Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Состояния потока нестационарные

    При стационарном состоянии потока градиент концентрации постоянен и скорость переноса вещества через любое сечение также постоянна. Содержание вещества в каждой точке пространства остается неизменным. В нестационарных условиях [c.21]

    Второй закон Фика. II закон Фика определяет накопление во времени в элементе объема dx (рис. V 5) вещества, диффундирующего через сечение, равное единице (как разность между входящим и выходящим потоками), т. е. относится к нестационарному состоянию потока. Если ) вдоль образца постоянен, то [c.341]


    И ВЫХОДЯЩИМ потоками), т. е. относится к нестационарному состоянию потока. Если О вдоль образца постоянен, то [c.436]

    Подобие начальных условий, т. е. условий входа газов в печь, а при нестационарном движении и начального состояния потока. [c.88]

    Рассмотрим нестационарное течение упругой ВПЖ в упругой пористой среде. Дифференциальные уравнения для определения давления при упругом режиме пласта можно получить, дополняя закон фильтрации с предельным градиентом (11.8) (или другую аппроксимацию нелинейного закона) уравнением неразрывности и уравнением состояния флюида и пористой среды. Уравнение неразрывности рассматриваемого фильтрационного потока (см. гл. 6, 3) имеет вид [c.344]

    Укажем также еще один нестационарно работающий элемент процесса, характерный для химической промышленности. Обычно нестационарно работает каждый двухфазный элемент процесса, в котором одна фаза течет через аппарат (конвективный поток), а вторая находится в неподвижном состоянии. Схема такого элемента процесса приведена на рис. 10-2. Примером может служить адсорбер с неподвижным слоем адсорбента. В аппарат колонного типа поступает поток, содержащий адсорбтив. Адсорбционное равновесие наступает медленно, причем в объеме аппарата можно различить два отдельных участка. Адсорбция начинается вблизи от входа потока, и здесь достигается равновесие между адсорбентом и потоком. На отдаленном от входа участке аппарата поток освобождается от адсорбтива (инертный газ или жидкость). Эти два участка связаны переходной зоной — так называемым фронтом адсорбции , в котором происходит резкое изменение концентрации адсорбтива она быстро уменьшается от входного значения со до нуля. Фронт адсорбции перемещается в адсорбере с определенной скоростью и доходит за определенный промежуток времени i до точки выхода потока из аппарата. Частное от деления высоты аппарата Ь на продолжительность прохождения i определяет скорость распространения фронта адсорбции  [c.301]

    Оптимизация управления нестационарным процессом заключается в том, что независимые технологические переменные, соответствующие неустановившемуся состоянию главного потока, коррелируются так, чтобы целевая функция в каждый момент принимала экстремаль- [c.352]


    О потоке газа или жидкости, проходяш,ем через реактор. Проведение реакций в потоке целесообразно в тех случаях, когда время реакции относительно невелико, а производительность аппарата высока и реагенты представляют собой газообразные вещества. При высоких концентрациях, когда возможны побочные реакции, применение проточных реакторов облегчает регулирование состава получаемого продукта. Большинство непрерывных процессов протекает в стационарном состоянии. Нестационарное состояние возникает при пуске и остановке аппаратов (см. стр. 132). Непрерывные процессы обычно проводят в гораздо более крупных масштабах, чем периодические. Некоторые типы реакторов непрерывного действия показаны на рис. 1У-1 и 1У-2. Характер зависимости концентраций компонентов смеси от времени и изменение концентраций по длине или высоте реактора показаны на рис. 1У-3. [c.113]

    Уравнения Лагранжа обычно гораздо сложнее и труднее для решения, нежели уравнения Лапласа. По этой причине большинство гидродинамических задач решают на основе уравнения Лапласа, хотя некоторые свойства потока могут быть описаны только на основе теории Лагранжа. Обе теории давно известны, но до настоящего времени в большинстве учебников по гидродинамике рассматривается преимущественно стационарное состояние, т. е. уравнения Лапласа. Нестационарное состояние и некоторые характерные его свойства изучены далеко не в той степени, в какой они того, вероятно, заслуживают. [c.148]

    Окисление диоксида серы в нестационарном режиме, которое создается путем попеременного переключения направления подачи исходной газовой смеси, может происходить при существенно нестационарном состоянии катализатора. Характерные особенности данного способа заключаются в двух обстоятельствах снижении температуры входного участка слоя при подаче холодной свежей реакционной смеси и одновременно с этим повышении температуры входного участка слоя при поступлении туда частично прореагировавшей реакционной смеси с высокой температурой. После переключения направления потока входной и выходной участки меняются местами . [c.185]

    Второе граничное условие заключается в требовании непрерывности результирующего тока нейтронов плотности потока нейтронов на границе. Это условие более удобно записать в интегральной форме изменение числа нейтронов по всему объему реактора равно нулю. Это условие должно выполняться, когда система находится в стационарном состоянии. Однако оно применимо также и к нестационарным системам, так как уравнения, описывающие поведение во времени систем, могут быть всегда сведены к эквивалентным стационарным уравнениям с помощью эффективного поперечного сечения поглощения 2. Таким образом, это интегральное условие может быть записано в виде [c.322]

    Дезактивация катализатора приводит к изменению во времени концентрации и температуры в каждой пространственной точке реактора. При быстрой основной реакции реактор работает в нестационарном режиме, причем образуется реакционная зона, перемещающаяся вдоль слоя катализатора. В зависимости от скорости движения дезактивированной части можно изменять во времени переменные соотношения реагентов и их концентраций, температуры входящих потоков и теплоносителя, времени контакта. В реальных условиях обратимое изменение состояния катализатора сопровождается необратимым [203]. [c.149]

    Диффузионное пламя в самом широком смысле слова можно определить как пламя, в котором горючее и окислитель первоначально находились в неперемешанном состоянии. Это определение охватывает широкий круг процессов, таких, как горение нефти в лотке на открытом воздухе, горение алюминиевой пластинки в сверхзвуковом воздушном потоке, горение свечи, лесной пожар и горение капли топлива в кислороде в ракетном двигателе. Сюда относятся процессы, включающие нестационарные течения, течения с высокой скоростью и сильно турбулентные течения. Поэтому нет смысла пытаться рассмотреть все эти процессы с единой точки зрения. [c.62]

    Когда плоская вертикальная поверхность, помещенная в неограниченную покоящуюся среду, внезапно нагревается, причем тепловой поток в дальнейшем становится постоянным, начинается нестационарный перенос, продолжающийся до тех пор, пока не будет достигнуто стационарное состояние. Этот переходный процесс часто распадается на отчетливо различающиеся стадии в зависимости от особенностей нагрева и от свойств окружающей жидкости. Уравнения сохранения массы, количества движения и энергии после использования приближений пограничного слоя и Буссинеска записываются следующим образом  [c.435]


    В. Соотношение (2.93) выполняется только в стационарных состояниях, и его нужно распространить на нестационарные состояния, когда не существует прямой аналитической зависимости объема парового канала от количества поступающей энергии в любой момент времени. При быстром изменении поступающего теплового потока изменение парового канала происходит не мгновенно, а канал лишь претерпевает изменения, приблизительно пропорциональные скорости изменения потока, которая соответствует средней скорости движения пузырьков пара в столбе пароводяной смеси. Скорость движения пузырьков пара в системе можно в известной мере рассматривать как показатель действительной скорости распространения объемных и фазовых изменений в паровом канале в переходных состояниях. Из некоторых экспериментальных исследований, относящихся к неоднородным пароводяным смесям, вытекает, что в первом приближении в статическое уравнение можно ввести постоянную времени Ти таким образом, чтобы изменение объема У/, 5ри переходе из одного состояния в другое описывалось уравнением первого порядка (фиг. 2.14) [c.50]

    Уравнения в частных производных (4.40) и (4.41) вместе с соответствующими начальными и граничными условиями полностью описывают нестационарный одномерный тепловой поток. Выразим в этих уравнениях обе зависимые переменные через их отклонения от установившихся состояний [c.112]

    Помимо равновесных реакций методами ЯМР можно исследовать и нестационарные химические реакции. В этом случае система сначала переводится в химически неравновесное состояние и затем ее переход к равновесию наблюдается как функция времени. Неравновесное состояние может быть создано методом остановленного потока [2.45—2.52], оптически индуцированными фотореакциями в связи с химически индуцированной динамической поляризацией ядер (2.53—2.56] или внезапным изменением параметра, влияющего на химическое равновесие. Преимущества фурье-спектроскопии как метода измерения параметров переходных процессов не вызывают сомнений [2.57]. [c.84]

    На практике явление срыва стационарного противоточного течения дисперсного потока при некоторых максимальных для данной системы значениях расходов фаз получило название явления захлебывания)). Физический смысл его заключается в следующем [26]. При однородном по д движении частиц в дисперсном потоке в среднем имеет место равновесие между силой тяжести с учетом выталкивающей силы Архимеда и силой сопротивления. Такое равновесие математически выражается уравнением (3.3.2.51) и может реализоваться при двух (или даже при трех) значениях концентрации частиц. При захлебывании оба равновесных состояния исчезают, так как сила сопротивления, действующая на частицы, становится больше движущей силы и условие равновесия перестает выполняться. При этом реальный дисперсный поток в зависимости от типа дисперсной системы ведет себя различным образом. В системе твердое вещество— жидкость захлебывание приводит к переходному (нестационарному) процессу, в результате которого дисперсная фаза выбрасывается из канала вместе со сплошной фазой. В системе газ—жидкость в среднем поток остается стационарным, однако начинается интенсивная коалесценция пузырей, которая приводит к переходу в пенно-турбулентный режим течения и снижению силы сопротивления, действующей на пузыри. В системе жидкость— жидкость может наблюдаться как выброс дисперсной фазы, так и интенсивная коалесценция капель с последующей инверсией фаз. [c.187]

    Случайный процесс с дискретными состояниями и непрерывным временем называется марковским, если для любого времени / условные вероятности всех состояний системы в будущем зависят только от того, в каком состоянии система находится в настоящем, но не зависит от того, когда и каким образом она пришла в это состояние. Таким образом, в марковском процессе будущее зависит от прошлого через настоящее [9]. На практике достаточно часто встречаются процессы, которые с той или иной точностью можно отнести к марковским, что существенно упрощает их математическое описание. Переходы из состояния в состояние происходят под воздействием пуассоновских потоков событий (стационарных или нестационарных). [c.181]

    Быстрые нестационарные движения мелких частиц в кипящем слое приводят к сильной турбулизации газового потока и к весьма интенсивному перемешиванию. Тем самым обеспечивается как высокая скорость диффузии к поверхности взвешенных частиц слоя, так и однородность температуры и химического состава газа по всему объему слоя. С первым обстоятельством связана практическая ценность псевдоожиженного слоя он является мощным средством интенсификации всех гетерогенных процессов. Второе обстоятельство облегчает расчеты процессов, осуществляемых в кипящем слое параметры, характеризующие состояние газа (температура и концентрации всех веществ), могут считаться постоянными по всему объему слоя. Нет необходимости рассматривать пространственные распределения этих величин — каждая из них может быть описана одним значением для всего слоя. Таким образом псевдоожиженный слой является хорошим приближением к идеализированному предельному случаю реактора идеального смешения ,— или гомогенной реакционной зоны ,— о котором речь будет идти ниже. [c.46]

    Диффузионная кинетика при нестационарном состоянии диффузионного потока [c.115]

    Для нестационарного состояния диффузионного потока вид зависимости скорости диффузии от градиента концентрации мо- [c.115]

    Приведенные здесь результаты не могут в полной мере отражать весь комплекс свойств, характеризующих структуру течения в области сопряжения крыла и фюзеляжа. Они лишь указывают на то, что при обтекании схематизированной самолетной конфигурации течение в указанной области имеет явно выраженный пространственный характер с формированием по крайней мере двухвихревой структуры и локальных зон, характеризующихся отрывным состоянием потока и нестационарностью течения в узкой области, примыкающей к линии сопряжения. Имеется ряд общих признаков и свойств этого течения с известными типами течений, что вселяет некоторую надежду на создание обобщенной модели для опреде ченного класса обтеканий подобных конфигураций. [c.231]

    Поскол1,ку в реактор не поступает II из него ие отводится ни одни поток, а химические превраш,ення в реакторе ие происходят, для определения про-должнтслыюети операции ограиичи.мся тепловым балансом и кинетикой теплопередачи, которая представляет собо11 процесс нестационарной теплопередачи бе.ч изменения агрегатного состояния теплоносителей. Реактор переходит в состояние при котором температура достигает требуемого значения, т, е. реактор готов к выгрузке продукта. [c.133]

    Гетерогенный реактор с твердыми частицами катализатора -это динамическая система, в которой в просфанстве и во времени объединены сложные физико-химические процессы, происходящие на поверхности и внутри пористого катализатора, внутри и на фаницах реакционного объема в целом. В стационарном режиме все потоки объединены материальными и энергетическими балансами. Поэтому редко удается организовать каталитический процесс так, чтобы все его уровни - от поверхности катализатора до контактного отделения - работали в режиме, соответствующем оптимальному. Например, состав, сфуктура и свойства катализатора определяются состоянием газовой фазы. Следовательно, повлиять существенно на характеристики катализатора, работающего в стационарных условиях, не представляется возможным, так как состав газовой фазы предопределен степенью превращения и избирательностью. В нестационарном режиме, оказывается, можно так периодически изменять состав газовой фазы или таким образом периодически активировать катализатор, что его состояние будет значительно [c.304]

    В то же время теория процессов горения до настоящего времени развита недостаточно полно, отсутствуют методы расчета должной точности. В результате возникает необходимость длительной кропотливой опытной доводки почти всех устройств и агрегатов, в которых протекает процесс горения. Можно назвать причины существующего положения. Во-первых, главный участник процесса горения — топливо — является комплексом природных органических веществ очень сложного химического строения. Правда, при нагреве и взаимодействии с окислителем происходит распад этих комплексов на простые соединения и элементы, но при анализе процесса горения невозможно обойтись без учета поведения горючего в его исходной форме и промежуточных состояниях. А это крайне, затрудняет изучение процесса. Во-вторых, в процессе горения, так же, как и в других химических пронессах, обязательны два этапа создание молекулярного контакта между горючим и окислителем (физический этап) и само взаимодействие молекул с образованием продуктов реакции (химический этап). При этом второй этап протекает только у молекул, находящихся в особом энергетически или кинетически возбужденном состоянии. Возбуждаются же молекулы в результате начавшегося процесса. Поэтому при изучении процесса горения нельзя рассматривать участвующие в нем вещества как однородную массу одинаковых средних молекул. Даже при рассмотрении простейших реакций горения необходимо учитывать различия между отдельными молекулами, составляющими сложную полисистему. В-третьих, горение принципиально не является равновесным процессом. При горении обязательно возникают неоднородности состояния молекул, их концентраций, неравномерности полей температур и скоростей потоков. Из этого вытекает необходимость одновременного решения нестационарных задач массо- и тепло-переноса и химической кинетики в движущихся потоках, причем наиболее часто при турбулентности, вызванной самим процессом горения. [c.4]

    В последнее время разработаны и нашли практическое применение газовые циклы и квазициклы, основанные лишь на процессах с нестационарными потоками. В установках, созданных на основе таких циклов, параметры рабочего тела меняются не только при переходе от одной точки в другую, но н в каждой точке во времени, возвращаясь в конце каждого машинного цикла в исходное состояние. [c.265]

    В переходном периоде температура в газовой фазе немного выше, чем в зерне. Температурный градиент в нем незначителен, поэтому можно использновать упрощенные модели. Установлено, что градиенты при нестационарных условиях больше, чем в стационарных. В работе [232] найдено, что теплоемкость зерна значительно влияет на скорость перехода от одного стационарного состояния к другому, поскольку она зависит от критерия Льюиса Ье, пропорционального теплоемкости. При Ье/Сз = 2 стационарное состояние достигается за время, которое в 60 раз больше среднего времени пребывания, а при Ье = 20 эти времена различаются в 750 раз. Однако этот эффект в основном не определяет переходный режим слоя катализатора. При подаче импульса температуры на 10% выше предыдущего значения изменения температуры на выходе из реактора тем больше, чем меньше критерий Ье. Более быстрый отклик приводит к превышению температуры в переходном состоянии по сравнению со стационарным. В области наиболее высоких температур это может привести к опасным перегревам катализатора. С другой стороны, количество непрореагировавшего вещества в выходящем потоке колеблется в широких пределах в зависимости от критерия Ье, что может неблагоприятно влиять на качество продукта. [c.171]

    Нестационарный Ц.р. характеризуется периодич. изменением во времени всех или части рабочих параметров, В этом случае (рис. 1,6) рабочее тело периодически изменяет свое состояние во времени при периодически изменяющемся воздействии u(t). Подобные режимы типичны для регенеративного теплообмена, ряда гетерогенно-каталитич. процес сов (напр., каталитический крекинг), процессов с периодич изменением расхода материальных потоков в ректификац колоннах (поток флегмы при ректификации или дистилля ции) и иных аппаратах (напр., реакторах химических), филь тровальных циклов (см. Фильтрование) и т.д. [c.362]

    В противоположной по физическим предпосылкам модели обновления поверхности, наоборот, предполагается, что турбулентно пульсирующие в потоке объемы вещества-носителя с концентрацией растворенного компонента со беспрепятственно достигают стенки, некоторое время (время контакта г ) находятся около нее в неподвижном состоянии и затем заменяются новыми аналогичными объемами (рис. 5.2.3.2). За время контакта в неподвижным объеме протекает процесс нестационарной диффузии растворенного компонента. Дополнительно полагается, что за малое время контакта 4 концентрация со на внешней стороне неподвижного объема практически не успевает измениться и процесс нестационарной диффузии происходит как бы в полубезграничную, неподвижную среду. При таких предположениях математическое описание процесса диффузии принимает вид  [c.269]

    Допустим, что реальному течению жидкости (газа) в аппарате соответствует некоторая топологическая структура потоков. Структура представлена рядом ячеек идеального смешения, связанных межъячеечными потоками, которые могут бьггь нестационарными и иметь самую различную физическую природу. Каждая ячейка характеризуется объемом И, и физическими параметрами, определяющими состояние находящейся в ней среды. В зависимости от интенсивности перемешивания в той или иной части аппарата, объемы ячеек мо1ут быть различными. Как показывает практика создания и применения таких моделей, в качестве параметров состояния обрабатываемой среды необходимо принимать такие интегральные характеристики, как, например, содержание в ячейке массы растворенного в жидкой фазе компонента А — М (т) = С (т)У , ее теплосодержание бХт) = рсУ,(Хх) и т. Д.- [c.655]

    По гученные ранее закономерности относились к периодическому синтезу алкилхлорсиланов. Непрерывный синтез, осуществляемый при подгрузке исходной контактной массы и выгрузки и (или) выносе газовым потоком отработанной, может быть также, как и периодический процесс охарактеризован съемом алкилхлорсиланов, При запуске реактора на исходной контактной массе стационарному состоянию предшествует период неустановившегося режима, продолжительность которого значительна из-за медленной выработки кремния. Для определения продолжительности нестационарного режима считаем, что загрузка аппарата контактной массой [c.66]

    В нестационарном состоянии распределение концентраций зависит не только от координаты, но и от времени. Соответствующая закономерность может быть найдена следующим образом. Рассмотрим для случая одномерной диффузии вдоль оси X элемент объема с1У, который ограничен двумя плоскостями 5, расположенными на расстоянии с1х друг от друга (рис. 7.1) очевидно, что йУ=5с1х. Скорость изменения концентрации дс,1д1 в этом объеме равна отношению —5 7/ (уменьшения общего потока при прохождении через объем) к с1У. Отсюда с использованием уравнения (4.1) имеем [c.118]

    При достаточно высокой плотности потока квантов возможно дальнейшее продвижение по возбуждённым состояниям колебательного квазиконтинуума до границы диссоциации и даже превышение её. Превышение запаса колебательной энергии молекулы величины энергии стационарной диссоциации, известной из термохимических данных, является характерной особенностью нестационарной диссоциации. [c.479]


Смотреть страницы где упоминается термин Состояния потока нестационарные: [c.135]    [c.493]    [c.152]    [c.80]    [c.50]    [c.14]    [c.93]    [c.332]    [c.151]    [c.511]    [c.447]    [c.110]    [c.447]    [c.748]   
Введение в физическую химию и кристаллохимию полупроводников Издание 2 (1973) -- [ c.436 ]




ПОИСК





Смотрите так же термины и статьи:

Ток нестационарный



© 2025 chem21.info Реклама на сайте