Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны живые, проницаемость

    Иногда возникает вопрос, может ли живая система произвольно удаляться от условий равновесия, вместо того, чтобы приближаться к ним, как этого требует термодинамика. Предположим, например, что мембрана живой клетки имеет одностороннюю проницаемость для некоторых химических соединений, например, глюкозы, т. е. глюкоза может проникать в клетку посредством простой диффузии, и клетка может, не производя работы, задерживать обратный выход молекул глюкозы. Очевидно, что со временем внутри клетки будет значительная концентрация глюкозы, и клетка может использовать этот избыток концентрации для производства осмотической работы, хотя сама клетка не затрачивала работы в процессе накопления глюкозы. Термодинамика, однако, устанавливает, что мембрана не может обладать односторонней проницаемостью без производства необходимой осмотической работы. [c.50]


    ФОСФАТИДЫ (фосфолипиды) — сложные эфиры фосфорной кислоты и глицерина или сфингозина, которые связаны эфирной или амидной связью с одним или несколькими остатками высших жирных кислот. В зависимости от природы спирта, лежащего в основе химической структуры Ф., различают глицерофос-фатиды и сфингофосфатиды. Ф. входят в состав клеток и тканей всех живых организмов. Особенно велико их содержанне в нервной ткани, они есть в мозге, печени, мускулах, принимают участие в окислительных процессах живых организмов. Ф. вместе с холестерином и белками, участвуют в построении мембран клеток, обусловливают избирате,аьную проницаемость для различных соединений, активно переносят вещества через мембраны, играют важную роль в транспортировке жиров, жирных кислот и холестерина. Нарушение синтеза Ф. в организме ведет к развитию жирового перерождения печени. [c.264]

    Состав внеклеточной жидкости близок к составу морской воды в пред-кембрийскую эпоху, когда появились животные с замкнутой системой кровообращения. С тех пор соленость моря продолжала возрастать, тогда как состав внеклеточной жидкости остался постоянным. Основным катионом во внеклеточной жидкости является ион Ка , а из анионов преобладают СГ и НСОВнутри клеток преобладают катион и анион НРО Для соблюдения физико-химического закона электронейтральности, которому подчиняется любой живой организм в целом, некоторый недостаток неорганических анионов компенсируется анионами органических кислот (молочной, лимонной и др.) и кислых белков, несущих отрицательный заряд при физиологических значениях pH. Если вне клетки органические анионы компенсируют незначительную нехватку отрицательного заряда, то внутри клетки они должны компенсировать около 25 % положительных зарядов, создаваемых неорганическими катионами. Поскольку клеточные мембраны легко проницаемы для воды, то они могут разрушаться при незначительных различиях в давлении жидкости внутри и снаружи клеточной мембраны. Поэтому осмотическое давление внутри клетки должно быть равно таковому во внеклеточной жидкости, т. е. живая клетка подчиняется закону изоосмоляльности. Повышенное содержание катионов по отношению к концентрации анионов во внеклеточных жидкостях в сравнении с внутриклеточными средами приводит к тому, что наружная поверхность мембран клеток оказывается заряжена положительно относительно ее внутренней поверхности, и это имеет огромное биологическое значение (см. главу 15). В биологических жидкостях концентрацию осмотически активных частиц (независимо от их заряда, размера и массы) выражают в единицах осмоляльности — миллиосмомолях на 1 кг воды. Так как главные катионы и анионы внутриклеточных жидкостей многозарядные, то (при одинаковых осмоляльностях) концентрация электролитов, выраженная в миллиэквивалентах на 1 л, будет значительно выше внутри клетки, чем во внеклеточных жидкостях, где в основном содержатся однозарядные ионы. [c.180]


    Проблемы, связанные с молекулярными основами превращений химической энергии АТФ в механическую энергию процессов сокращения и движения, чрезвычайно сложны [3, 15]. Это объясняется тем, что вне живого организма отсутствуют примеры непосредственного превращения химической энергии в механическую. Механическая работа может быть представлена сокращением мышц, а также движениями ресничек и жгутиков у простейших. Большинство клеток содержат сократительные нити (фибриллы), которые осуществляют организацию содержимого клетки, движение и перенос клеточных веществ, процессы клеточного деления и т. д. В качестве примера преобразования энергии АТФ в механическую работу можно привести процессы мышечного сокращения, связанные с использованием энергии АТФ [3, 15, 18], при этом важную функцию выполняют белковые компоненты мышечных клеток — комплекс миозина и актина, названный актомиозином. Актомиозин и его компонент миозин обладают АТФ-азной активностью, т. е. способны гидролизовать концевую фосфатную группу АТФ. Однако АТФ-азную активность актомиозина стимулируют ионы Mg +, а миозина — ионы Са +. Сигналом для сокращения мышц является электрический импульс, приходящий из двигательного нерва через нервномышечное соединение. До получения импульса по обе стороны мембраны (сарколемма) мышечной клетки поддерживается, разность потенциалов (с наружной стороны имеется избыточный положительный заряд). При распространении импульса по мембране разность потенциалов сразу исчезает. Считают, что это является результатом резкого повышения проницаемости мембраны для ионов К+, Na+ и Са2+ при этом направление потоков ионов вызывает разряд трансмембранного потенциала. После этого мембрана вновь возвращается в поляризованное состояние, а ионы Са + входят внутрь саркоплазматической сети мышечной клетки. Подобный перенос ионов Са + осуществляется за счет свободной энергии гидролиза АТФ (АТФ-азный кальциевый насос мембраны). Поставщиками АТФ в мышечных клетках служат как гликолиз, так и дыхание. Однако при нарушении этих процессов мышца (скелетная мышца позвоночных животных) при стимуляции продолжает сокращаться благодаря тому, что в ней содержится богатое энергией вещество — креатинфосфат (см. стр. 416), концентрация которого более чем в 4 раза превышает концентрацию АТФ. В мышце идет реакция  [c.430]

    Мембраны — это чрезвычайно вязкие, но тем не менее пластичные структуры, окружающие все живые клетки. Плазматическая мембрана образует замкнутый отсек (компартмент), внутри которого находится цитоплазма это обеспечивает изоляцию одной клетки от другой и обусловливает их индивидуальность. Плазматическая мембрана обладает селективной проницаемостью и является барьером, с помощью которого поддерживается различный состав вне- и внутриклеточной среды. Селективная проницаемость обеспечивается работой каналов и насосов, транспортирующих различные ионы и субстраты, и специфическими рецепторами, например рецепторами гормонов. Кроме того, с помощью плазматических мс.мбран осуществляется обмен веществами между клеточным содержимым и окружающей средой путем экзо- и эндоцитоза существуют также особые мембранные структуры — щелевые контакты, через которые соседние клетки обмениваются веществами. [c.127]

    Если потенциал покоя в результате низкой проницаемости мембраны для ионов натрия незначительно зависит от их концентрации, то потенциал действия благодаря резкому возрастанию проницаемости мембраны для ионов натрия при возбуждении заметно изменяется при увеличении концентрации ионов натрия. С повышением концентрации ионов натрия величина отрицательного мембранного потенциала при возбуждении клетки возрастает. Аналогично изменяется мембранный потенциал и при увеличении концентрации ионов лития и, можно предполагать, ионов серебра и меди, атомные радиусы которых близки. Повышение отрицательного значения мембранного потенциала с ростом концентрации электролита будет определять изменение штерновского и, соответственно, электрокинетического потенциала живой микробной клетки. [c.122]

    Жидкий мембранный электрод с кальциевой функцией. Ионы кальция играют большую роль в важных физиологических процессах живых организмов. Проблема измерения активности зтих ионов в биологических жидкостях была решена после разработки ионселективного жидкого мембранного электрода с кальциевой функцией. Устройство одного из таких электродов показано на рис. 24.5. Нижний конец открытой стеклянной трубки затянут целлюлозной пленкой, проницаемой для всех ионов и служащей для удержания жидкой мембраны. Последняя представляет [c.475]


    Читателю, уже усвоившему, что растворяющая способность растворителя в достаточно явной форме связана с его диэлектрической проницаемостью, ясно жизненный растворитель, помимо амфотерности, должен обладать еще и достаточно высокой диэлектрической проницаемостью. Последнее условие становится тем более настоятельным, если учесть, что механизм передачи раздражений в живом организме,— электрохимический, связанный с переносом ионов через биологические мембраны. Для того же, чтобы ионная концентрация была достаточно большой, высокая диэлектрическая проницаемость является, как мы видели, условием совершенно необходимым. (Можно, конечно, представить себе и иные механизмы передачи раздражений, например, механический или с помощью радиоволн, но каждый биолог, обладающий даже весьма широкими взглядами на возможную организацию живого вещества, предложит длинный перечень аргументов, которые докажут неосновательность таких предположений).  [c.72]

    На границе раздела фаз такие соединения действуют как превосходные эмульгаторы. В составе биомембран, ограничивающих живые клетки и их внутриклеточные органеллы, липидные компоненты обеспечивают высокое электрическое сопротивление мембраны, ее непроницаемость для ионов и полярных молекул и проницаемость для неполярных веществ. В частности, большинство анестезирующих препаратов отличается хорошей растворимостью в липидах, что позволяет им проникать через мембраны нервных клеток. [c.466]

    В связи с тем, чго перенос различных ионов через одинаковые клеточные мембраны происходит с неодинаковой скоростью и что обмен веществ и, следовательно, перенос ионов между внутренней частью клетки и окружающей средой происходит через пограничный слой клетки, который представляет собой довольно сложную структуру, существует теория, что клеточная мембрана обладает свойствами избирательной проницаемости. Вследствие этого живые и неповрежденные клетки, находящиеся в покое, обладают резко выраженной асимметрией в распределении веществ между клеткой и средой концентрация одних веществ больше, а других — меньше, чем в среде. Считают, что протоплазматическая мембрана содержит особые переносчики и ферментные системы, которые управляют скоростью поступления веществ в клетку и выходом их наружу. Благодаря системе переносчиков осуществляется, например, активный транспорт анионов и катионов из межклеточного пространства растительных тканей внутрь клетки. Теория такого активного переноса в настоящее время принимает, что [c.280]

    Удерживание в неоднородном электрическом поле белков и нуклеиновых кислот с сохранением их биологической активности свидетельствует о возможной роли этого явления в живой клетке. Общеизвестно, что клеточная стенка неоднородна ио своему составу, а следовательно, и по диэлектрической проницаемости и имеет довольно высокий электрический потенциал [ б, 17, 474]. Мембраны клеточных органелл (митохондрий, хлоропластов) и бактерий содержат молекулярные электрические генераторы [87], причем величина генерируемой трансмембранной разности электрических потенциалов достигает существенных значений— 100--300 мВ. Поэтому вполне резонно допустить существование в клеточных структурах неравномерного неоднородного электрического поля, аналогичного создаваемому нами в эксперименте, с высокой напряженностью и градиентом потенциала, и предположить его влияние на процесс удерживания, локализацию и работу биологически активных соединений, особенно высокомолекулярных. [c.228]

    Диспергирующее (пептизирующее) действие ПАВ повышает проницаемость живых (клеточных) мембран по отношению к физиологически активным и питательным веществам, способствуя росту тканей организмов и делению клеток. Если ке поры мембраны гидрофобны, то ПАВ может повысить проницаемость, проявляя смачивающее действие, т. е. изменяя знак ка- [c.27]

    Почти все перепонки живого организма действуют как диали-зирующие мембраны. Кровеносные сосуды, например, обычно непроницаемы для больших молекул белка (таких, как молекулы гемоглобина и сывороточные альбумины и глобулины), но проницаемы для воды, двуокиси углерода, кислорода, ионов солей и небольших органических молекул, образующихся в результате [c.115]

    Ионный состав живой клетки в общем значительно отличается от состава окружающей жидкости. Действительно, живые клетки находятся в осмотическом равновесии с жидкостями, находящимися в контакте с ними, но распределение отдельных ионов обычно далеко от равновесного. Это различие в ионном составе поддерживается или благодаря постоянному обмену веществ клетки, или благодаря избирательной проницаемости клеточной мембраны. Эритроциты млекопитающих, например, обладают очень ограниченной проницаемостью для катионов. Если живая клетка повреждена, причем разрушена мембрана или нарушен обмен клетки, то электролит диффундирует в клетку или из нее, в зависимости от направления градиента концентрации. Эта диффузия ионов обусловливает потенциал повреждения. Найдено, что поврежденная ткань вообще заряжена отрицательно по отношению к неповрежденной ткани, хотя если раствор, который обмывает ткань, имеет соответствующий состав, то может быть получен положительный потенциал повреждения. [c.123]

    Напомним, что ПП в основном создается за счет разности концентраций калия внутри клетки, где его много, и вне клетки, где его мало. Но мембрана проницаема, хотя и в небольшой степени, также и для ионов натрия. Ионы натрия должны проникать внутрь клетки по градиенту потенциала, а наружу вместо них должны выходить ионы калия. За счет этого процесса ПП должен постепенно снин аться. Однако в живых организмах этого пе происходит. Существует какой-то механизм, который все время поддерживает ПП, а значит и разность концентраций калия внутри и вне клетки. Этот механизм должен перемещать ионы калия внутрь клетки, т. е. туда, где их концентрация выше, чем снаружи, а такие перемещения против градиента концентрации требуют затраты энергии. [c.101]

    Измерение концентрации и распределения неорганических ионое и других низкомолекулярных веществ в клетках необходимо выполнять на интактной живой ткани. Весьма эффективен для этого ядерный магнитный резонанс (ЯМР) ЯМР представляет собой полностью неинвазивный метод, он используется для измерения относительной концентрации многих малых молекул, но, к сожалению, его применение требует значительного количества образца. Для определения концентрации специфических ионов в отдельных клетках или в отдельных частях клеток можно применять флуоресцентные индикаторные красители. Стеклянные микроэлектроды незаменимы для измерения не только электрических потенциалов и потока ионов через плазматическую мембрану с их помощью удается определять концентрацию специфических внутриклеточных ионов. Микроэлектроды можно использовать и для инъекции в клетки молекул, не проникающих через мембраны Альтернативные подходы состоят во временном повышении проницаемости мембран или в слиянии клеток с частицами, окруженными мембранами и содержащими макромолекулы. [c.201]

    Живые системы на всех уровнях организации - открытые системы. Поэтому транспорт веществ через биологические мембраны - необходимое условие жизни. С переносом веществ через мембраны связаны процессы метаболизма клетки, биоэнергетические процессы, образование биопотенциалов, генерация нервного импульса и др. Нарушение транспорта веществ через биомембраны приводит к различным патологиям. Лечение часто связано с проникновением лекарств через клеточные мембраны. Эффективность лекарственного препарата в значительной степени зависит от проницаемости для него мембраны. [c.32]

    Как известно, любая живая клетка окружена мембраной — ее часто называют плазматической. Это как бы стена, отделяющая живое содержимое от неживого окружения. Однако плазматическая мембрана — не просто оболочка. Она избирательно проницаема и регулирует поступление в клетку ионов и молекул и выход их из клетки наружу. [c.58]

    Важным направлением биоэлектрохимических исследований является изучение свойств мембран с встроенными ферментными системами. Так, предприняты попытки встраивания в бислойные фосфолипидные мембраны компонентов ферментных систем, присутствующих во внутренней мембране митохондрий (никотинамид — аденин — динуклеотида (ЫАОН), флавинмононуклеотида и коэнзима Р,), а также хлорофилла. На таких мембранах при наличии в водном растворе окис-лительно-восстановительных систем генерируется мембранный потенциал, вызванный протеканием окислительно-восстановительных реакций на границе мембрана — электролит. В определенных условиях мембраны оказываются проницаемыми для электронов или протонов. Эти опыты важны для понимания механизма превращения энергии и переноса электронов в живых организмах. [c.141]

    Мембраны готовят из различных материалов полимерных пленок, пористого стекла, керамики, металлической фольги, ионообменных материалов. Наибольщее применение получили мембраны на основе полимеров ацетата целлюлозы, поливинилхлорида, полистирола, полиамидов и др. Первые искусственные ме.мбраны были получены в начале шестидесятых годов из ацетата целлюлозы. Жизнедеятельность организма человека и других живых существ поддерживается благодаря поступлению питательных веществ через тонкие стенки кищок — биологические мембраны. Избирательная проницаемость биологических мембран обеспечивает доступ нужных организму веществ в легкие и другие органы. [c.281]

    Для того чтобы изучать молекулярные механизмы движения хромосом в анафазе, лучще всего было бы иметь высокоочищенный препарат митотических веретен, нормально функционирующих in vitro. Получить такой препарат пока не удалось, однако разработана другая модельная система, которая более доступна для исследования, чем нормальная живая клетка. Для создания такой системы митотическую клетку обрабатывают разбавленным раствором детергента, в результате чего ее плазматическая мембрана становится проницаемой для макромолекул. При использовании буферов, стабилизирующих микротрубочки, в таких клетках можно индуцировать и останавливать ана-фазные движения хромосом. Кроме того, поскольку в этих условиях к митотическому веретену имеют свободный доступ различные макромолекулы (в том числе специфические антитела), можно исследовать их влияние на движение веретена. [c.185]

    Обмен веществ, обеспечивающий процессы жизнедеятельности в живой природе, во многом связан с транспортированием различных ингредиентов через селективно проницаемые (полупроницаемые) мембраны. Высокая энергоэкономичность природных мембранных процессов разделения жидких и газовых смесей, а также высокая селективность проницаемости биологических мембран послужили предметом пристального внимания исследователей, побудив их к созданию подобных материалов и процессов разделения. [c.4]

    Полупроницаемые мембраны и, следовательно, мембранные явления чрезвычайно распространены в живой природе. Так, клеточные или плазменные мембраны отделяют внутреннюю часть любой живой клетки от окружающей среды. Составы растворов внутри и снаружи клеток различны, а сами мембраны обладают избирательной проницаемостью. В основе транспорта веществ через мембраны лежат электрохимические закономерности. Этот пример указывает на важность электрохимического подхода к исследованию биологических объектов. Изучение электрохимических закономерностей функционирования живых систем и их моделей составляет предмет биоэлектрохимии. Это направление электрохимии интенсивно развивается в настоящее время. Один из разделов биоэлектрохимии связан с изучением мембран и их роли в биологических системах. [c.138]

    Мембраны играют также важную роль в механизме освобождения и потребления энергии в живых организмах. Различные виды живых клеток получают энергию из окружающей среды в разных формах, однако накопление и использование ее происходит в виде аденозинтри-фосфата (АТФ). При передаче энергии АТФ переходит в аденозин-дифоефат (АДФ), который в свою очередь за счет разных видов энергии присоединяет фосфатную группу и превращается в АТФ. Процесс образования АТФ называется фосфорилированием. Этот процесс в организмах животных и человека сопряжен с процессом дыхания. Аистом генерирования АТФ в животных клетках являются особые компоненты клеток — митохондрии, которые служат своеобразными силовыми станциями , поставляющими энергию, необходимую для функционирования клеток. Митохондрия окружена двумя мембранами внешней и внутренней. На внутренней мембране, содержащей ферментные комплексы, происходит превращение энергии химических связей в мембранный потенциал. При этом важную роль играют проницаемость и электронная проводимость мембран. [c.140]

    Изучение мембранных явлений на живых организмах — чрезвычайно сложная экспериментальная задача. В 1962 г. П. Мюллер и сотрудники разработали методику приготовления бимолекулярных фое-фолипидных мембран, что предоставило возможность модельного исследования ионного транспорта через мембраны. Для приготовления искусственной мембраны каплю экстракта мозговых липидов в углеводородах наносят на отверстие в тефлоновом стаканчике (рис. 46, а). Искусственные мембраны имеют более простое строение, чем естественные (ср. рис. 45 и 46, б), но приближаются к последним по таким параметрам, как толщина, электрическая емкость, межфазное натяжение, проницаемость для воды и некоторых органических веществ. Однако электрическое сопротивление искусственных мембран на 4—5 порядков выше. Проводимость мембран увеличивают, добавляя ионофоры жирорастворимые кислоты (2,4-динитрофенол, дикумарол, пентахлорфе-нол и др.) или полипептиды (валиномицин, грамицидины А, В и С, ала-метицин и др.). Мембрана, модифицированная валиномицином, имеет сопротивление порядка 10 Ом/см , а ее проницаемость по К-" в 400 раз выше, чем по Ма+. На модифицированных моделях был изучен механизм селективной проницаемости мембран. В определенных условиях при добавлении белковых компонентов искусственная мембрана позволяет моделировать также свойство возбудимости. [c.140]

    Характерная функция ионов Са + у живых существ состоит в способности активировать различные метаболические процессы. Это происходит при резких -изменениях проницаемости плазматических мембран или мембран эндоплазматического ретикулума, в результате которых становится возможной диффузия ионов Са + в цитоплазму. Так, например, при сокращении мышцы в результате освобождения ионов Са + из эндоплазматич0окого ретикулума его концентрация увеличивается приблизительно от 0,1 до 10 мкМ . Связывание ионов Са + с тропонином С инициирует сокращение (гл. 4, разд. Е.1) . Мембраны эндоплазматического ретикулума мышечного волокна содержат большое количество белка кальциевого пасоса, а также ряд белков, связывающих кальций (гл. 4, разд. В.8.в) . Один из Са +нсвязывающих белков мышцы кролика, кальсеквестрин (мол. вес 46 500), способен связывать до 43 молей Са + на моль белка"  [c.373]

    При действии раздражителя на нервное или мышечное волокно мембранный потенциал Е в месте раздражения нарушается. Нерв воспламеняется , и поляризация мембраны меняется на обратную (рис. 55, б). Поток ионов Ма+ устремляется внутрь клетки (заса сывается), а затем (рис. 55, в) ионы К+направляются во внешнюю среду. Возвращение к исходному положению (рис. 55, г) происходит спустя одну-две миллисекунды. Нервный импульс пиковый потенциал (потенциал действия) передается по нервному волокну дальше. Мембраны играют важную роль в процессах освобождения и запасания энергии в живых организмах. Ее накопление происходит в виде аденозинтрифосфорной кислоты (АТФ), а при необходимости энергия освобождается за счет разрыва одной из трех богатых энергией связей Р—О—Р. На мембране митохондрии — одного из компонентов клетки — происходит превращение энергии химических связей в мембранный потенциал. При этом важную роль играют проницаемость и электронная проводимость мембран. [c.159]

    Читателю, твердо уже усвоившему, что растворяющая способность растворителя в достаточно явной форме связана с его диэлектрической проницаемостью, ясно жизненный растворитель, помимо амфотерности, дол- жен обладать еще и достаточно высокой диэлектрической проницаемостью. Последнее условие становится тем более настоят ьным, если учесть, что механизм передачи раздражений в живом организме, — электрохимический связанный с переносом ионов через биологические мембраны. Для того же, чтобы ионная концентрация былг достаточно большой, высокая диэлектрическая прони цаемость является, как мы видели, условием совершение [c.74]

    Это кажется несколько неожиданным и непонятным лишь тому, кого интересует только структурная картина. Но ведь большинство электронных микроскопистов — это медики и биологи, а они отлично помнят время, когда в самом разгаре были исследования но так называемой проницаемости,— это период примерно с 1920 по 1935 г. Под проницаемостью в данном случае понимают прохождение веществ через мембрану. Проницаемость характеризует способность мембраны пропускать через себя различные (растворенные) вещества. На основании бесчисленных экспериментов с самыми различными веществами и на самых разных типах клеток было выяснено, что малые молекулы усваиваются живой клеткой быстрее, чем большие, и что вещества, растворимые в воде, но нерастворимые в жирах и жироподобных растворителях (так называемые липо-фильные растворители), проникают в клетку медленнее, чем те, которые хорошо растворяются в жирах липидах). Здесь нет надобности вдаваться в подробности, для нас сейчас важен только главный принцип. Мембраны, которые контролируют прохождение различных веществ через клеточную поверхность (т. е. через нлазмалемму), содержат  [c.207]

    Проницаемость в живых клетках представляет собой активный процесс и имеет мало общего с молекулярной диффузией или осмотическим потоком. Наоборот, активный транспорт осуществляется чаще всего против градиента концентрации, т. е. в направлении от мепьшей концентрации к большей. Ясно, что это — сложное явление, в котором обязательно должна потребляться энергия, так как движение веществ в направлении, обратном диффузии, связано с уменьшением энтропии. Активный перенос веществ как внутрь клетки из внешней среды, так и внутрь различных структурных элементов из заполяющей клетку гиалоплазмы осуществляется особыми нерастворимыми белками и белковыми комплексами, образующими наружную клеточную мембрану и различные структурные образования внутри клеток. Активный транспорт через мембраны и внутрь клеточных органелл связан с протеканием химических реакций, конечно, ферментативных. Поэтому проблема проницаемости и соответствующая функция белков тесно связана с их ферментативной функцией. С другой стороны, с помощью активного транспорта осуществляется один из механизмов автоматического регулирования. Как мы увидим дальше, регулирование проницаемости митохондрий осуществляется путем их сокращения пли расслабления. Причиной этого движения яляется сократительная реакция в особом белке, т. е. это явление вполне аналогично сокращению мышцы. [c.139]

    Предположим, что мы имеем большую живую клетку, мембрана которой легко проницаема для воды (рис. 1). Клетка окружена водной средой, состоящей из разбавленного заствора веществ А и Б. Хлетка имеет внутри фермент, который может превращать А в Б или Б ъ А так, что оба эти вещества всегда находятся в равновесии друг с другом внутри клетки. Положим, что клетка начинает накоплять определенный объем водной среды в вакуоле и этим концентрирует раствор по отношению к А так, что концентрация делается равной его концентрации в цитоплазме клетки. Конечно, при этом клетка совершает осмотическую работу. Затем клетка без производства дополнительной работы доставляет этот малый объем раствора А к цитоплазме, где он реагирует, давая Б. Избыток Б, полученный таким образом, удаляется клеткой во вторую вакуоль, где имеется та же концентрация по отношению к Б, что и в цитоплазме. При этом не производится работы. Теперь клетка в состоянии производить осмотическую работу путем [c.32]

    Очень мало известно о механизме биологического действия гормонов, хотя, естественно, он будет различным у разных гормонов. Многие гормоны, в частности соединения пептиднобелковой природы, оказывают влияние на проницаемость клеточных и субклеточных мембран, по всей вероятности, путем воздействия на определенные ферменты. Таким путем они регулируют различные процессы в живой клетке. Интересно, что при этом гормон не обязательно должен входить в клетку, он может прикрепляться к определенной ферментной системе, расположенной на клеточной поверхности, и посредством кооперативных эффектов вызывать какие-либо изменения внутри клетки (такой механизм иногда называют кнопочным ). Таким путем может регулироваться транспорт ионов различных металлов и ряда веществ (например, сахаров) через мембраны и оболочки. [c.105]

    Мы все больше узнаем о свойствах и природе веществ, модифицирующих проницаемость био-мембран. Все это так. Однако еще раз подчеркиваю — нам нужно понять, в силу каких причин в процессе эволюции возникли именно такие механизмы Один из возможных ответов гласит данное приспособление возникло как неизбежное следствие физических и (или) химических свойств веществ, вовлеченных в процесс эволюции. В духе такого ответа можно сказать, что ионные градиенты, противотер-модинамическая асимметрия ионов в системе клетка — внешняя среда возникли как неизбежное следствие образования биоде-тергентных мембран. Если в силу эволюционной необходимости в дискретности живого вещества появились мембраны, отграничивающие клетки от внешней среды, то вследствие физических и химических свойств этих мембран, их избирательной проницаемости возникла и ионная асимметрия. Ионная асимметрия оказалась весьма удачным показателем целостности клетки и в ходе дальнейшей эволюции смогла обеспечить реагирование клетки на внешние воздействия. [c.100]

    Исследования проницаемости липидных пор развиваются в настоящее время в двух направлениях в первом исследуются максимально большие поры, во втором, наоборот, - липидные поры минимального радиуса. В первом случае речь идет об электротрансфекции - способе введения в живые клетки или липосомы молекул ДНК с целью переноса и внутриклеточного введения чужеродного генетического материала. Оказалось, что внешнее электрическое поле высокой напряженности способствует проникновению гигантской молекулы ДНК внутрь мембранной частицы. Как видно из табл. 2.2, максимальный размер критической поры соответствует жидкокристаллическому состоянию бислоя липидов в отсутствие внешнего электрического поля и равен 9 нм. Наложение внешнего электрического поля напряженностью 100 кВ/м понижает критический радиус поры до 1 нм за время 0,2 с. Поскольку при этом мембраны сохраняются, то размер липидных пор в них не превышает, очевидно, этого нижнего предела. Парадокс состоит в том, что эффективный диаметр статистического клубка ДНК, которая должна попасть внутрь частицы, достигает 2000 нм. Поистине задача про верблюда, проникающего сквозь игольное ушко. Поэтому очевидно, 62 [c.62]


Смотреть страницы где упоминается термин Мембраны живые, проницаемость: [c.163]    [c.423]    [c.213]    [c.213]    [c.111]    [c.36]    [c.272]    [c.82]    [c.371]    [c.37]    [c.101]    [c.165]   
Физическая биохимия (1949) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Мембраны Проницаемость

Проникновение через живые мембраны— . Проницаемость клеток для неэлектролитов



© 2025 chem21.info Реклама на сайте