Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свинец выделение

    На основании опыта сделайте вывод, в какой кислоте практически растворяется свинец Выделение какого газа наблюдается при растворении свинца Напишите уравнения реакций растворения свинца в кислоте и получения иодида свинца. Почему свинец практически не растворяется в соляной и серной кислотах  [c.167]


    Все три ряда оканчиваются свинцом, но с разными атомными весами. Это привело к необходимости предположить изотопию также у нерадиоактивного элемента свинца. Можно было ожидать, что свинец, выделенный из урановых руд, являющийся конечным продуктом превращений уранового ряда, должен иметь атомный вес, близкий к 206, а свинец из ториевых руд, образовавшийся в результате превращений ториевого ряда,— атомный вес, близкий к 208. Вскоре после открытия изотопии эти предположения были проверены и подтвердились [126]. Точные определения атомных весов дали 206,05—206,08 для разных образцов свинца из урановых руд и около 207,9 для свинца из ториевых руд, тогда как обыкновенный свинец, представляющий собой смесь изотопов, имеет атомный вес 207,21. [c.14]

    Выделение водорода по схеме (19.8) — (19.9) наиболее вероятно при электролизе щелочных растворов или концентрированных растворов солей щелочных металлов и на катодах с высоким перенапряжением водорода (ртуть, свинец и др.). На внедрение щелочных металлов в катоды из свинца и кадмия указывают некоторые факты, установленные при изучении процессов электровосстановления органических соединений. Для металлов с низким перенапряжением водорода вторичное выделение водорода представляется менее вероятным. Однако некоторые исследователи полагают, что и при образовании водорода на платиновых катодах вся совокупность опытных данных лучше всего объясняется схемой (19.8) —(19.9). [c.396]

    Эти соображения, высказанные Л. И. Антроповым, привели его к заключению о существовании двух крайних групп металлов с различным механизмом перенапряжения водорода. К первой нз них относятся металлы групп платины и железа, обладающие высокой адсорбционной способностью по отношению к водороду. На этих металлах стадия рекомбинации должна играть решающую роль в кинетике катодного выделения водорода. Вторая группа включает ртуть, свинец, кадмий и другие металлы, почти не адсорбирующие водород. На металлах второй группы кинетика выделения водорода определяется стадией разряда. [c.412]

    Электрохимическое выделение металлов из водных растворов их соединений лежит в основе гидроэлектрометаллургических процессов, т. е. процессов извлечения металлов из руд (электроэкстракция) и их очистки (рафинирование) при помощи электролиза. Гидроэлектрометаллургическим путем получают и очищают такие металлы, как медь, никель, цинк, кадмий, олово, свинец, серебро, золото, марганец и др. Гидроэлектрометаллургия позволяет получать [c.452]


    С кислотами, не являющимися окислителями, германий не взаимодействует, а олово и свинец реагируют с выделением водорода  [c.382]

    Примеси, обычно содержащиеся в меди (кислород, сера, висмут, свинец, железо), являются, как правило, вредными. Чем чище медь, тем лучшими механическими свойствами и более высокой коррозионной стойкостью она обладает. Особенно вредной является примесь кислорода, так как эта примесь способствует выделению закиси меди по границам зерен в виде эвтектики, которая является причиной хрупкости и хладноломкости меди при ее обработке в холодном состоянии. При взаимодействии с кислородом и другими окислителями медь не способна к пассивации и защитные пленки на ее поверхности не образуются. [c.246]

    Скоростью, с которой атомы Наде рекомбинируют друг с другом или с Н , образуя На, обусловлена каталитическими свойствами поверхности электрода. Если электрод является хорошим катализатором (например, платина или железо), водородное перенапряжение невелико, тогда как для слабых катализаторов (ртуть, свинец) характерны высокие значения перенапряжения. При добавлении в электролит какого-либо каталитического яда, например сероводорода или соединений мышьяка или фосфора, уменьшается скорость образования молекулярного Н и возрастает адсорбция атомов водорода на поверхности электрода . Повышенная концентрация водорода на поверхности металла облегчает проникновение атомов водорода в металлическую решетку, что вызывает водородное охрупчивание (потерю пластичности) и может привести к внезапному растрескиванию (водородное растрескивание) некоторых напряженных высокопрочных сплавов на основе железа (см. разд. 7..4). Каталитические яды увеличивают абсорбцию водорода, выделяющегося на поверхности металла в результате поляризации внешним током или коррозионной реакции. Это осложняет эксплуатацию трубопроводов из низколегированных сталей в некоторых рассолах в буровых скважинах, содержащих сероводород. Небольшая общая коррозия приводит к выделению водорода, который внедряется в напряженную сталь и вызывает водородное растрескивание. В отсутствие сероводорода общая коррозия не сопровождается водородным растрескиванием. Высокопрочные стали из-за своей ограниченной пластичности более подвержены водородному ра- [c.58]

    Инверсионную вольтамперометрию можно использовать также, зля определения неорганических токсикантов в крови. Однако следует учитывать, что белковые компоненты крови являются поверхностно-активными веществами, адсорбция которых на электроде может сделать невозможным проведение анализа. Для преодоления данного препятствия применяют специальные электроды импрегнированный фафитовый и в виде тонкой пленки графита [72] Указанные электроды, особенно пленочный графитовый, позволяют определять свинец и кадмий в крови даже без специальной подготовки пробы В случае других природных матриц для определения общего содержания токсичных металлов желательно применение комбинированных методов, основанных на сочетании вольтамперометрии с методами выделения и концентрирования определяемых компонентов Этим вопросам в литературе уделяется заметное внимание 110,73,74]. Особый интерес вызьшает применение легкоплавких экстрагентов с последующим растворением экстракта в подходящем органическом растворителе [74]. Так, расплавленный нафталин эффективно извлекает из водных растворов тяжелые металлы в виде комплексов с гфо-изводными 8-меркаптохинолина При этом нижняя фаница определяемых концентраций для свинца и кадмия составляет Ю" мг/л [c.285]

    Так, расплаву с содержанием 20% свинца (точка / ) соответствуют кристаллы с содержанием 4% свинца (точка ). Аналогично, из расплавов, в которых содержание свинца выше эвтектического (правее точки с), кристаллизуется не чистый свинец, а твердый раствор висмута в свинце. Состав кристаллов, находящихся в равновесии с жидкой фазой, определяют, проводя горизонтали до пересечения с кривой Ье. По мере выделения кристаллов жидкий расплав приближается но составу к эвтектическому и по достижении эвтектической температуры дальнейшая кристаллизация происходит при постоянных температуре и составе (точка с). Эвтектическая смесь здесь образована не кристаллами чистых веществ, а кристаллическими растворами свинца в висмуте и висмута в свинце, составы которых заданы точками й е. [c.111]

    Так, жидкое олово и свинец неограниченно растворимы друг в друге, но нерастворимы в твердом состоянии. Поэтому прн медленном охлаждении раствора (расплава) вначале кристаллизуется либо цинк, либо олово. Например, при охлаждении раствора состава 60% 2п и 40% 5п в твердую фазу начинает выделяться цинк. Это происходит, когда будет достигнута температура кристаллизации цинка нз расплава, отвечающая взятому составу (точка а). Как мы видели (стр. 163), растворы кристаллизуются при более низкой температуре, чем чистые жидкости. Поэтому температура начала выделения цинка лежит ниже его точки кристаллизации (419°С). По мере выделения цинка и обогащения системы оловом температура кристаллизации [c.191]


    Таким путем определяют медь, свинец, висмут, кадмий и некоторые др. металлы. В качестве катода удобно брать металлическую ртуть, так как образование амальгам облегчает электролитическое выделение многих металлов. С другой стороны, на металлической ртути сильно затруднено выделение водорода, и поэтому легко избежать побочной реакции разложения воды под действием электрического тока. [c.221]

    Как упоминалось выще, N1 и Со относятся группе металлов с низким перенапряжением выделения водорода на них. Что -касается РЬ, 5п, Сс1, то перенапряжение водорода на этих металлах весьма значительно. Поэтому их электролиз можно вести и при pH = 1. Напри/ме р, -свинец в кислых растворах ведет себя как электроположительный металл. Сульфат свинца слабо растворим, его концентрация в воде при 25° С равна 1,5- 10 г-моль л. Но и при столь малой концентрации свинец осаждается на катоде из насыщенного раствора сульфата в губчатой форме с практически теоретическим выходом по току. [c.44]

    Кристаллизация сплавов в этом и в подобных случаях происходит аналогично кристаллизации сплавов, образующих диаграммы первого типа. Отличие состоит в том, что, кроме выделения кристаллов индивидуальных компонентов, происходит еще образование кристаллов соединения. По линии АЕ1 из расплавов при охлаждении выделяется магний, по линии Е2В — свинец и по линии Е СЕ2 [c.352]

    Существенно на скорость выделения водорода влияет природа катодных участков. Некоторые металлы, например платина, кобальт, никель и др., катализируют выделение водорода, и катодный процесс на них протекает с высокими скоростями. Поэтому, если в составе металла или сплава находятся металлы, катализирующие выделение водорода, то коррозия с выделением водорода может ускоряться за счет этих компонентов в сплаве. Другие металлы, например, ртуть, свинец, кадмий, цинк, не катализируют или слабо катализируют катодное выделение водорода, и катодный процесс на них протекает медленно. Поэтому присутствие в составе сплава таких компонентов или не меняет скорости коррозии основного металла, или снижает ее из-за уменьшения площади поверхности, занимаемой основным металлом, на которой происходят и растворение металла и выделение водорода. Влияние природы металла на скорость выделения водорода количественно можно оценить по перенапряжению водорода на различных металлах (см. табл. 22). Чем ниже перенапряжение водорода, тем большей каталитической активностью к реакции выделения водорода обладает металл и тем выше скорость выделения водорода при данном потенциале катодного участка, а следовательно, и больше скорость коррозии. Чем выше перенапряжение, тем меньше и скорость выделения водорода при данном потенциале катодного участка, тем ниже скорость коррозии металла. Таким образом, скорость коррозии с выделением водорода может быть замедлена снижением температуры и уменьшением концентрации ионов Н , очисткой металла от примесей, катализирующих выделение водорода, а также изоляцией поверхности металла. Перемешивание раствора практически не влияет на скорость выделения водорода. [c.216]

    В большинстве случаев, однако, в особенности при электро-осаждении таких металлов, как серебро,. медь, висмут, свинец, олово и др., порошки появляются в области потенциалов, более положительных, чем (потенциал выделения водорода. [c.383]

    Путем соответствующей обработки 4,500 г сплава, содержащего свинец, выделен осадок РЬСг04. Осадок растворили в кислоте и добавили избыток К1. На титрование выделившегося иода затрачено 12,50 мл 0,0912 М раствора тиосульфата натрия. Вычислить массовую долю свинца в сплаве. [c.84]

    Обе эти гипотезы были подтверждены экспериментально. Из некоторых минералов урана с небольшим содержанием свинца и очень малым содержанием тория был выделен свинец с атомным весом менее 207, достигающим 206,1. С другой стороны, из минералов тория, бедных ураном, выделен свинец с атомным весом 207,77 и 207,90 (Хёнигшмид, Ричардс, 1913, 1914). Этими видами свинца, следовательно, являются почти чистые RaG и соответственно ThD. Позже при помощи масс-спектрографа было показано (Астон, 1927) (см. стр. 757), что обычный свинец [исследованный в виде газообразного тетраметилсвинца РЬ(СНз)4] является смесью трех видов атомов с массами 206, 207 и 208, содержащимися в соотношении 25,12 21,25 и 52,27% (остаток 1,36% является ° РЬ). Масс-спектрографически было установлено, что свинец, выделенный из минералов урана, всегда является смесью ° РЬ и в соотношениях, вычисленных исходя из предположения, что первый образуется из а второй — из [c.753]

    Свинец, выделенный из образца уранинита, подвергли масс-спектроскопическому исследованию. Было установлено, что отношение содержаний изотопов РЬ204. Р5,20в. РЬ207 равно 1,00 914,7 92,6. Оценить возраст урановой руды. [c.514]

    Электрохимические процессы очень часто приводят к образованию новых фаз. Так, при электролизе растворов щелочей у границы электрод — электролит образуется новая газообразная фаза (водород и кислород), возникшая в результате разложения жидкой фазы — воды, а электролиз растворов хлоридов приводит к выделению газообразных водорода и хлора. При электролизе растворов солей металлов на катоде идут процессы образования новых жидких (ртуть, галлий) или твердь[х (медь, цинк, свинец, никель и т. д.) металлических фаз. Во время заряда кислотного аккуму- [ятора твердый сульфат свинца па (одном из электродов превращается в металлический свинец, а па другом — в диоксид свинца. Число этих примеров можно было бы начительно увеличить, но и этого достаточно, чтобы понять, насколько часто следует считаться с воз-никиовением новых фаз в ходе электрохимических процессов. [c.332]

    Найдено, что нри заданной плот[юсти тока кислородное перенапряжение с течением времени изменяется. Перенапряжение кислорода, как правило, со временем растет, причем для одних металлов медленно и постепенно (железо, платина), для других скачкообразно (свинец, медь). За величину перенапряжения принимают обычно его установившееся значение. Оно отвечает, по-видимому, выделению кислорода на поверхности оксида, устойчивого в данной области потециалов. На кривых ё—1д/ или т]-— gj, полученных при выделении кислорода, часто наблюдаются один или несколько перегибов, отражающих внезапные изменения в кинетике процесса области потенциалов. На кривых Г—lg/ или г]—lg , полученных с другими электродами, можно выделить один или несколько 14 л. И. Антропов [c.421]

    Все металлы, приведенные в табл. 22.1, можно разделить на три группы. К первой из них относятся металлы, выделяющиеся из водных растворов или совсем без перенапряжения (ртуть), или с очень малым перенапряжением, не превышающим при обычных плотностях тока тысячных долей вол1>та (серебро, таллий, свинец кадмий, олово). Для этой группы металлов (кроме ртути) наибо лее отчетливо проявляются неустойчивость потенциала во времени сложный характер роста катодного осадка и другие особенности свойственные процессу катодного выделения металлов. При про мышленных плотностях тока эти металлы дают грубые осадки Токи обмена для металлов этой группы очень велики. Так, напри мер, ток обмена между металлическо) ртутью и раствором ее ниг рата превышает 10 А-м а между серебром и раствором нитрата серебра достигает 10 А-м  [c.459]

    Для повышения детонационной стойкости бензинов к ним добавляют присадки, прерывающие цепные реакции окисления. В качестве такой присадки широко применяется тетраэтилсвинец РЬ(СаН5)4 в последнее время за рубежом начали применять также тетраметил-свинец РЬ(СНя)4 и некоторые соединения марганца. При 200° С тетраэтилсвинец (ТЭС) разлагается с выделением свинца, который [c.101]

    Низкомолекулярные кислоты, выделенные из легких нефтяных фракций, представляют собой маловязкие жидкости с резким запахом высокомолекулярные кислоты, выделенное из масляных фракций, представляют собой густые, а иногда полутвердые пе-кообразные вещества. Нефтяные кислоты практически не растворимы в воде, хорошо растворимы в углеводородах. Кислотное число их уменьшается по мере увеличения молекулярной массы и колеблется в пределах 350—25 мг КОН/г. Нефтяные кислоты представляют собой насыщенные соединения, йодное число их невелико. Вязкость нефтяных кислот увеличивается с возрастанием молекулярной массы, поверхностное натяжение на границе с водой и воздухом уменьшается. Нефтяные кислоты способны кор-розионно воздействовать на металлы (свинец, цинк, медь, олово, железо), образуя соответствующие соли алюминий по отношению к ним устойчив. Соли нефтяных кислот за исключением щелочных не растворимы в воде. [c.35]

    На металлах, растворяющих водород, наблюдается наименьшее значение перенапряжения водорода Из данных, приведенных в табл. И, видно, что при выделении ислорода на платиновых металлах перенапряжение имеет наиболее высокие значения и наиболее низкие на металлах железной группы. Выделение кислорюда возможно тюлько на пассивных электродах, не растворяющихся в данных условиях при анодной поляризации (платиновые металлы и золото в кислотах, растворах солей и щелочей). В щелочах и карбонатах стоек никель и менее устойчиво железо. В растворах сульфатов и серной кислоты, а также в хроматах устойчив свинец и его сплавы, содержащие до 12 /о сурьмы. Графитовые аноды стойки в конденсированных хлоридах. Весьма стойки аноды из плавленой магнитной закись-окиси железа— магнетита. [c.38]

    Выделение на катоде этой группы металлов возможно за счет возникно ьения перенапряжения выделения водорода на этих металлах. Их можно разделить на две основные группы по величинам перенапряжения выделения водорода на них (см. тайл. 12—14). Так металлы — ртуть, цинк, свинец, к.ад- [c.41]

    Разбав-пенные соляная и серная кислоты почти ие действуют на свинец. Это связано со значительным перенапряжением выделения водорода iia сиппце, а также с малой растворимостью хлорида и сульфата свинца, закрывающих поверхность растворяющегося металла. В концентрированной серной кислоте, особенно при нагревании, свинец интенсивно растворяется с образованием растворимой кислой соли Pb(HS04)-3. [c.425]

    Электролит свинцового аккумулятора представляет собой раствор серной кислоты, содержащий сравнительно Majroe количество ионов РЬ +. Концентрация ионов водорода в этом растворе намного больше, чем концентрация ионов свинца. Крюме того, свинец в ряду напряжений стоит до водорода. Тем не менее при зарядке аккумулятора на катоде восстанавливается именно свинец, а не водород. Это происходит потому, что перенапряжение выделения водорода на свинце особенно велико (см. разд. 9.10, табл. 9.3). На электроде из РЬОз при зарядке идет процесс окисления [c.684]

    Введение поверхностно-активных веществ и коллоидов в электролит резко изменяет характер электрокристаллизации металла. Адсорбируясь на поверхности катода, поверхностноактивные вещества создают затруднения для проникновения разряжающих ионов металла, повышая энергию активации. Это приводит к значительному увеличению поляризации и, как следствие, к образованию мелкокристаллической структуры. Такие металлы, как олово, свинец, кадмий, которые при выделении на катоде из растворов их простых солей образуют игольчатые, не связанные между собой отдельные кристаллы, в присутствии повархностно-активных веществ образуют компактные плотные слои металла, обладающие высокими антикоррозионными защитными свойствами. В ряде случаев даже при не очень значительном увеличении поляризации поверхностно-активные вещества способствуют формированию мелкокристаллической структуры. [c.365]

    Разбавленная Н2ЗО4 (окислитель Н) взаимодействует с металлами, расположенными в ряду напряжений до водорода, с выделением водорода. Свинец практически с нею не реагирует (поверхность металла экранирует образующийся мало растворимый РЬЗО ). [c.331]

    Технический свинец всегда содержит значительное количество примесей. Его очищают переплавкой с частичным окислением (удаление Ал, 5Ь, 5п) окисление проводят с помощью расплава, содержащего NaNOэ, N8011, Na I. Для удаления примеси меди в расплав свинца вводят серу, с которой медь образует не растворимый в жидком свинца сульфид (о выделении А( и Аи см. разд. 8.8). Извлеченные из свинца примеси разделяют, так как они имеют ценность не меньшую, чем сам свинец. [c.385]

    При выделении серебра и меди вместо амау1ьгамы цинка часто используют амальгаму свинца, которая удобна тем, что свинец не вытесняет нз растворов другие металлы, кроме указанных. [c.566]

    В качестве материалов для генераторных электродов могут быть использованы платина, золото, серебро, ртуть, амальгамы, графит и иногда вольфрам, медь, свинец, хром и пр. Наиболее часто применяются платина и ртуть платина более пригодна для анодных процессов, а для катодных процессов — в тех случаях, когда электропревращение вещества протекает при более положительных значениях потенциала электрода, чем выделение водорода (из-за малого перенапряжения водорода иа платине). На ртутном электроде можно осуществить почти все катодные процессы благодаря большому перенапряжению водорода на нем. Однако из-за легкости анодного растворения ртути проведение электролиза при несколько более положительных значениях потенциала, чем потенциал НВЭ, недопустимо. Таким образом, эти два электрода дополняют друг друга. [c.208]

    Если металл хорошо адсорбирует водород (платина, палладий), скорость разряда велика, а скорость рекомбинации мала и лимитирующей стадией является рекомбинация. Наоборот, если металл плохо адсорбирует водород (свинец, ртуть), т. е. 0н мало, то скорость рекомбинации велика и перенапряжение определяется стадией разряда для металлов со средними величинами энергии адсорбции могут существовать различные механизмы перенапряжения, что и было экспериментально показано П. Д. Луковцевым и С. И. Левиной при изучении выделения водорода на никеле. [c.325]

    РЬО растворяется в кислотах с образованием солей свинца, особенно легко в азотной и уксусной, так как нитрат и ацетат свинца — хорошо растворимые в воде соли. Обработка соляной и серной кислотами приводит к образованию на поверхности РЬО труднорастворимых хлорида и сульфата свинца. РЬО слабо растворима в растворах щелочей, причем с повышением концентрации раствора щелочи растворимость РЬО увеличивается мало (в 4%-ном растворе NaOH растворимость РЬО равна 1,82%, в 50%-ном раствора NaOH — 3%). В щелочных растворах свинец присутствует в виде ионов РЬ(ОН)з- и РЬ(ОН)42 . Из достаточно концеитрированного раствора был выделен гидроксоплюмбит состава Na[Pb(OH)s] в виде бесцветных кристаллов. [c.201]

    Концентрированные кислоты, в особенности при нагревании, действуют на свинец очень энергично H2SO4 с выделением SO2, HNO3 — N0 и NO2, НС1 — H.J (в последнем случае с образованием растворимого соединения, отвечающего формуле HiPb lgl). [c.499]

    В соляной И разбавленной серной кислотах олово растворяется очень медленно (из-за поверхностной пленки оксида) с образованием ионов Sn и выделением Нг. Свинец в таких кислотах не растворяется, так как покрывается нерастворимыми продуктами окисления хлоридом свинца РЬСЬ и сульфатом с в,и и ц а PbS04. В концентрированной НС1 эти металлы растворяются с образованием хлорокомплексов  [c.310]


Смотреть страницы где упоминается термин Свинец выделение: [c.184]    [c.552]    [c.380]    [c.583]    [c.163]    [c.140]    [c.168]    [c.553]    [c.202]   
Техника неорганического микроанализа (1951) -- [ c.88 , c.118 ]




ПОИСК







© 2024 chem21.info Реклама на сайте