Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория электрического заряда

    Для объяснения явления удерживаемости была выдвинута теория электрического заряда. Согласно этой теории, частицы ядов и листья растений несут отрицательный заряд. Поэтому частицы яда и растение, несуш,ие одноименные заряды, отталкиваются друг от друга и препарат не удерживается на растении. Изменение знака заряда частиц может происходить при трении последних [c.15]


    Аррениус предположил, что ионы Фарадея — это атомы (или группы атомов), несущие положительный или отрицательный электрический заряд. Ионы либо сами представляют собой атомы электричества , либо несут эти атомы электричества . (Последнее предположение в конечном счете оказалось верным.) С помощью созданной им теории ионной диссоциации Аррениус объяснил многие электрохимические явления. [c.119]

    Говоря об открытии и изучении электролитической диссоциации, нельзя забывать о работах прибалтийского ученого Теодора Гротгуса (1785—1822). В 1805 г. он развил теорию электропроводности растворов, в 1818 г. предложил теорию состояния молекул (ионов) в растворе. В этой теории он развил представление о том, что атомы вещества могут приобретать электрические заряды и что свойства таких атомов отличны от свойств атомов нейтральных. Биографию Т. Гротгуса см.1 Страдынь Я- П. Теодор Гротгус. 1785—1822.—М. Наука, 1966, 184 с. [c.184]

    В качестве примера характеристических величин из электротехники можно привести электрический заряд е как экстенсивную величину, тогда как значение е, отнесенное к единице объема V, т. е. плотность заряда = е/У, является характеристикой интенсивности заряда. Электротехника, как известно, только тогда вышла за рамки эмпиризма и получила свою теорию, когда Максвелл вывел свои уравнения (1878 г). Можно легко убедиться в том, что эти уравнения, если рассматривать их сущность, представляют собой закон сохранения электрического заряда. Уравнения Максвелла выражают зависимость между векторами Е, В, Н, В и ]. [c.8]

    Существенно, что, варьируя ионный состав электролита, мол<-но менять толщину приповерхностного слоя. Например, ионы Са + способны вытеснять воду из области полярных головок и тем самым сжимать приповерхностный слой [430]. Обычно толщиной этого слоя пренебрегают и считают, что все поверхностные источники электрических полей строго локализованы на границе раздела бислой/липид, а сама эта граница считается геометрической плоскостью. Такое допущение позволяет проводить теоретический анализ электрических явлений на основе классической теории Гуи — Чепмена [431], в рамках которой структура двойного электрического слоя (ДЭС) определяется лишь поверхностными зарядами. При этом оказывается, что поверхностные электрические диполи, если они присутствуют в системе, не влияют на эту структуру. Существует целый ряд проблем, для которых предположение о локализации источников электрических полей строго на границе раздела является слишком грубым. Оказалось, что трехмерность распределения поверхностных электрических зарядов заметно влияет на элект- [c.150]


    Нет никаких причин, по которым нельзя было бы описывать эту реакцию при помощи константы кислотно-основного равновесия, как это сделано для кислот в табл. 5-3. Согласно теории Бренстеда-Лаури, ион аммония NH4 представляет собой сопряженную кислоту основания NH3. Совсем не обязательно, чтобы в кислотно-основной паре нейтральной была именно кислота, а основание несло на себе электрический заряд, как это имеет место в парах НС1/С1 и H N/ N . Ион NH можно отнести к кислотам, точно так же как НС1 или H N, и хотя эта кислота слабее, чем НС1, но она оказывается сильнее, чем H N. Таким образом, реакцию аммиака с протоном можно рассматривать как диссоциацию кислоты  [c.221]

    Применение теории Онзагера к. различным естественным процессам позволяет проанализировать химические реакции, перенос электрического заряда и импульса, диффузию и др. [c.17]

    При установившемся равновесии обменного процесса поверхность ионита и раствор приобретают электрические заряды противоположного знака, на границе раздела ионит — раствор возникает двойной электрический слой, которому соответствует скачок потенциала. Поскольку иониты обладают повышенной избирательной способностью по отношению к определенному виду ионов, находящихся в растворе, ионообменные электроды называются также ионоселективными. Стеклянный электрод является важнейшим среди этой группы электродов. Он представляет собой тонкую мембрану из специального стекла, в котором повышено содержание щелочных составляющих — соединений натрия, лития и др. Согласно теории Б. П. Никольского потенциалопределяющий процесс на границе раствор — стекло заключается в обмене между ионами щелочного металла, например Ма+, содержащимися в стекле, и ионами Н+, находящимися в растворе  [c.484]

    Теория образования двойного электрического слоя позволяет удовлетворительно объяснить известные явления электризации жидкости при ее движении относительно твердой фазы. Диффузная часть двойного электрического слоя увлекается потоком жидкости, перенося электрические заряды. При этом заряды переносятся в результате конвекции, электрической проводимости и диффузии. Однако влияние диффузионного переноса на электризацию существенно меньше первых двух видов переноса. [c.115]

    Теория электролитической диссоциации Аррениуса дала возможность объяснить не только причины отклонения растворов электролитов от законов Вант-Гоффа и Рауля, но и объяснить многие особенности химических свойств электролитов (реакции гидролиза, значение концентрации водородных ионов и др.). Однако она имела и ряд недостатков, в частности не учитывала взаимодействия между ионами в растворе, вызываемого их электрическими зарядами. [c.112]

    Во-первых, теория Резерфорда не могла объяснить устойчивости атома. Электрон, вращаюш,ийся вокруг положительно заряженного ядра, должен, подобно колеблющемуся электрическому заряду, испускать электромагнитную энергию в виде световых волн. Но, излучая свет, электрон теряет часть своей энергии, что приводит к нарушению равновесия между центробежной силой, связанной с вращением электрона, и силой электростатического притяжения электрона к ядру. Для восстановления равновесия электрон должен переместиться ближе к ядру. Таким образом, электрон, непрерывно излучая электромагнитную энергию и двигаясь по спирали, будет приближаться к ядру. Исчерпав всю свою энергию, он должен упасть на ядро, и атом прекратит свое существование. Этот вывод противоречит реальным свойствам атомов, которые представляют собой устойчивые образования, и могут существовать, не разрушаясь, чрезвычайно долго. [c.40]

    Двойной слой на границе раствор —металл создается электрическими зарядами, находящимися на металле, и ионами противоположного знака противоионами), ориентированными у поверхности электрода. В формировании ионной обкладки двойного слоя принимают участие как электростатические силы, под влиянием которых противоионы подходят к поверхности электрода, так и силы теплового (молекулярного) движения, в результате действия которых двойной слой приобретает размытое, диффузное строение. Кроме того, в создании двойного электрического слоя на границе металл —раствор существенную роль играет эффект специфической адсорбции поверхностно-активных ионов и молекул, которые могут содержаться в электролите. Теория двойного электрического слоя сложилась на основе работ Гельмгольца, Штерна, А. И. Фрумкина и др. [c.473]

    Взаимодействие иона (в теории он называется центральным) с окружающими его ионами электролита в среднем равноценно его взаимодействию с воображаемой ионной атмосферой, обладающей непрерывным распределением электрического заряда. [c.213]

    Согласно теории Гуи, приведенная толщина диффузного слоя 5 (т. е. расстояние от поверхности до центра тяжести электрических зарядов) обратно пропорциональна корню квадратному из величины концентрации. Для 10"2 н. раствора одновалентного электролита 5 = 3 М]),, для 10" н. 5 = 30 мц, т. е. во много раз больше толщины плотного слоя. [c.177]


    Современная теория растворов, объединяя физическую и химическую точки зрения, рассматривает процесс растворения как взаимодействие между частицами разной полярности. Полярность молекул выражается в том, что в силу неравномерного распределения электрических зарядов в одной части молекулы могут преобладать положительные заряды, а в другой — отрицательные. Полярность молекулы количественно характеризуют электрическим моментом диполя (см. 15.1). [c.70]

    Теория П. Дебая и Э. Хюккеля объяснила многие свойства растворов сильных электролитов. Однако с помош,ью этой теории невозможно объяснить наличие аномальной электрической проводимости, впервые обнаруженной И. А. Каблуковым (1870) при исследовании растворов в амиловом спирте. Обычно удельная электрическая проводимость концентрированных растворов уменьшается с добавлением электролита. И. А. Каблуков выявил факт увеличения удельной электрической проводимости с дальнейшим ростом концентрации НС1. Подобная концентрационная зависимость удельной электрической проводимости была впоследствии обнаружена в других неводных и водных растворах. Современные теории растворов электролитов объясняют аномальную электрическую проводимость образованием ионных ассоциатов. В определенной области концентраций в растворе образуются ионные пары типа К А , уменьшающие электрическую проводимость. При увеличении концентрации к ионной паре присоединяется третий ион. Образуются тройники типа К" А К или А К А , обладающие электрическим зарядом и способные переносить ток. В связи с этим удельная электрическая проводимость растет. [c.136]

    Эта составляющая связана с движением электронов в молекулах. Систему электрон - ядро можно рассматривать как диполь, отрицательный полюс которого (электрон) быстро перемешается. В молекулах, находящихся на небольшом расстоянии друг от друга, движение электронов становится в известной мере согласованным, так что диполи ядро - электрон оказываются часто обращенными друг к другу противоположно заряженными полюсами. Это обусловливает притяжение молекул. Данное взаимодействие называют дисперсионным (это название связано с тем, что колебания электрических зарядов вызывают дисперсию света - различное преломление лучей света, имеющих разные длины волн). Теория дисперсионного взаимодействия была разработана Лондоном в 1930 г. Дисперсионные силы действуют между частицами любого вещесгва. Энергия дисперсионного [c.145]

    Пусть имеются два атома благородного газа. Если рассматривать статическое распределение зарядов в них, то эти атомы не должны влиять друг на друга. Но опыт и квантовая теория говорят о том, что в любых условиях (в том числе и при абсолютном нуле температуры) содержащиеся в атоме частицы находятся в непрерывном движении. В процессе движения электронов распределение зарядов внутри атомов становится несимметричным, в результате чего возникают мгновенные диполи. При сближении молекул движение этих мгновенных-диполей перестает быть независимым, что и вызывает притяжение. Взаимодействие мгновенных диполей — вот третий источник межмолекулярного притяжения. Этот эффект, имеющий квантовомеханический характер, получил название дисперсионного эффекта, так как колебания электрических зарядов вызывают и дисперсию света — различное преломление лучей света, имеющих различную длину волны. Теория дисперсионного взаимодействия была разработана Лондоном в 1930 г. Из изложенного следует, что дисперсионные силы действуют между частицами любого вещества. Их энергия приближенно выражается уравнением [c.241]

    До открытия электрона невозможно было понять природу химической связи. Правда, понятие о валентности существовало уже в 1852 г. и в эти же годы существовали некоторые представления о геометрических формах молекул. Вант Гофф и Лебель установили тетраэдрическую структуру атома углерода, а Вернер создал стереохимию комплексных ионов. Очевидно, для того чтобы молекула имела определенную геометрическую форму, должны существовать какие-то связывающие силы между ее частями. В структурных формулах такую химическую связь между связанными атомами изображали черточкой. Она указывала на существование связи, но, разумеется, не давала никакого описания ее природы. Незадолго до открытия электрона Аррениус предположил существование свободных ионов. На основе этого предположения были сделаны многочисленные попытки найти объяснение силам, связывающим атомы. Хотя эти попытки были неудачными, они содействовали представлению об электрическом заряде как основе образования связи. После открытия электрона стало возможно дальнейшее развитие теории связи. В течение немногих лет, основываясь на положительно и отрицательно заряженных атомах, было предлол<ено много разных объяснений образованию связи, но почти не было попыток связать заряды атома с его строением. В 1916 г. Льюис предложил свою теорию валентности. С тех пор было много сделано в области применения математики в теории валентности, но в основе представления о химической связи лежит по-прежнему теория Льюиса. Согласно Полингу , химическая связь возникает между двумя атомами в том случае, если связывающая атомы сила настолько велика, что приводит к образованию достаточно устойчивого агрегата, чтобы обеспечить его существование в виде самостоятельной частицы. Обычно различают пять типов химической связи ионная, ковалентная, металлическая, связь, обусловленная силами Ван-дер-Ваальса, и водородная, причем три первых очень прочны. Все эти связи одинаково важны, но металлическая связь здесь не будет рассмотрена о ней можно прочесть в других источниках . [c.134]

    К моменту создания теории электролитической диссоциации было известно, что растворы этих веществ проводят электрический ток и что переносчиками электрического заряда являются ионы. Однако было неясно, существуют ли ионы и в отсутствие поля или они появляются под его воздействием. Данные об изотонических коэффициентах,которые измеряются в отсутствие электрического поля, позволили Аррениусу сформулировать теорию электролитической диссоциации [c.211]

    Растворы высокомолекулярных веществ, если они находятся в термодинамически равновесном состоянии, обладают, как и истинные растворы, абсолютной агрегативной устойчивостью. Поэтому теории устойчивости лиофильных коллоидных систем (растворов высокополимеров), например теория Кройта, в которой агрегативную устойчивость желатины, агар-агара и некоторых других веществ объясняли либо электрическим зарядом, либо сольватацией, или, наконец, действием того и другого фактора одновременно, имеет в данное время только историческое значение. [c.363]

    По вопросу о том, как построен атом, как располагаются в нем элементарные частицы, как взаимодействуют их электрические заряды и т. д., было предложено несколько теорий. [c.19]

    Электрические заряды являются составными частями атомов и молекул. Однако законы, которым подчиняется взаимодействие макроскопических зарядов, не исчерпывают полностью свойств объектов микромира, имеющих размеры порядка долей нанометра и заряды порядка заряда электрона. В области атомной физики классические законы электростатики и электродинамики должны быть дополнены или изменены для получения удовлетворительного согласия теории с данными опыта. [c.9]

    В соответствии с идеями теории квантов электрический заряд, совершающий гармонические колебания, т. е. осциллятор, не может находиться в любом состоянии допустимы только те состоя- [c.20]

    Для статистической теории электролитов исходным является следующее положение ионы распределены в объеме раствора (в каждый данный момент) не хаотически, а в соответствии сзаконом кулоновского взаимодействия их. Из этого положения методом статистической физики найдено распределение ионов различных знаков вокруг каждого отдельного иона. Таким образом, открыто существование ионной атмосферы ионного облака), имеющейся вокруг каждого иона и состоящей из ионов противоположного центральному иону знака. Это статистически неравномерное распределение в пространстве электрических зарядов разных [c.403]

    Советские ученые иа основании собственных представлений о явлениях катализа, исходные позиции которых определены Н. Д. Зелинским [51, дали несколько ва11иа1[тов общей теории катализа алюмосиликатами. Схемы С. Н. Обрядчикова 163, 64] созданы на базе наблюдающейся связи между каталитической активностью и обменной способностью алюмосиликатов не Ю. А. Битепажу 165]. Б. Л. Молдавский использовал представления об алюмосиликатах как активных комплексах, несущих электрический заряд [66] А. Н. Титона рассматривала алюмосиликаты как пермутитовые кислоты, имеющие под1 ижный водородный атом гидроксильной группы алюминия 167]. 13. Н. Грязновым, В. В. Коробовым, А. В. Фростом 127] и [c.159]

    В апреле 1914 г. Мозли опубликовал результаты исследования 39 элементов, от 1зА1 до 7,Ли. (Напомним, что порядковый номер элемента указывается индексом слева внизу от символа элемента.) Часть полученных им данных воспроизводится на рис. 7-2. Мозли писал Спектры элементов представляют собой равноотстоящие друг от друга горизонтальные линии. Выбранная последовательность расположения элементов соответствует возрастанию их атомных весов (масс), за исключением случаев Аг, Со и Те, когда она не согласовывалась с последовательностью изменения их химических свойств. Между элементами Мо и Ки, а также между Nd и 8т и между XV и Оз остаются вакантные места для спектральных линий, но элементы, которым могли бы соответствовать линии в этих местах, неизвестны... Все это эквивалентно тому, как если бы мы приписали последовательным элементам ряд характеризующих их последовательных целых чисел... Тогда, если бы какой-либо элемент не удавалось охарактеризовать такими числами или произошла ошибка в составлении последовательности элементов либо в нумерации мест, оставленных для еще неизвестных элементов, установленная закономерность (прямолинейная зависимость) оказалась бы сразу же нарушенной. Это позволяет на основании одних лишь рентгеновских спектров заключить, не пользуясь никакой теорией строения атома, что указанные выше целые числа действительно могут характеризовать элементы... Недавно Резерфорд показал, что наиболее важной составной частью атома является расположенное в его центре положительно заряженное ядро, а Ван-ден-Броек выдвинул предположение, что заряд этого ядра во всех случаях представляет собой целочисленное кратное от заряда ядра водорода. Есть все основания предполагать, что целое число, определяющее вид рентгеновского спектра [элемента], совпадает с числом единиц электрического заряда в ядре [его атомов], и, следовательно, данные эксперименты самым серьезным образом подтверждают гипотезу Ван-ден-Броека . [c.312]

    Для объяснения энергетики звукохимических процессов предложены две теории тепловая и электрическая. Согласно тепловой теории молекулы переходят в возбужденное состояние в результате значительного повышения температуры внутри кавитационного пузырька в процессе его адиабатического сжатия. Электрические теории объясняют процесс активации молекул возникновением и накоплением электрических зарядов на стенках кавитационного пузырька. Установка для звукохимических реакций состоит из реактора и генератора ультразвуковых колебаний [И]. [c.25]

    При электрохимической коррозии в отличив от химической имеет место перенос электрических зарядов. Согласно классической теории электрохимической корроаии коррозионный процесс возникает в результате работы множества короткозамкнутых гальванических элементов (рис.9) образуввдхся вследствие неоднородное- [c.25]

    Хр Волновая функция, приближенно описывающая два связе-вых электрона молекулы 1МаР фыар — Хр (1)хр (2), указывает, что оба они движутся в поле ядра фтора. В результате вокруг ядра фтора сосредотачивается избыточный электрический заряд, практически равный единице в то же время в силу электронейтральности молекулы ядро натрия оказывается центром равного по величине положительного заряда. Приближенно это положение может быть описано электростатической теорией ирнной связи как перенос электрона от атома натрия к атому фтора с образованием ионов N3+ и Р", удерживаемых в молекуле электростатическими силами притяжения. В этом смысле предельное состояние связи при очень высокой полярности может быть названо ионной связью. Такого рода связь возникает в молекулах галогенидов щелочных металлов. [c.90]

    В 1932 г. Дж. Чедвик открыл элементарную частицу, не обла-даюн1ую электрическим зарядом, в связи с чем она была названа нейтроном (от латинского слова neuter, что означает ни тот, ни другой ). Нейтрон обладает массой, немного превышающей массу протона (точно 1,008665 углеродных единиц). Вслед за этим открытием Д. Д. Иваненко, Е. И. Ганон и В. Гейзенберг, независимо дру1 от друга, предложили теорию состава атомных ядер, ставшую общепринятой. Согласно этой теории ядра атомов всех элементов [c.21]

    В теории поляризации специфические свойства поверхности не рассматриваются, в то время как в большинстве случаев на границе раздела фаз образуется поверхностный слой со свойствами, отличающимися от объемных. Например, диспергированные в неполярной среде капельки или частицы обладают электрическим зарядом, который возникает благодаря различным физико-химическим процессам. Анализ явлений в области сильной поляризации затруднен тем, что в диэлектрических системах одновременно может происходить несколько процессов, имеющих различную природу (электрофорез, дизлектрофорез и др.). В связи с этим оценку роли каждого фактора проводят, как правило, на модельных системах. [c.21]

    В теориях аэродинамического захвата частиц, рассмотренных в предыдущих разделах, не обсуждался вопрос о влиянии электрических зарядов на частице, на пылеуловителе либо на обоих. Тот факт, что электростатические силы могут способствовать фильтрованию, установлен в 30-х годах Г331], и это привело к созданию пропитанных смолой фильтров с повышенной эффективностью. В последние годы внимание исследователей было обращено на выбор фильтровальных тканей с наилучшими электростатическими свойствами для улавливания специфических пылей [273] применялось также механическое нанесение заряда [770]. [c.322]

    Согласно теории ДЛВО, стабилизация происходит в результате действия спл отталкивания между коллоидными частицами, которые несут двойные электрические слои. Двойные слои могут быть оппсаны классической теорией Гун — Чэпмена или ее модификацией. Частпцы сами несут электрический заряд и окр> аются диффузным слоем ионов равного и противоположного по знаку заряда отталкивание происходит прп перекрытии диффузных слоев. Так как теория взаимодействия перекрывающихся диффузных слоев непроста, здесь будет приведена единственная приемлемая рабочая формула. [c.96]

    Современные взгляды на эмульсии вообще, и на битумные эмульсии - в частности, базируются на теории адсорбционной оболочки, выдвинутой в 1913 году Банкрофтом. Подробно эта теория рассмотрена в упоминавшемся раннее труде Клейтона , мы же лишь кратко остановимся на-основных ее положениях.Учение об эмульсиях, созданное Банкрофтом, основано на более ранней теории поверхностного натяжения Доннана - в той ее части, где утверждается, что изменения поверхностного натяжения на поверхности раздела масло - вода протекает параллельно с изменением электрического потенциала... и возможно здесь играет роль избирательная адсорбция ионов . В понимании Доннана и его последователей эмульгированные шарики масла окружены очень вязкой или даже желатинообразной оболочкой , которая препятствует их слиянию. Эти оболочки появляются благодаря адсорбции, которая происходит при понижении поверхностного натяжения на границе масло - вода, т.е. эмульгирование тесно связано с низким поверхностным натяжением между маслом и эмульгатором . Льюис, Эллис и другие исследователи расширили теорию поверхностного натяжения, связав ее с адсорбцией, электрическим зарядом и коагуляцией. Пикеринг в 1910 году важнейшим фактором эмульгирования (помимо высокой вязкости и низкого поверхностного натяжения) назвал присутствие тонко раздробленных, нерастворимых в дисперсионной среде частиц, которые обволаки- [c.14]

    Правильность своей теории О. Ю. Шмидт остроумно доказывает тем, что планеты имеют почти круговые орбиты. Планеты с такими орбитами могли образоваться только путём объединения большого числа тел, содержащихся в газово-пылевом облаке, двигавшихся до того по самостоятельным эллиптическим орбитам вокруг Солнца. О. Ю. Шмидт не рассматривал детально механизм объединения пьутевых частиц, но можно думать, что при этом существенную роль играют те же факторы, что при слипании частиц аэрозолей. Безусловно, на процесс об разования агрегатов должны влиять поверхностные силы, наличие у частиц электрического заряда и т. д. Картина, кЬнечно, сильно усложняется тем, что га-зово-пылевое облако находится под интенсивным действием такого мощного фактора, как солнечное излучение во всех его видах. [c.29]

    Растворы высокомолекулярных веществ, если они находятся в термодинамически. равновесном состоянии, агрегативно устойчивы, как и истинные растворы. Поэтому специальные теории о устойчивости лиофильных коллоидных систем, например теория Кройта и Бунгенберг де йонга, согласно которой агрегативную устойчивость растворов желатина, агара и других высокомолекулярных соединений авторы пытались объяснить либо электрическим зарядом частиц, либо сольватацией, либо, наконец, действием обоих этих факторов одновременно, представляют теперь только исторический интерес. [c.465]

    Теория Аррениуса иредиолагала, что существует равновесие ме кду ионной и молекулярной формой вещества и что электрические заряды переносит только ионная форма вещества. Из этого следует, что для того чтобы перейти от Х(, к X, Х нужно умножить на степень диссоциации а  [c.90]


Смотреть страницы где упоминается термин Теория электрического заряда: [c.534]    [c.62]    [c.115]    [c.42]    [c.34]    [c.112]    [c.72]    [c.244]    [c.133]    [c.92]   
Основы химической защиты растений (1960) -- [ c.15 ]




ПОИСК





Смотрите так же термины и статьи:

Заряд электрический

Теория двойного электрического слоя с дискретным строением специфически адсорбированного заряда (В. С. К р ы л о в)



© 2025 chem21.info Реклама на сайте