Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенос резонансный

    В данном переходном состоянии резонансные структуры, которые можно написать для различных двойных связей и взаимодействий, не связанных с химическими связями, создают возможность распределения заряда по всей молекуле. Аналогичную картину можно нарисовать в случае кислотно-каталитической реакции, в которой переходное состояние включает частицы ОН и А" и лимитирующей стадией которой является перенос протона от группы ОН, находящейся вне кольца, к А.  [c.483]


    Свободнорадикальные реакции возможны благодаря тому, что система может легко окисляться или восстанавливаться по механизму одноэлектронного переноса с образованием стабильного промежуточного соединения, называемого семихиноном (стабилизированного десятью резонансными формами). В этих планарных структурах одно кольцо всегда остается полностью ароматическим. В то же время, если промежуточные соединения имеют не [c.413]

    Кинетика флуоресценции в твердой фазе. В твердой фазе в отсутствие индуктивно-резонансного переноса энергии должен осуществляться статический механизм тушения флуоресценции. Могут существовать два типа молекул свободные молекулы, рядом с которыми при замораживании раствора нет ни одной молекулы тушителя и молекулы, имеющие соседа-тушителя, нефлуоресцирующие, мгновенно гаснущие . Первый тип молекул сохраняет неизменное время жизни. Поэтому при тушении флуоресценции в твердой фазе часто уменьшается квантовый выход флуоресценции, а время затухания остается неизменным. [c.98]

    Работа некоторых весьма важных газовых лазеров основана на механизме возбуждения в процессе межмолекулярного переноса энергии. Например, в гелий-неоновом лазере электрический разряд проходит через смесь, содержащую около 10% Ые в Не. Столкновения с электронами от разряда вначале заселяют первые возбужденные триплетные и синглетные состояния Не, как показано на рис. 5.6. Оптические переходы от этих состояний к основным состояниям запрещены и поэтому являются метастабильными и долгоживущими. Эти два состояния близко резонируют с двумя возбужденными состояниями N0 (обозначенными на рисунке 23 и 35), и столкновительный обмен энергией приводит к образованию возбужденного неона в состоянии 5. Имеются также низколежащие состояния Р, для которых резонансное возбуждение невозможно, так что осуще- [c.144]

    Скорость переноса энергии по первому механизму не лимитируется диффузией и не зависит от вязкости даже при переходе от жидких растворов к твердым. Для тушения по этому механизму не требуется диффузии или непосредственной встречи молекул за время жизни возбужденного состояния (рис. 3.5). Этот тип переноса называют резонансным. [c.133]

    При объяснении резонансного механизма безызлучательного переноса энергии используют два подхода. При классическом подходе электронные системы молекул О и А рассматривают как осцилляторы, спо- [c.134]

    Рассчитанные расстояния находятся в пределах 50—100 А, что значительно превышает диаметр соударения. Это свидетельствует о том, что перенос энергии не является диффузионным процессом. Процессы переноса энергии необходимо учитывать при изучении тушения флуоресценции. Если эффективность флуоресценции донора высока, а положение полосы поглощения тушителя благоприятствует переносу энергии, то, чтобы можно было пренебречь его влиянием на интенсивность флуоресценции, необходимо снизить концентрацию тушителя до 10 моль/л или меньше. По резонансному механизму осуществляется синглет-синглет-ный перенос энергии. Для некоторых систем обнаружен резонансный перенос энергии между триплетным состоянием донора и синглетным состоянием акцептора  [c.136]


    Хотя скорость триплет-синглетного переноса энергии незначительна (поскольку он запрещен по спину), при определенных условиях процесс переноса возбуждения от долгоживущего триплетного донора на синглетный уровень акцептора может конкурировать с другими процессами дезактивации триплетного состояния донора. Этот запрещенный процесс начинает играть существенную роль только тогда, когда остальные конкурирующие процессы дезактивации возбужденного состояния также запрещены. Из уравнения (3.28) видно, что если разрешен переход в молекуле А, то, несмотря на запрещение перехода в молекуле О, резонансный перепое энергии может происходить с большой вероятностью, поскольку большее время жизни компенсирует малую скорость переноса. Другая ситуация получается, если запрещен поглощательный переход в молекуле А, но разрешен излучательный переход в молекуле О (синглет-триплетный перенос). В этом случае перенос энергии по резонанс- [c.136]

    Исходя из спинового запрета возможны следующие типы переноса энергии по индуктивно-резонансному и обменному механизмам  [c.138]

    Нередко электронное возбуждение одного хромофора вызывает флуоресценцию другого хромофора, расположенного поблизости. Так, например, возбуждение молекул красителя, образующих монослой, приводит к флуоресценции слоя другого красителя, находящегося от первого на расстоянии 5 нм. Возбуждение остатков тирозина в белках может вызвать флуоресценцию триптофана, а возбуждение триптофана— флуоресценцию красителя, связанного с поверхностью молекулы белка, или флуоресценцию связанного кофермента [57]. Такого рода резонансный перенос энергии характерен для тех случаев, когда спектр флуоресценции одной молекулы перекрывается со спектром поглощения другой. При этом реального испускания и поглощения света не происходит, а имеет место безызлучательный перенос энергии. Резонансный перенос энергии имеет большое биологическое значение для фотосинтеза. Поскольку молекула с е = 3-10 при воздействии прямого солнечного света поглощает около 12 квантов света в секунду, моно-молекулярный слой хлорофилла будет поглощать всего 1 % общего числа квантов, падающих на поверхность листа [63]. По этой причине молекулы хлорофилла располагаются в виде многочисленных тонких слоев внутри хлоропластов. Однако непосредственно в реакционных центрах, где идут фотохимические процессы, находится лишь небольшое число специализированных молекул хлорофилла. Остальные молекулы поглощают свет и передают энергию в реакционный центр небольшими порциями. [c.31]

    Релаксация играет важную роль при наблюдении резонансных явлений, описанных в разд. 2. Мы уже объясняли ранее, что в отличие от компонент цг индивидуальных ядерных моментов макроскопическая намагниченность не поворачивается на 180° в отрицательном направлении оси г при наложении полей В с малыми амплитудами, а только отклоняется от оси 2 па малый угол а. Следовательно, даже в момент резонанса намагниченность по оси 2 сохраняется, поскольку система стремится сохранить нормальное больцмановское распределение путем релаксации (уравнение I. 11). Часть поглощенной энергии радиочастотного поля переносится поэтому в конце концов на окружение. Величина новой равновесной намагниченности Мг безусловно является функцией времени продольной релаксации [c.235]

    Знание химических сдвигов дает возможность расшифровывать сложные спектры больших молекул, что достигается путем простой комбинации селективного возбуждения и стробирующей развязки. При таком подходе каждый резонансный сигнал возбуждается селективно, затем устройство развязки выключается, что создает условия свободной прецессии резонансных линий мультиплетных сигналов, и Фурье-преобразование генерирует мультиплетные подспектры, соответствующие выбранному положению резонансного сигнала. Серия таких подспектров воссоздает обычный полный спектр со всей картиной связей. Дополнительную информацию относительно связности мультиплетных сигналов можно получить, используя методику селективного двойного резонанса, такую как селективный перенос населенности. Эти методы позволяют определить знаки констант спиновых связей, применяя мягкие селективные импульсы для облучения ядер, связанных с наблюдаемым ядром. [c.5]

    Простейший метод, используемый для возбуждения выбранного резонанса, состоит в настройке частоты передатчика точно в резонанс выбранной спектральной линии. Величина радиочастоты в этом случае устанавливается с таким расчетом, чтобы возбуждался только выбранный резонанс. Все остальные линии отстоят настолько далеко от резонанса, что их возбуждением можно пренебречь, что возможно лишь для спектров с хорошо разрешенными группами резонансных линий. При этом возникает проблема учета релаксации во время действия длительного импульса. Однако этот метод можно успешно использовать для генерирования селективных 180°-х импульсов в экспериментах селективного переноса намагниченности. [c.7]


    Другим экстравагантным примером извлечения связности С-С из 1М-спектров с применением селективных методов возбуждения может служить одномерная многоимпульсная методика, позволяющая определить константу 1(С-С) методом селективного переноса поляризации. Чтобы вызвать процесс поляризации, вначале, как известно, необходимо осуществить селективную инверсию одной части мультиплета. Это можно осуществить с помощью мягких импульсов. Перенос поляризации между гомоядерно связанными спинами и Сд может иметь место в случае, когда два вектора намагниченности, связанные со спином, действующим как источник переноса поляризации (напримф С ), располагаются антипараллельно вдоль одной из поперечных осей ( л >-ось, например) до применения жесткого импульса (скажем, т1/2 [С, у]), обычно используемого для наблюдения всего ЯМР-спектра. Если таким образом удается генерировать населенности, то наблюдаемый сигнал, возникающий от С , по-видимому, будет представлять собой мультиплет с интенсивностями резонансных линий 0 2, составленный из двух частей, - обычного дублета 1 1 , возникающего от разности в населенности Сд, и 1 1 сигнала поляризационного переноса, возникающего от разности в населенности С . [c.27]

    Кулоновский и резонансный интегралы аир, как правило, не вычисляются из-за больших математических трудностей, а рассматриваются как параметры, т. е. служат единицами измерения для их оценки сравнивают результат расчета энергии в единицах р и экспериментальные данные к тому же частью интегралов полностью пренебрегают. Поэтому метод МОХ относится к полуэмпи-рическим. Перенос значений аир, полученных для одного класса соединении, в другой класс (например, из полиенов в ароматические продукты) недопустим и приводит к ошибкам. Внутри одного класса такой перенос возможен и дает при расчете энергий связей и спектров приемлемые результаты. [c.111]

    Результаты проведенной работы показали, что наблюдаемый парамагнетизм есть следствие возникновения комплексов с переносом заряда (электрона), причем за время электронного перехода ориентация ядерного спина не изменяется, Цроисходит резонансное поглощение энергии переменного электролшгнктного поля системой элементарных частиц, которое индуцирует перехода между энергетическими уровнями, обусловленными различной пространственной ориентацией магнитного момента электрона. [c.52]

    Для многих технических целей поверхности с большой точностью могут рассматриваться как серые. Но свойства многих поверхностей отклоняются от описанных выше для различных длин волн вследствие резонансных эффектов, которые аналогичны явлениям, связанным с полосами излучения в газе. Кроме того, излучательная способность меняется в зависимости от направления излучения. По. этой причине приходится иногда определять интегральную излучательную способность (все направления, все длины волн), нормальную полную излучательную способность (все длины волн, но только нормальное к поверхности направление) и монохроматическую, или спектральную, иа-лучательную способность (ej, для данной длины волны). На рис. 2 представлены типичные зависимости излучательной способности от длины волны. Взаимодействие между тепловыми колебаниями и фотонами не зависит от направления переноса энергии, т. е. любой процесс, приводящий к излучениЕо электромагнитной волны, может протекать и в противоположном направлении, приводя к поглощению точно такой же волны. По этой причине все излучение, падающее на абсолютно черное тело, будет им поглощаться. Реальные поверхности, однако, поглощают лишь часть падающего на них излучения, отражая остальное, причем отношение поглощенной энергии к полной падающей энергии Е( определяется как поглощательная способность a- EJEf [c.193]

    Следует отметить, что процесс ионизации молекул при эстафетной хфоводимости определяется резонансными эффектами. При этом энергия, затрачиваемая на ионизацию молекулы, выделяется при ее присоедипении к соседней молекуле, т. е. интегрально весь процесс может осуществляться с малыми энергетическими затратами. Кроме того, воз.можен эстафетный перенос реального положительного заряда — протона по цени водородных связей. В этом процессе могут также участвовать молекулы растворителя. [c.62]

    Резонансное взаимодействие обнаружено при передаче энергии от флуоресцирующей молекулы к молекуле тушителя. Если молекула тушителя поглощает при более длинных волнах, чем флуоресцирующая, то передача энергии может происходить на значительно больших расстояниях, чем радиус столкновения. Расстояние, на котором осуществляется перенос энергии, для систем антрацен—перилен, перилен—рубрен достигает 50—100 А. Такой резонансный перенос приписывают дальнодействую-щему диполь—дипольному взаимодействию. Резонансный перенос энергии может наблюдаться не только для электромагнитного, но и для акустического поля (М. Волькен-штейн). [c.96]

    При больших расстояниях между атомами или молекулами сумма резонансных энергий, умноженная на априорные вероятности резонансного взаимодействия, как и в случае с двумя атомами водорода, равна нулю. По этой причине, а также потому, что возбужденные электронные состояния молекул обычно маловероятны, энергия резонансного взаимодействия не вносит существенного вклада в энергию вандерваальсова взаимодействия. Но учет резонансного взаимодействия между молекулами важен при рассмотрении процессов переноса энергии. [c.35]

    А. с. позволила изучить мн. р-ции диссоциации, комплек-сообразования, переноса протона, конформац. 1 евращення, возбуждение и дезактивацию внутрнмол. колебаний в газообразных и жидких, в т. ч. в биологически активных, средах. В ТВ. телах исследуют образование и исчезновение дефектов в кристаллах, нек-рые резонансные явления. Перспективны акустич. исследования гетерог. р-ций, [c.20]

    В этом выражении магнитно-резонансные параметры относятся к первичной РП. Отметим, что в волновой функции опущен несущественный общий фазовый множитель ехр(1 //2й). Отсюда видно, что вторичная пара образуется в смешанном состоянии, с вероятностью 1 - (дЮУ ,т-((1г Ьх вторичная пара возникает в синглетном состоянии, как и первичная пара, а с вероятностью дЮУ , г П11К) вторичная пара образуется в триплетном состоянии Т . В результате спиновая динамика во вторичной паре и, как результат, электронная спиновая поляризация и спектр ЭПР вторичной пары оказываются зависящими от спиновой эволюции в первичной паре. Это аналогично эффекту памяти при формировании химической поляризации ядерных спинов в последовательных РП. За счет переноса спиновой поляризации во вторичную пару в спектре ЭПР вторнч- [c.115]

    Ясно, что этот эксперимент может также приводить к переносу поляризации, но степень переноса будет зависеть от специфического расположения векторов намагниченности, относящихся к компонентам мультиплета, во время второго импульса. Оно в свою очередь зависит от резонансных частот сигналов S и длительности ij. Таким образом, мы имеем основу для двумерного эксперимента амплитуда сигнала I, детектируемая в течение времени ij, будет модулироваться как функция на резонансных частотах спинов S. Приведенная выше схема составляет фундамент гетероядерной корреляционной спектроскопии. Другой путь рассмотрения этой последовательности состоит в сравнении с OSY. Единственная разница заключается в том, что перенос когерентности после второго импульса распространен на другое ядро с помощью одновременного импульса на частоте этого ядра. Таким образом, видно, что все эксперименты в гл. 6, 8 (исключая NOESY) и 9 основаны на одном и том же явлении переносе когерентности между взаимодействующими спинами, который проще всего можно понять в контексте SPI. [c.349]

    В. с. могут терять избыток энергии, переходя в основное состояние (или нижележащие В. с.) путем испускания фотонов, безызлучат. резонансного переноса энергии или при столкновениях с др. молекулами. Поэтому B. . имеют огранич. время жизни, определяемое суммой констант скорости всех процессов дезактивации. В многоатомных молекулах происходят внутримолекулярные процессы перераспределения энергии между разл. видами возбуждения. В равновесных условиях при данной Аре заселенность разл. состояний зависит от их энергии в соответствии с распределением Максвелла - Больцмана. При т-рах порядка неск. сот К заселены гл. обр. самые нижние электронное и колебат. состояния, а вращат. и спиновые состояния заселены почти равномерно. Под действием излучения соответствующей частоты возникает сверхравно-весная концентрация B. ., зависящая от интенсивности поглощаемого света и времени жизни (времени релаксации) В. с. [c.408]

    При облучении спинов 5 спины / нагреваются , а намагниченность спинов 5 уменьшается. Аналогично можно поляризовать редкие спины путем спинового переноса от распространенных спинов и наблюдать резонанс спинов / при одновременной развязке от распространенных спинов, с тем чтобы устранить дипольное уширение линий. Используя эту технику, которая называется /сро с-лолярызачивй, удалось, например, четко различить два резонансных сигнала в твердом адамантане. [c.367]

    Это особенно важно, когда в спектре появляются широкие линии (>50 Гц), так как их комбинация с частотно-зависимыми фазовыми сдвигами приводит к искажению базовой линии. Другое преимущество - это подавление более чем одной позиции путем разделения их по времении подавления по различным частотам. Однако в случае, когда гомоядерные эксперименты связаны с предварительным насыщением, возникает ряд проблем. Устройство развязки может возбудить мощный сигнал растворителя во время приема данных, если частота развязки будет близкой к частоте химического сдвига растворителя. Основным недостатком предварительного насыщения, как метода подавления интенсивных сигналов растворителя, является перенос насыщения от растворителя к обменивающимся протонам. Этот эффект может быть вызван либо химическим обменом, либо кросс-релаксацией. Интенсивность резонансных сигналов, способных к обмену, уменьшается, если скорость химического обмена или кросс-релаксации между ними и сигналами растворителя сравнима со скоростью их спин-решеточной релаксации в отсутствие обмена или кросс-релаксации. Для преодоления этих проблем был предложен метод, позволяющий выполнять экстраполяцию интенсивности пиков в отсутствие насыщенного сигнала растворителя. Эта методика основана на повторении эксперимента подавления сигнала растворителя с импульсами предварительного насыщения различной длительности. Взаимное насыщение уменьшается, если уменьшается мопщосгь импульсов предварительного насыщения. Трудность реализации этого метода состоит в том, что кратковременный импульс теряет свои селективные свойства. [c.12]


Библиография для Перенос резонансный: [c.100]   
Смотреть страницы где упоминается термин Перенос резонансный: [c.371]    [c.122]    [c.87]    [c.534]    [c.87]    [c.134]    [c.364]    [c.281]    [c.88]    [c.303]    [c.33]    [c.332]    [c.139]    [c.326]    [c.33]    [c.553]    [c.14]    [c.20]    [c.24]   
Механизмы неорганических реакций - Изучение комплексов металлов в растворе (1971) -- [ c.437 , c.440 ]




ПОИСК





Смотрите так же термины и статьи:

Резонансные



© 2024 chem21.info Реклама на сайте