Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиакрилонитрильные волокна формование

    Высокие мех. характеристики в сочетании с низкой плотностью, хим. и термич. стойкостью (этим отличаются жесткоцепные полимеры они содержат циклич. группы в основных цепях макромолекул) определяют все более широкое использование ориентир, полимерных волокон тросы, канаты, ткани, армирующие элементы в разнообразных композиц. материалах и др. В технике широко распространены, напр., полиамидные, полиолефиновые, полиэфирные, поли-имидные, полиакрилонитрильные волокна. См. также Волокна химические, Формование химических волокон. [c.409]


    Отдельные макромолекулы полимера в полиакрилонитрильных волокнах связаны между собой водородными связями. Поскольку для формования волокна применяют полиакрилонитрил с высокой степенью полимеризации (обычно 1000—2000), наличие межмолекулярных водородных связей обеспечивает получение высокопрочных и достаточно эластичных волокнистых материалов. В мокром состоянии нитрон почти не теряет прочности. [c.30]

    Полиакрилонитрильные волокна объединяют группу сополимерных волокон, содержащих не менее 85% акрилонитрила и 10—15% винилацетата, винилхлорида или других соединений. К ним также относят так называемые модифицированные полиакрилонитрильные волокна, содержащие 35—85% акрилонитрила и 65— 15% винилхлорида или винилиденхлорида. Исследования в области синтеза полиакрилонитрила и формования на его основе волокон были начаты в Германии фирмой [c.355]

    В настоящее время метод формования волокна из полимеров, образующихся при проведении процесса полимеризации в растворе, осуществлен на некоторых предприятиях прп получении полиакрилонитрильного волокна (см. стр. 170). По-видимому, этот прогрессивный метод, обеспечивающий значительное упрощение и удешевление технологического процесса нроизводства карбоцепных волокон, в дальнейшем получит широкое применение. [c.167]

    Формование полиакрилонитрильного волокна производится из растворов сухим и мокрым способами. [c.181]

    Мокрый способ формования является основным методом полученпя штапельного полиакрилонитрильного волокна. Условия формования и свойства получаемого волокна значительно изменяются в зависимости от характера растворителя, применяемого прп получении прядильного раствора и состава осадительной ванны. [c.181]

    Необходимо, однако, отметить, что устойчивость полиакрилонитрильного волокна к истиранию можно увеличить изменением условий формования. При ироведении процесса формования в более мягких условиях устойчивость волокна к истиранию повышается. [c.190]

    ФОРМОВАНИЕ ПОЛИАКРИЛОНИТРИЛЬНОГО ВОЛОКНА [c.327]

    Формование полиакрилонитрильного волокна из раствора в глицериновую ванну [c.327]

    ФОРМОВАНИЕ ПОЛИАКРИЛОНИТРИЛЬНОГО ВОЛОКНА 329 [c.329]

    Формование полиакрилонитрильного волокна сухим методом проводят чаще всего из растворов в диметилформамиде в камеру, нагретую до 400 С и выше - . [c.329]

    Для некоторых полимеров образование двухфазного студня второго типа сопровождается частичной кристаллизацией. Кристаллизация значительно ускоряется в результате концентрирования раствора в матричной фазе, поскольку это приводит к высоким степеням пересыщения. Но обычно процесс кристаллизации отстает от процесса разделения на аморфные фазы. При формовании вискозных волокон кристаллизация целлюлозы начинается после омыления тио-эфирных групп, которые нарушают регулярность полимера. При формовании полиакрилонитрильного волокна не исключено наряду с частичной кристаллизацией в матричной фазе возникновение жидкокристаллического состояния (мезофазы), характерного для высококонцентрированных растворов полимеров с жесткими цепями. [c.224]


    Сухой способ формования волокна орлон — чистого полиакрилонитрильного волокна, осуществляется следующим способом волокно формуют из 15 о-ного раствора полимера в диметилформамиде в шахту длиной 4 м, обогреваемую до 400°. В шахту одновременно снизу подают нагретый воздух (температура около 100°), который при выходе из шахты имеет температуру 200° и увлекает пары диметил-формамида (температура кипения диметилформамида 153°). Сформованное волокно подвергают вытягиванию в 9—12 раз между двумя горячими валками при температуре 155—175° после вытягивания волокно обладает разрывной прочностью от 3,5 до 5 деньг при удлинении 10—20%. Это волокно по механическим свойствам занимает промежуточное место между найлоном и натуральным шелком, но обладает грифом последнего. Кроме того, полиакрилонитрильное волокно обладает очень высокой термо-, свето- и хемостойкостью и устойчивостью к атмосферным воздействиям. Полиакрилонитрильное волокно перерабатывают в чистом виде или в смеси с шерстью в том случае, когда для получаемых тканей требуется в основном устойчивость к атмосферным воздействиям и влиянию тропического климата. [c.220]

    До недавнего времени полиакрилонитрил применяли главным образом для производства синтетического волокна (орлона). При переработке полимера в полиакрилонитрильное волокно возникают многочисленные трудности, в особенности на стадиях прядения и крашения. В последние годы полиакрилонитрил в чистом виде для этих целей используют реже. Большей частью приготовляют сополимеры, основным компонентом которых является акрилонитрил [8]. Формование акрилонитрильного волокна пз растворов осуществляют по сухому или мокрому способу прядения. Сущность получения волокна из прядильного раствора заключается в том, что из струйки полиакрилонитрильного раствора, продавливаемого через фильеру, образуется нить полимера, а растворитель диффундирует в нагретый воздух или в жидкость. Метод формования волокна из расплава пригоден лишь для сополимера акрилонитрила с изобутиленом. [c.87]

    В настоящее время существует пять стандартных методов крашения орлона два из них основаны на применении солей меди. Штапельное волокно и нить бесконечной длины ведут себя в процессе крашения различно. Нить бесконечной длины, подвергнутая в процессе формования более высокой вытяжке, обладает более плотной упаковкой макромолекул и меньшей восприимчивостью к красителям. В настоящее время ни один из этих пяти методов не дает полностью удовлетворительных результатов для нити бесконечной длины. Но сегодня большая часть полиакрилонитрильного волокна выпускается в виде штапельного волокна типа орлона 42. Разница в накрашиваемости отдельных партий штапельного волокна значительно ниже, чем это имеет место для нити бесконечной длины. Волокна, трудно окрашивающиеся обычными методами, в частности орлон 81, могут быть удовлетворительно окрашены пигментами в массе. В США выпускаются значительные количества полиакрилонитрильного волокна, окрашенного пигментными красителями в массе в глубокие тона, обладающие высокой устойчивостью. Метод крашения в массе является в настоящее время, вероятно, наилучшим для решения проблемы крашения волокна орлон 81. Этот метод дает возможность получить окраски высокой ровноты даже при крашении волокна, неравномерного по номеру. [c.385]

    Применение нового способа формования полиакрилонитрильного волокна обеспечивает устойчивое (без обрывов) формование с высокими значениями положительных фильерных вытяжек. При этом нет особой необходимости в применении высококонцентрированных растворов, обладающих высокой прядомостью. Однако для успешного использования метода необходимо разработать условия промывки волокна при высоких скоростях движения нити. [c.155]

    Известно , что формование полиакрилонитрильного волокна из диметилформамидных растворов в водные осадительные ванны, содержащие большое количество диметилформамида, приводит к образованию структуры волокна с внутренней поверхностью, в 5—10 раз большей поверхности волокон, полученных при формовании в осадительные ванны с низкой концентрацией диметилформамида. Сделанное наблюдение очень важно, особенно при ориентационном вытягивании волокна после удаления из него растворителя. В этом случае скорость промывки увеличивается также в 5—10 раз. [c.155]

    В результате проведенных исследований разработан новый метод формования полиакрилонитрильного волокна на высоких скоростях, позволяющий применять мягкие коагуляционные ванны и относительно простое оборудование. [c.157]

Рис. 6. Изменение параметров процесса формования и основных свойств полиакрилонитрильного волокна после термовытяжки в зависимости от молекулярного веса полимера Рис. 6. <a href="/info/26006">Изменение параметров процесса</a> формования и основных <a href="/info/982586">свойств полиакрилонитрильного волокна</a> после <a href="/info/1814179">термовытяжки</a> в зависимости от <a href="/info/3779">молекулярного веса</a> полимера

    Формование волокна из блоксополимера полиакрилонитрила с полиэтиленоксидом. Волокно формовали на лабораторной прядильной установке мокрым методом из диметилформамидных растворов полимера. В качестве осадительной ванны применяли водный раствор диметилформамида. Режим процесса аналогичен применяемому при формовании полиакрилонитрильного волокна. [c.176]

    Прямой способ приготовления прядильных растворов для формования полиакрилонитрильного волокна предусматривает сополимеризацию акрилонитрила с соответствующими мономерами и одновременное получение прядильного раствора. [c.266]

    Полиакрилонитрильные волокна получают различными способами. Эти способы отличаются друг от друга применяемым гомо-или сополимером, типом растворителя, технологией получения прядильного раствора (растворением готового полимера или полимеризацией мономера в растворе), методом формования волокон (из раствора или из расплава), составом осадительной ванны (водные или органические) и т. п. [c.212]

    Для полиакрилонитрильных волокон (Го = 85—140°С) характерно значительное влияние строения макромолекул на условия вытягивания. Волокна из гомополимера (Гс=140°С) вытягиваются труднее и степень их вытяжки меньше, чем у волокон из сополимеров с нерегулярной структурой макромолекулярных цепей (Гс = 85—90°С). Все полиакрилонитрильные волокна подвергаются пластификационному вытягиванию непосредственно после формования в ванне, состоящей из смеси осадителя и растворителя (например, в водном растворе диметилформамида или роданида натрия). [c.301]

    Предыстория невытянутых волокон практически не имеет значения, так как полиакрилонитрильные волокна вытягивают в пластифицированном состоянии непосредственно после формования. Однако наличие сильных межмолекулярных связей и невозможность осуществлять вытягивание при температурах выше 140— 150°С значительно затрудняют получение высокоориентированных [c.302]

    Мокрый способ формования определяет наличие в полиакрилонитрильных волокнах микропор, что облегчает крашение. В то же время отсутствие гидрофильных групп и малое набухание полиакрилонитрильных волокон в воде (в среде водяного пара при температурах выше 100° С набухание усиливается) затрудняют их крашение в водной среде. Значительный отрицательный дзета-по-тенциал волокна (из-за больщого числа групп СЫ) также затрудняет крашение. [c.330]

    Полиакрилонитрильные волокна в отличие от большинства других синтетических волокон формуют главным образом из сополимеров акрилонитрила с другими виниловыми мономерами. Названия нитрон, орлон и др. сохраняются только для волокон, содержащих не менее 85% основных акрилонитрильных звеньев . Свойства полиакрилонитрильных волокон в первую очередь определяются наличием специфичных циан-групп, а также пористостью структуры, характерной для всех волокон, получаемых из раствора мокрым способом формования. [c.415]

    Формование из раствора применяют при получении В. X. из полимеров, т-ра плавления к-рых лежит выше т-ры их разложения или близка к ней. Волокно образуется в результате испарения летучего р-рителя ( сухой способ формования) или осаждения полимера в осадительной ванне ( мокрый способ), иногда после прохождения струек р-ра через воздушную прослойку ( сухо-мокрый способ). Сухим способом формуют, напр., ацетатные и полиакрилонитрильные волокна, мокрым-вискозные, полиакрилонитрильные, поливинилхлоридные и др., сухо-мокрым-волокна из термостойких полимеров. Наиб, производителен (скорость 500-1500 м/мин, иногда до 7000 м/мин), прост и экологически безопасен способ формования из расплава, найм, производителен (скорость 5-100 м/мин) и иаиб, сложен мокрый способ формования из р-ра, требующий регенерации реагентов и очистки выбросов. Скорость формования по сухому способу 300-800 м/мин. [c.414]

    Полиакрилонитрильные волокна выпускают под различными торговыми названиями нитрон, орлон, дралон, ПАН, акрилон, кашмилон, прелана и др. Волокно нитрон и другие полиакри-лрнитрильные волокна формуют чаще всего из растворов полимеров в диметилформамиде НСОЛ(СНз)г. После формования, вытягивания, замасливания и сушки эти волокна обычно подвергают терморелаксации — тепловой обработке для повышения термостойкости волокна, снижения его способности к усадке при нагревании, увеличения устойчивости к истиранию и многократным деформациям. [c.30]

    Для того чтобы избежать повторений, те вопросы, которые будут освещаться в других статьях, в сопряженной статье лишь упоминаются. Так, например, в Акрилонитрила полимзрах лишь упомянуто о применении полиакрилонитрила для производства волокна и сделана ссылка на статью Полиакрилонитрильные волокна , где описаны методы формования этих волокон и приведены их свойства. Общие методы производства химических волокон описаны в статье Формование химических волокон. Сравнение свойств различных синтетических волокон приведено в Волокнах синтетических . В статье Акрилонитрила полимеры рассказано о путях получения этих полимеров по различным механизмам. Однако общие закономерности реакций описаны в специальных статьях, например Радикальная полимеризация , Анионная полимеризация . В статье Акрилонитрила полимеры ириведепы, в частности, диэлектрические свойства полиакрилонитрила сопоставление различных полимеров по этим свойствам дано в статье Дх электрические свойства . [c.5]

    Главное требование к волокнообразующему полимеру заключается в том, что длина его вытянутой молекулы должна быть не менее 1000А (100 нм), т. е. его молекулярный вес должен быть не ниже 10 000. Эта величина, разумеется, может быть и выше например, молекулярный вес необработанной (не-деструктированной) хлопковой целлюлозы достигает 500000. В случае синтетических волокон молекулярный вес исходного полимера намеренно ограничивают, поскольку прядильный раствор или расплав должен иметь не слишком высокую вязкость. У большинства волокон, сформованных из расплава, молекулярный вес составляет 10 000—20 000. Волокна, получаемые формованием из раствора, могут иметь более высокий молекулярный вес. Для текстильных волокон характерна также определенная степень кристалличности и (или) ориентации молекул вдоль оси волокна. Эти свойства, присущие природным волокнам, придаются искусственным и синтетическим волокнам в процессе их формования, вытягивания и термической обработки. Точность соблюдения параметров этих процессов оказывает существенное влияние на физико-механические и отчасти на химические свойства готового волокна. В свою очередь, регулярная структура волокна возможна лишь при определенной степени регулярности строения макромолекул, достаточной для их плотной упаковки, которая необходима для возникновения сильных меж-цепных взаимодействий (за счет водородных связей, ассоциации диполей или сил вандерваальсова притяжения). Однако при слишком высокой степени крист алличности волокно не только становится очень прочным, но и делается слишком жестким и теряет способность растягиваться в процессе его получения и эксплуатации. Кроме того, такое волокно чрезвычайно трудно окрасить, поскольку реакционноспособные группы почти целиком находятся в неупорядоченных участках. Степень кристалличности наиболее прочных синтетических волокон, по-видимому, не превышает 50—60%. Исключение составляют полиакрилонитрильные волокна, которые обнаруживают мало признаков истинной кристалличности, но вместе с тем обладают высокой однородностью структуры по всему сечению волокна. В неупорядоченных участках силы межцепного взаимодействия [c.284]

    Радикальная полимеризация акрилонитрила легко протекает в водной суспензии в присутствии стандартных окислительновосстановительных каталитических систем. Полимер получается в виде порошка с молекулярным весом 75 000—150 000. Его подвергают формованию сухим способом из раствора в диме-тилформамиде в среду горячего воздуха или мокрым способом из раствора в диметилформамиде, диметилацетамиде или водном растворе роданистого натрия, используя подходящую водную осадительную ванну. На ряде предприятий применяется также полимеризация акрилонитрила в растворе подходящего растворителя с низкой константой передачи цепи, позволяющей получать достаточно высокомолекулярный продукт (например, в водном растворе роданистого натрия), причем образующийся раствор полимера может непосредственно служить прядильным раствором. Волокно из гомополимера акрилонитрила обладает определенными недостатками, главным из которых является плохая окрашиваемость. Поэтому почти все промышленные полиакрилонитрильные волокна изготовляют из сополимеров акрилонитрила. Последний легко вступает в статистическую сополимеризацию с другими винильными и акриловыми мономерами. В качестве модификаторов полиакрилонитрильного волокна было изучено большое число таких мономеров. Трудно установить, какие из них в настоящее время применяются в промышленности, однако наиболее типичными сомономерами [c.331]

    Вопросами разработки технологии полиакрилонитрильного волокна занимались также Котина и Клименков [55]. Имеется большое число патентов по формованию полиакрилонитрильного волокна, например, 15—18%-ный раствор полиакрилонитрила в диметилформамиде через фильеры поступает в осадительную водяную ванну с добавкой различных вспомогательных материалов (сульфированные жирные кислоты, полиэтиленоксид). Температура ванны 60—90°. Затем волокно поступает в пря- [c.447]

    Формование полиакрилонитрильного волокна осуществляется из растворов в различных растворителях как мокрым , так и сухим методом. Котина и Шелепень [309], изучавшие условия формования волокна нитрон из раствор а в диметилформамиде, показали, что коагуляция прядильного раствора полиакрилонитрила в воде сопровождается образованием жесткой поверхностной рубашки , что приводит к рыхлой, пористой структуре волокна. При прядении в другие ванны (глицерин, адипиновая и олеиновая кислоты) образуется эластичная поверхностная рубашка , которая, деформируясь под влиянием внутренних напряжений, обусловливает более плотную структуру волокна. Наиболее пригодно для волокна нитрон прядение в органические осадительные ванны с темп. 80—100°. Элементарные волокна высоких номеров более микрооднородны, чем волокна низких номеров. [c.568]

    Формование полиакрилонитрильного волокна осуществляется из растворов различных растворителей мокрым и сухим способами. Для получения бесцветных прядильных растворов предложено добавлять в раствор восстановительвещества кислого характера Свойства прядильных растворов зависят не [c.716]

    Оптима.льпый молекулярный вес полиакрилонитрила , используемого для получения волокна, составляет 40 ООО—60 ООО. Хуньяр детально исследовавший влияние молекулярного веса на условия формования п свойства получаемого полиакрилонитрильного волокна, указывает, что при молекулярном веса полимера пиже 10 ООО волокно не формуется, а при молекулярном весе выше 70 ООО вследствие необходимости понижения концентрации полиакрилонитрила в растворе уменьшается прочность получаемого волокна. [c.175]

    Состав и свойства прядильного раствора (концентрация полимера в растворе и вязкость) зависят от метода формования волокна. Так же как и при получении всех других химических волокон, прядильный раствор, применяемый для формования иолиакрило-нитрильпого волокна сухим способом, обладает значительно более высокой вязкостью, и соответственно концентрация полимера в растворе выше, чем при формовании мокрым способом. При формовании полиакрилонитрильного волокна мокрым способом вязкость прядильного раствора составляет 200—300 сек, [c.179]

    Несмотря на то, что тедшература кипения диметилформамида значительно выше, чем большинства других растворителей (в частности, ацетона), применяемых обычно нри формовании волокна сухим способом (телшература кипения диметилформамида 151° С при мм рт. ст.), тем не менее, согласно литературным данным , в некоторых странах формование полиакрилонитрильного волокна осуществляется сухим способом. По сухому способу целесообразно формовать только филаментные нитп. [c.181]

    Полиакрилонитрил является неплавким и нерастворимым в простых органических растворителях полимером. Формование полиакрилонитрильного волокна ведут исключительно из растворов как мокрым, так и сухим методами. В качестве растворителя самое широкое распространение нашел диметилформ-амид , хотя запатентовано много других веществ в качестве растворителей для приготовления прядильных растворов. Применяют концентрированные водные растворы неорганических солей типа LiBr, Zn b, K. NS - , циклопарафины, нитрометан и многие другие. В мокром методе в качестве осадительной ванны чаще всего используют глицерин , а в настоящее время также 30—50%-ные водные растворы диметилформамида. Запатентованы также различные многоатомные спирты, углеводороды, растворы солей и др. [c.329]

    Синтетические волокна в зависимости от способа формования делятся на две группы волокна, получаемые из расплава (например, полиамидные, полиэфирные, полиуретановые), и волокна, формование которых проводят из раствора (полиакрилонитрильное волокно, сополимеры акрилонитрила и винилхло-рида). При более глубоком рассмотрении свойств волокон возникает ряд вопросов. Необходимо, например, выяснить, почему полиамиды и полиэфиры плавятся в температурном интервале 200—260° и формование соответствующего волокна проводится из расплава, а полиакрилонитрил плавится с разложением, и в связи с этим формование волокна осуществляется по мокрому способу. Понятие метод формования из раствора связано с вопросом о действии растворителей, которые в большинстве случаев подбираются эмпирически. Следует, например, объяснить, почему смеси растворителей действуют сильнее, чем каждый компонент в отдельности, почему сополимеры акрилонитрила и винил-хлорида (виньон Ы) растворимы в ацетоне, в то время как чистый полиакрилонитрил в нем не растворяется. [c.5]

    Метод формования из раствора рассматривался выше применительно к производным целлюлозы (см. стр. 115 и табл. 31). Метод состоит в том, что для выделения полимера в виде волокна растворитель должен быть удален из раствора. По мокрому способу формование осуществляется путем коагуляции в осадительных ваннах, которые имеют такой состав, что компоненты их во всех отношениях смешиваются с растворителем, в котором был растворен волокнообразующий полимер, а для самого полимера эти реагенты являются осадителем. Мокрый способ применяется при ( рмовании медноаммиачного, вискозного, а также полиакрилонитрильного волокна. Перед коагуляцией в осадительной ванне полимер растворяют в соответствующем растворителе, удаляют из раствора воздух, фильтруют и продавливают через фильеру с помощью прядильного насо-сика. В то время как при формовании из расплава возможны скорости приема волокна до 1200 м/мин, при формовании из раствора скорости приема нити значительно ниже. [c.219]

    Молекулярный вес полимера в значительной мере влияет на условия формования и свойства химических волокон. Однако вопрос о зависимости свойств полиакрилонитрильного волокна от молекулярного веса полимера освещен в литературе недостаточно. Опубликовано несколько работ, посвященных влиянию молекулярного веса на способность вытягиваться и другие свойства полиакрилонитрильных волокон, сформированных мокрым способом из различных растворителейОднако влияние молекулярного веса полимера в диапазоне 25-10 —100-10 на прочность волокна и на его термомеханические свойства еще недостаточно исследовано. Нет сведений о влиянии молекулярного веса полиакрилонитрила на процесс формования волокна в осадительной ванне. [c.166]


Смотреть страницы где упоминается термин Полиакрилонитрильные волокна формование: [c.451]    [c.134]    [c.333]    [c.355]    [c.570]    [c.571]    [c.211]    [c.108]   
Физико-химические основы технологии химических волокон (1972) -- [ c.212 , c.277 ]




ПОИСК





Смотрите так же термины и статьи:

Полиакрилонитрильное волокно

Формование волокна



© 2025 chem21.info Реклама на сайте