Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбонильная группа альдольная конденсация

    Б. присоединение к карбонильной группе альдольные конденсации [c.89]

    Связь в альдегидах и кетонах, распределение электронной плотности в молекуле. Реакционные центры в молекулах альдегидов и кетонов. типы реакций. Механизм реакций присоединения к карбонильной группе. Альдольная и кротоновая конденсации, механизм катализа. Спектры ПМР, ИК и УФ карбонильных соединений. [c.190]


    Между молекулами двух различных альдегидов может происходить смешанная альдольная конденсация, причем ацетальдегид может являться источником или карбонильной группы, или а-атома водорода. В случае замещенных альдегидов легкость, с которой а-атом водорода соединяется с атомом кислорода молекулы какого-либо другого альдегида, увеличивается в следующем порядке  [c.300]

    Ацетальдегид может вступать в альдольную конденсацию также с кетонами и с другими соединениями, способными поставлять активные водородный атом или карбонильную группу. [c.304]

    Химические свойства ацетона определяются наличием кетогруппы и двух активных метильных групп, находящихся в а-положении к карбонильной группе. Ацетон вступает в альдольную конденсацию (гл. 16, стр. 300), причем молекула ацетона может реагировать либо с другой молекулой ацетона, либо с молекулами других карбонильных соединений. Последние либо поставляют атом водорода для кетогруппы ацетона, либо приобретают атом водорода от одной из его метильных групп. Ряд других производных ацетона, имеющих важное промышленное значение, можно получить при его пиролизе. [c.317]

    Выходы увеличиваются в присутствии оксида алюминия. При нагревании акролеина с аммиаком в основном образуется р-пиколин (92). И в данном случае, вероятно, реакция начинается с конденсации акролеина, однако из-за отсутствия второго атома водорода в а-положении к карбонильной группе она останавливается на альдольном присоединении. Нз по- [c.540]

    Альдегиды и кетоны. Строение карбонильной группы. Изомерия и номенклатура. Способы получения. Химические свойства. Реакции нуклеофильного присоединения. Реакции замещения и окисления. Функциональные производные оксосоединений ацетали, оксимы, гидразоны, азины. Альдольная и кротоновая конденсации. Дикарбонильные соединения. Непредельные альдегиды и кетоны. Кетены. УФ и ИК спектры альдегидов и кетонов. [c.170]

    Карбанионы, так же как и другие частицы, являющиеся источниками отрицательно заряженного углерода, принимают участие в разнообразных реакциях присоединения, многие из которых являются реакциями присоединения по карбонильной группе. Из них ранее уже рассматривались присоединение реактивов Гриньяра и ацетиленид-иона к карбонильным соединениям (см. стр. 212, 214), альдольная конденсация (см. стр. 214), реакция Перкина (см. стр. 218), сложноэфирная конденсация Клайзена [c.264]


    Относит содержание ионных частиц разл типа зависит от строения К, размера катиона, природы среды и т-ры Все эти частицы имеют, как правило, разл спектральные характеристики и отличаются по реакц способности Напр, нуклеоф замещение и присоединение с участием своб К происходит в 10-10 раз быстрее, чем с участием ионных пар К, особенно образующиеся из СН-кислот с рЛ" > 10, химически очень активны Они подвергаются внутримол превращ, приводящим к более устойчивым структурам В К аллильного и пропаргильного типов обычно происходит миграция кратных связей К в перегруппировках Стивенса и бензильной, р-циях Соммле, Виттига претерпевают 1,2-миграцию, перегруппировка Фаворского протекает со стадией 1,3-элиминирования Наиб важны в орг синтезе р-ции К, приводящие к образованию связей С—С нуклеоф замещение (напр, р-ция Вюрца) и присоединение по карбонильной группе (напр, конденсации Клайзена, альдольная, р-ции Манниха, Кневенагеля, Перкина) и по активир двойной связи (напр, присоединение по Михаэлю и анионная полимеризация) Широкое распространение получили синтезы на основе К, проводимые в устовиях межфазного катализа [c.315]

    В узком смысле под альдольными реакциями понимают катализируемые кислотой или основаниями взаимодействия кетона или альдегида с другим кетоном или альдегидом [20]. При этом, как правило, альдегид является карбонильным, а кетон - метиленовым компонентом (СН-кислотный компонент в енольной форме или, что то же самое, в форме енолят-иона (К-10а, К-П, К-12). Реакция протекает однозначно только для альдегидов, не содержащих кислотного атома водорода (К-13). Образующийся присоединением по карбонильной группе альдоль (—СО— Rj—С (ОН)—) (альдольное присоединение) в условиях реакции может превратиться с элиминированием воды в а,р-ненасыщенное карбонильное соединение (альдольная конденсация). [c.204]

    Другой ВОЗМОЖНОСТЬЮ является нагревание сополимеров эфира акриловой кислоты и непредельного альдегида с сополимерами эфиров акриловой кислоты и ненасыщенных мономеров, которые содержат по меньшей мере один активный атом водорода. Примером таких мономеров могут служить вещества, содержащие гидроксильные, тиольные, карбоксильные, первичные или вторичные аминогруппы или СН-группы, активированные соседними отрицательными карбонильными или сульфонильными группами. Такие смеси вулканизуются без введения других вспомогательных средств, за счет взаимодействия активного водорода второго компонента с альдегидными группами (альдольная конденсация). Это взаимодействие сопровождается сшиванием. В качестве примера сомономеров, способствующих сшиванию, следует назвать моноакриловый эфир этиленгликоля, моновиниловый эфир глицерина, амиды N-мeтилoл- или К-этилакриловой кислоты или 3,6-эндометилен-5-оксиметилцикло-гексен [886—888]. При этом вещества кислотного характера действуют ускоряющим образом. Уже канальная сажа дает эффект ускорения [888]. Известно также сшивание тройных полимеров бутилакрилата, метилметакрилата и метилакриламида веществами, отщепляющими формальдегид, в отсутствие вспомогательных средств [889]. [c.319]

    Очевидно, что биосинтез терпенов и стеринов следует по несколько иному пути, в ходе которого образуются соединения с разветвленными цепями. Один из способов синтеза заключается в альдольной конденсации ацетоацетилкофермента А с ацетилкоферментом А по кетонной карбонильной группе такая конденсация приводит к производному глутаровой кислоты (XIII) [c.575]

    Дальнейшие подтверждения важности стадии енолизации вытекают из работ по катализированной основаниями конденсации соединений, содержащих карбонильные группы. Имеется целый ряд таких реакций, харак терных для альдегидов, кетонов, карбоксильных кислот, эфиров, амидов и т.д. Из них паиболее просты реакции альдольной конденсации, являющиеся прототипом ряда других реакций. Эти реакции идут по уравнению [c.492]

    В общем можно считать, что система водный раствор гидроксида натрия/аммониевый катализатор способна депротонировать субстраты с рКа ниже 20—25. Сведения о рКа использованных субстратов можно найти в i[212, 213]. В этих условиях флуорен алкилируется, а ацетонитрил не реагирует [214]. Однако в присутствии порошкообразного гидроксида калия и 18-крауна-6 ацетонитрил вступает в альдольную конденсацию 215]. Аналогично алкины-1 не алкилируются, но могут реагировать с карбонильной группой. Недавно была описана изомеризация 3-фенил-пропена-1 [рКа 34) в 1-фенилпропен-1 под действием 50%-ного NaOH/R NX 1647]. Потенциальные возможности системы твердый порошкообразный КОН/катализатор (иногда при добавлении инертного высушивающего агента) пока еще используются не полностью. [c.95]

    Родственными альдольной конденсации и очень удобными в препаративном отношении, хотя и не всегда осуществляемыми в межфазных условиях, являются реакции, в которых триметилсилильные соединения атакуются присутствующими в каталитических количествах тетраалкиламмонийфторидами или цианидами, что приводит к образованию промежуточных ацети-лидов, енолятов или алкоксилатов, которые немедленно присоединяются по карбонильной группе  [c.232]


    Вс реакции конденсации по карбонильной группе экзотермичны, нс по величине теплового эффекта их можно разделить на две большие группы. К первой относятся сильно экзотермические и практически необратимые реакции конденсации карбонильных соединений с ароматическими веществами и олефинами (тепловой эффект 104—106 кДж/моль, нли 25—35 ккал/моль). Ко второй принадлежат обратимые процессы образования ацеталей и циангидринов, собственно альдольные конденсации и реакции с азотистыми основаниями. Стадия присоединения в этих обратимых реакциях имеет сравнительно небольшой тепловой эффект (21 — 63 кДж/моль, или 5—15 ккал/моль), но нз-за последующих реакций конденсации или дегидратации он может значительно изменяться в ту нли другую сторону, определяя равновесные отношения суммарного процесса. Обычно равновесие значительно смещается вправо, когда за присоединением следует дегидратация или когда образуются сравнительно стабильные вещества с ияти-ше-стичлгнными циклами. [c.549]

    Наоборот, прп альдольной конденсации кетонов их карбонильная группа менее склонна к присоединению, и общая скорость опреде- [c.574]

    Из рассмотренных примеров видно, что при всех взаимодействиях карбонильных соединений друг с другом альдольная конденсация является только одной из стадий. При этом технологические процессы, протекающие на основе альдольной конденсации, можно разделить иа три группы. [c.580]

    Ярко выраженный олектрофильный характер карбонильной группы делает ее подходящим субстратом для реакций с множеством нуклеофилов, список которых отнюдь не ограничивается магний- и литийоргапически-ми соединениями рассмотренных выше типов. Особенно важны для синтеза конденсации, в которых по карбонильной группе присоединяются нуклеофилы типа енолятов это целый спектр классических реакций органической химии, таких, как альдольная и кротоновая конденсация, сложноэфирная конденсация, реакции Перкина, Кнёвенагеля, Реформатского, Дарзана и др. При довольно значительных различиях в конкретной природе субстратов и условиях проведения ключевая стадия этих реакций — образование С—С-связи — описывается об-п ей схемой  [c.86]

    В случае формальдегида в реакцию альдольной конденсации вступает всегда только его карбонильная группа (если не считать альдольной конденсации между двумя молекулами формальдегида). [c.300]

    При смешанной альдольной конденсации ацетона с альдегидами последние всегда являются носителями более активной карбонильной группы, тогда как ацетон же поставляет а-атомы водорода. [c.321]

    Кофермент участвует в реакциях, в результате которых образуются и разрушаются углерод-углеродные связи, непосредственно прилегающие к карбонильной группе. В качестве примеров служат реакции неокислительного и окислительного декарбоксилирования и альдольной конденсации, например неокислительное декарбоксилирование пировиноградной кислоты до ацетальдегида  [c.458]

    В зависимости от условий процесса в реакции полимеризации могут принять участие обе ненас )1щенные связц (в различных соотношениях) или только одна из них. Поскольку карбонильная группа принадлежит к наиболее химически активным функциональным группам, пе исключена возможность одновременного образования н полимере различных звеньев вследствие реакций >кисления, циклизации, альдольной конденсации и т. д. Таким [c.314]

    Реакции кетонов. Поскольку дефицит электронной плотности на атоме углерода карбонильной группы кетонов меньше, чем у альдегидов, они не могут быть карбонильными компонентами при конденсации с альдегидами, взятыми в качестве метиленовых компонентов. Поэтому в данном разделе рассмотрены примеры реакций альдольно-кротоновой конденсации, в которых и карбонильный, и метиленовый компоненты— кетоны. [c.213]

    При альдольной конденсации а-атом углерода одной молекулы альдегида или кетона присоединяется к карбонильной группе другой молекулы, [375]. Чаще всего в качестве основания используют ОН-, хотя иногда применяются и более сильные основания, например трет-бутилат алюминия. Гидроксид ион — недостаточно сильное основание, чтобы практически все молекулы альдегида или кетона можно было превратить в соответствующий енолят-ион, т. е. равновесие реакции [c.381]

    Альдольная конденсация осуществима также в условиях кислотного катализа, причем в этом случае реакция обычно сопровождается дегидратацией. Первоначально происходит протонирование карбонильной группы, которая атакует а-атом углерода енольной формы другой молекулы  [c.384]

    При соответствующих условиях реакция альдольной конденсации двух молекул альдегида или молекулы альдегида и молекулы кетона не останавливается на образовании альдоля она может идти дальше с отщеплением воды за счет подвижного водорода в -положении к карбонильной группе и гидроксила при Р-углеродном атоме (т. е. при втором от карбонильной группы), в этом случае, в результате взаимодействия двух молекул альде- [c.146]

    Альдольно-кротоновая конденсация. Реакции, при которых вдз-никают новые углерод-углеродные связи и, таким образом, происходит усложнение углеродного скелета органических молекул, принято называть реакциями конденсации Такие реакции очень важны, так как дают возможность перейти от простых соединений к сложным, содержащим большее число углеродных атомов. К таким реакциям относится альдольно-кротоновая конденсация. Внешне непохожая на другие превращения карбонильных соединений, альдольно-кротоновая конденсация в действительности имеет с ними много общего. Она идет по общей схеме нуклеофильной атаки на карбонильный углерод, но в качестве нуклеофильной частицы выступает вторая молекула карбонильного соединения, т. е. ее углеродный атом, находящийся по соседству с карбонильной группой (а-углеродный атом). Атомы водорода, связанные с а-углеродным атомом карбонильных соединений, обладают особой реакционной способностью ( подвижностью ). Это объясняется индукционным влиянием соседнего карбонильного углерода  [c.183]

    Функциональная группа в первую очередь определяет химические свойства соединения, однако более пристальное рассмотрение показывает, что на них оказывает заметное влияние и природа радикала. Так, в ряду карбонильных соединений альдегиды в общем более реакционноспособны, чем кетоны. Это проявляется в том, что в рассмотренные выше реакции альдегиды вступают в более мягких условиях — при более низких температурах, при действии менее активных реагентов, а сами реакции идут с большими скоростями. Например, в реакцию с дисульфитом натрия вступают лишь альдегиды и простейшие кетоны строения СНз—СО—R или R—СНг—СО— HjR. Особенной реакционноспособностью отличается формальдегид. Так, например, альдольная конденсация уксусного альдегида (в качестве метиленовой компоненты) протекает [c.185]

    Аналогичные альдоли получаются и из гомологов уксусного альдегида. Такая реакция называется альдольной конденсацией. Необходимо при этом заметить, что альдольная конденсация идет за счет подвижного атома водорода в а-положении к карбонильной группе. Для пропионового альдегида реакция выразится следующим уравнением [c.200]

    Ключевая стадия показанной цепочки превращений — присоединение енолята 91 по двойной связи енона 90 [14с] (реакция Михаэля). Первичным продуктом этой реакции является тоже енолят-анион 92, способньхй к обратимой изомеризации в енолят 93. Нуклеофильный центр последнего пространственно сближен с имеющимся в молекуле электрофильным центром, карбонильной группой циклогексанового кольца, благодаря чему в условиях реакции достаточно легко протекает внутримолекулярная альдольная конденсация, сопровождающаяся дегидратацией, и в результате образуется би-циклический ендион 94. Показанный дикетон является одним из важнейших промежуточных полупродукгов в синтезе полициклических терпеноидов и [c.114]

    При такой альдольной конденсации происходит присоединение свободной пары электронов метиленовой компоненты к атому углерода поляризованной карбонильной группы, в электроннйй оболочке которого находится только шесть электронов  [c.712]

    В жирном ряду к подобному превращению способны лишь муравьиный альдегид и те альдегиды, у которых карбонильная группа связана с третичным атомом углерода. Прочие альдегиды при действии раствора щелочи вступают в реакцию альдольной конденсации или же осмоляются. [c.107]

    Но В отличие от двух приведенных выше типов конденсация двух различных альдегидов (или альдегида и кетона) приводит к образованию смеси продуктов независимо от условий синтеза. Однако проблема направленной альдольной конденсации была решена. Метод Виттига позволяет выбрать активную метиленовую компоненту, выступающую в роли аниона, и карбонильную группу, являющуюся акцептором аниона [14] [c.79]

    Атом Н в а-положении к группе —С(0)Н подвижен при конденсации А. реагируют как по карбонильной, так и по метиленовой группе (см. Альдольная конденсация, Крото-иовая конденсация, Бензоиновая конденсация, Киевенагеля реакция, Штоббе конденсация). А. взаимодействуют с эфирами галогенсодержащих к-т (см. Дарзана реакции), присоединяются к олефинам (Принса реакция). А[юм. А. вступают в р-ции Перкина и Клайзена — Шмидта. Из Л. получ. олефины и диены (Виттига реакция), аминокислоты (см., папр., Штреккера реакции), амины (Лейкарта реакции). Низшие А. образуют циклич. тримеры (триоксан, параль-дегид) и линейные полимеры, вступают в поликонденсацию. [c.27]


Смотреть страницы где упоминается термин Карбонильная группа альдольная конденсация: [c.250]    [c.191]    [c.267]    [c.146]    [c.146]    [c.460]    [c.130]    [c.110]    [c.247]    [c.71]    [c.254]    [c.395]    [c.140]    [c.124]    [c.138]   
Новые воззрения в органической химии (1960) -- [ c.298 , c.299 ]




ПОИСК





Смотрите так же термины и статьи:

Альдольная конденсация

Карбонильная группа

Конденсация карбонильные



© 2025 chem21.info Реклама на сайте