоты и отделение элементов грунны сероводорода некоторые из этих элементов также более или менее полно осаждаются аммиаком. Вследствие того, что предварительно удалить всю кремнекислоту обычным методом невозможно, оставшееся небольшое количество ее увлекается осадком гидроокисей, и эту кремнекислоту следует выделить и определить, как указано в разделе Кремний (стр. 874). Число металлов, осаждаемых аммиаком, очень велико. Сюда входят алюминий, железо (П1), хром, таллий, галлий, индий, редкоземельные металлы, уран, титан, цирконий, бериллий, ниобии и тантал (стр. 104). К ним надо прибавить пятивалентные фосфор, мышьяк и ванадий, которые осаждаются в виде фосфатов, арсенатов и ванадатов одного или нескольких из перечисленных металлов. При большом содержании этих трех элеме] Тов осаждение их не будет полным фосфор и мышьяк в большем или меньшем количестве осаждаются в виде фосфатов и арсенатов щелочноземельных металлов и магния, если последние присутствуют . Поэтому в таких случаях осанедение аммиаком недопустимо. Неудовлетворительные результаты получаются также, когда раствор содержит большое количество цинка, особенно в присутствии хрома плохо удается разделение и в присутствии кобальта или меди. Бор мешает осаждению, и поэтому должен быть предварительно удален методом, описанным на стр. 763. [c.95]

    Щелочноземельные элементы. После опрыскивания хроматограммы 8-оксихинолином и выдерживания ее в парах аммиака проводят флуориметрический анализ [280]. А1, Ве, Сг. Алюминий и бериллий определяют в этом случае также флуориметрически в виде оксинатов, а хром — после опрыскивания дифенилкарбамидом [445]. Перед разделением методом ТСХ проводят экстракцию оксинатов, а перед разделением методом распределительной хроматографии — их повторную экстракцию. [c.155]

    Ю. Ю. Лурье и Н. А. Филиппова разработали методику количественного разделения смесей ионов на основе их амфотер-ности и процесса комплексообразования при пропускании растворов анализируемых веществ через колонки ионитов. Например, катионы алюминия, цинка, молибдена, сурьмы и вольфрама можно таким путем отделить от катионов железа, меди и других металлов, образующих основные гидроокиси. В виде комплексных анионов хром и марганец можно отделить от железа. Ионы висмута, сорбировавшиеся на зернах катионита, затем 102 [c.102]


Смотреть страницы где упоминается термин Разделение алюминия и хрома III в виде: [c.23]    [c.36]    [c.215]    [c.66]    [c.467]    [c.74]    [c.92]   
Хроматография неорганических веществ (1986) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте