Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тритий в химии

    Изотопные эффекты трития обсуждаются в обзоре Якушин.— Усп. хим., 1962, 31, с. 241—256. [c.301]

    До недавнего времени основное применение литий в виде металла имел для рафинирования и дегазации меди, никеля, при получении сплавов алюминия типа склерон при производстве антифрикционных сплавов на свинцовой основе, наряду с натрием и кальцием. Большое значение в последнее время получил литий в производстве синтетического каучука, а также для получения гидрида Ak Hi, как одного из самых эффективных восстановителей в процессах органической химии и др. Особое значение и большую будущность имеет литий в качестве исходного сырья в производстве термоядерного горючего. Для этого используют изотоп находящийся в соотношении с как 7,4 к 92,6, получая из него тяжелый изотоп водорода — тритий [2]. Изотоп используется как обычный литий. Мировое производство лития оценивается в 500—600 т/год (без СССР). [c.319]


    Работа с веществами, содержащими меченые атомы. Громадное развитие физики и химии стабильных и радиоактивных изотопов многих элементов создало необозримые возможности для изучения многих научных вопросов также в области органической химии, биохимии, в медицине и др. Пользуясь точными методами обнаружения и определения изотопных веществ, можно решать такие вопросы, которые были недоступны для решения обычными химическими методами. Для проведения таких работ необходимо во многих случаях иметь органические вещества, в молекулы которых введены простые или радиоактивные (рад.) изотопы дейтерий (О), тритий (рад.), тяжелый кислород Ю, сера или (рад.), С (рад.), (рад.) и др. Так как соединения с мечеными атомами очень дороги, а в ряде случаев весьма опасны для здоровья, от химика требуется большая тщательность в работе с очень малыми количествами вещества, часто с применением особых мер предосторожности. Это, однако, пе останавливает исследователей, и подобные работы очень энергично развиваются. [c.398]

    ЯДЕРНАЯ ЭНЕРГИЯ (атомная энергия), выделяется при превращениях атомных ядер. Источник Я. э.— внутр. энергия атомного ядра, обусловленная сильным взаимод. между протонами и нейтронами, а также их движением внутри ядра. Я. э. в миллионы раз превосходит энергию хим. превращений. Изменение массы покоя ядер при их превращениях может достигать по порядку величины 0,1%, тогда как перестройка внеш. электронных оболочек при хим. превращениях сопровождается изменением массы покоя атомов и молекул не более чем на 10 %. Особенно энергетически выгоден синтез легких ядер и деление тяжелых. Так, при синтезе гелия из ядер дейтерия и трития выделяется энергия 17,6 МэВ (3,5 МэВ на нуклон), при делении урана — ок. 200 МэВ ( 1 МэВ на нуклон). Радиоакт. распад также сопровождается выделением Я. э., однако его малая скорость обусловливает ничтожно малую полезную мощность. [c.724]

    Для повышения эффективности применения хим. и физ.-хим. методов изучения структуры анализу подвергают не только прир. в-ва, но и их производные, содержащие характерные, специально вводимые группировки и меченые атомы, напр, путем выращивания продуцента на среде, содержащей меченые аминокислоты или др, радиоактивные предшественники, в состав к-рых входят тритий, радиоактивный углерод нлн фосфор. Достоверность данных, получаемых при изучении сложных белков, значительно повышается, если это изучение проводят в комплексе с исследованием строения соответствующих генов. [c.288]


    Названиями и символами И. обычно служат названия и символы соответствующих хим. элементов массовое число указывают сверху слева от символа. Напр., для обозначения прир. И. хлора используют запись С1 и С1 иногда внизу слева указывают также порядковый номер элемента, т.е. пишут С1 и ]С. Только И. самого легкого элемента-водорода с мае. ч. 1, 2 и 3 имеют спец. названия и символы протий ( Н), дейтерий (О, или Н) и тритий (Т, или Н) соответст венно. Из-за большой разницы в массах поведение этих И. существенно различается (см. Дейтерий, Тритий ). [c.201]

    Кроме дейтерия и трития, в органической химии часто используют доступный в виде СНдОН и Ва СОд 0 в виде H 0 в виде NOa и N02 С1 в виде хлора или хлорида в виде иодида. [c.130]

    Большое значение в органической химии играют реакции переноса атомов водорода, происходящие с участием свободных радикалов. Сведения о реакционной способности насыщенных молекул и свободных радикалов, о влиянии строения веществ на их реакционную способность могут быть получены на основании изучения кинетических закономерностей элементарных процессов, проводимых при использовании в качестве индикатора трития [479]. [c.258]

    Наличие изотопного обмена и внутримолекулярных перемещений водорода, не связанных непосредственно с крекингом, вносит неудобства, делая мало пригодной метку молекул углеводородов и грунн в молекулах дейтерием и тритием для выяснения стадийного механизма и генетических отношений. Для выяснения этих вопросов более перспективной представлялась метка молекул радиоуглеродом С . Это побудило поставить в Институте физической химии АН СССР систематические исследования механизма 1<аталитического крекинга при помощи молекул, меченных С . В более ранних работах этого цикла, посвященных вторичным реакциям [1—4], было установлено, что  [c.152]

    Типы данных, с которыми чаще всего приходится иметь дело в аналитической химии, делятся на два обширных класса а) цифровые, т. е. дискретно квантованные значения, например pH раствора, в определенный момент времени, константа скорости обратной реакции или радиоактивность соединения, меченного радиоактивным углеродом или тритием на определенной стадии его распада, и б) аналоговые, или непрерывно меняющиеся значения, например поглощение образца как функция длины волны в ИК- или УФ-спектре или изменение силы тока в пламенно-ионизационном детекторе газового хроматографа. [c.210]

    В природе встречаются все типы стабильных ядер. Их относительная распространенность может изменяться в широких пределах — в 10 раз. Определение распространенностей изотопов было проведено рядом авторов, и полученные результаты использовались для объяснения процесса образования элементов [16, 1968] подобные измерения большей частью осуществлялись в области спектро-аналитических астрономических наблюдений и неорганической химии. Чувствительность масс-спектрометрического анализа образцов, приготовленных в удобной для изучения форме, высока, однако необходимо признать, что этот метод не является во всех случаях лучшим или наиболее чувствительным. Часто обычные химические методы оказываются более приемлемыми. Например, наличие некоторых химических соединений в воздухе легче устанавливается при пропускании больших количеств образца через соответствующий реагент при этом нет необходимости проводить обогащение для повышения чувствительности обнаружения примесей. Радиоактивные изотопы с гораздо большей чувствительностью обнаруживаются путем регистрации излучения, чем методом масс-спектрометрии. Так, например, в мл тяжелой воды, полученной из 13 ООО т поверхностных вод Норвегии, была определена молярная доля трития, равная 3,2-10 , что позволило установить мольную долю трития в водороде этих вод, равную 10 [797]. Масс-спектро-метрический метод не обладает подобной чувствительностью. Однако преимущества его в определении относительной распространенности изотопов элементов неоспоримы. В настоящей главе будут рассмотрены подобные измерения, а также измерения относительных количеств различных положительных осколочных ионов в масс-спектрах химических соединений. Применение метода анализа изотопного состава рассмотрено в конце настоящей главы, применение в химическом анализе обсуждено в гл. 8. [c.70]

    В ядерных исследованиях дейтерий используют для наполнения пузырьковых камер. В качестве меченых атомов дейтерий, особенно тритий, применять более удобно, чем тяжелые изотопы кислорода, при изучении передвижения водных потоков в гидрологии, нефтеразведке, биологии, металлургии, металловедении, химии. Они дешевле и удобнее для биологических и химических исследований, чем радиоактивный изотоп углерода С ". При метке тритием мой<но работать с гораздо меньшим количеством меченого вещества, чем при метке радиоуглеродом [853]. [c.562]

    Основными элементами, входящими в состав органической молекулы, являются углерод, водород и кислород. Многие органические соединения содержат также азот, серу, фосфор. Известные радиоактивные изотопы кислорода и азота обладают слишком малыми периодами полураспада и потому применение их в исследованиях методом радиоактивных индикаторов ограничено. Также и единственный радиоактивный изотоп водорода тритий из-за особых технических трудностей работы с ним не нашел пока достаточно широкого применения. Естественно, что значительная часть работ в области органической химии была выполнена с применением стабильных изотопов дейтерия ( Н), тяжелого кислорода ( 0) и тяжелого азота Тем не менее использование радиоактив- [c.232]


    Химическому синтезу меченых тритием липидов предшествует синтез соответствующих предшественников [6], содержащих тройные связи, дополнительные двойные связи, галоидзамещенные фрагменты и т.д., подлежащие дальнейшей модификации с использованием газообразного трития для получения искомого меченого препарата. Синтез предшественников — задача традиционной органической химии. [c.485]

    В связи с широким применением в последние годы в органической химии изотопов и, в частности, радиоактивных изотопов разработаны были методы количественного анализа и для них (начало 50-х годов). В частности, соединения, содержащие дейтерий, сжигались (ПО Преглю до превращения всего водорода в смесь Н2О с ВдО, л количество дейтерия определялось либо в самой воде различными методами, например с помощью ИК-спектроскопии, либо она (смесь) восстанавливалась до водорода с последующим определением дейтерия масс-спектрометрически. В те же годы было предложено определение дейтерия еще переводом исходного соединения в какой-либо из низших алканов и определение дейтерия масс-спектрометрическим методом. Аналогично определяют и содержание трития. Масс-спектрометрия оказалась ценным инструментом для определе- [c.310]

    Кобальт-58 Желеао-59 Хром-51 Водород-3 (тритий) Стронций-85 Золото-198 Определение степени поглощения организмом витамина В (содержащего кобальт) Определение скорости образования эритроцитов (они содержат железо) Определение объема крови и продолжительности жизни эритроцитов Определение количества воды в организме определение усвоения меченого витамина О в организме исследования в химии клетки Получение снимка костей Получение снимка печени [c.350]

    ДЕЙТЕРИЙ (Deuterium — тяжелый водород) D ( Н) — стабильный изотоп водорода с массовым числом 2. Открыт в 1932 г. Г. Юри и др. Д. содержится в природном водороде и его соединениях (вода, углеводороды и др.). Получают Д. электролизом воды, ректификацией воды или сжиженного водорода. Ядро Д. состоит из одного протона и одного нейтрона. Д. широко используется как замедлитель нейтронов в атомных реакторах, как термоядерное горючее в смеси с тритием, для проведения научно-исследовательских работ, в качестве меченого атома в химии (особенно в органической и физической), физике, биохимии и физиологии. Д. обозначают еще Н или водород-2. [c.84]

    АВТОРАДИОГРАФИЯ, метод изучения распределения радиоакт. компонентов по пов-сти и (или) объему тв. объектов, основанный на регистрации ядерных излучений с помощью фотоэмульсии. Радиоакт. атомы вводят в исследуемый объект при его хим. синтезе илн др. методе приготовления. Для Л. пригодны многие а- и (3-радИонуклиды наилучшие результаты дают нуклиды, испускающие при распаде Р-частнцы небольшой энергии (тритий, " С, и др.). Регистриро- [c.9]

    Тяжелый изотоп водорода наз ывается дейтерием (химический символ О) сверхтяжелый изотоп водорода Н — тритием (Т), легкий изотоп водорода —. протием в химии изотопов под термином водород , если не дается необходимых оговорок, понимают Н1. [c.7]

    Масса А. определяется массой его ядра масса электрона ( X 9,109 10 г) примерно в 1840 раз меньше массы протона или нейтрона ( 1,67-10 гХ поэтому вклад электронов в массу А. незначителен. Общее число протонов и нейтронов-4 = Z + Л нах массовым числом. Массовое число и заряд ядра указываются соотв. верхним и нижним индексами слева от символа элемента, напр. liNa. Вид атомов одного элемента с определенным значением N наз. нуклидом. А. одного и того же элемента с одинаковыми Z и разными N наз. изотопами этого элемента. Различие масс изотопов мало сказывается на их хим. и физ. св-вах. Наиболее значит, отличия (изотопные эффекты) наблюдаются у изотопов водорода вследствие большой относит. разницы в массах обычного атома Н (протия), дейтерия D ( Н) и трития Т (fH). Точные значения масс А. определяют методами масс-спектрометрии. [c.214]

    КИНЕТИЧЕСКИЙ изотопный ЭФФЁКТ, изменение скорости хим, р-ции при замене в молекуле реагирующего в-ва к.-л, атома его изотопом. Мерой К. и. э. является отношение констант скорости к vi к р-ций, протекающих с участием обычных молекул и изотопно замещенных молекул соответственно. Если при переходе к более легким изотопам отношение Цк > 1, К.и.э. наз. нормальным если kfW < 1-обратным. Наибольший К.и.э. наблюдается в р-циях передачи атома водорода, протона или гидрид-иона при замене водорода (протия) Н на дейтерий D или тритий Т. [c.383]

    Применение. Л. используют в произ-ве анодов для хим. источников тока на основе неводных и твердых электролитов как компонент сплавов с Mg и А1, антифрикц. сплавов (баббитов), сплавов с Si для изготовления холодных катодов в электровакуумных приборах для раскисления, дегазации, модифицирования и рафинирования Си, медных, цинковых и никелевых сплавов с целью улучшения их структуры и повышения электрич. проводимости как катализатор полимеризации (напр., изопрена), ацетилирования и др. Жидкий Л.-теплоноситель в ядерных реакторах. Изотоп Li используют для получения трития. [c.605]

    Литий Li (лат. lithium, от греч. lithos — камень). Л. — элемент I группы 2-гс периода периодич. системы Д. И. Менделеева, п. н. 3, атомная масса 6,939. Л. был открыт в 1817 г. Достаточно широко распространен в природе (горные породы, минеральные источники, морская вода, каменный уголь, почвы, животные и растительные организмы). Л.—серебристо-белый, самый легкий металл, принадлежит к щелочным металлам. В соединениях Л. проявляет степень окисления Ь1. На воздухе тускнеет вследствие образования оксида LiaO и нитрида Li ,N. С водой реагирует менее энергично, чем другие щелочные металлы. Гидроксид Л. является сильным основанием. Л. окрашивает пламя в карминово-красный цвет. Получают Li электролизом хлорида лнтия. Л. Li имеет большое значение для ядерной энергетики его изотоп применяется для получения трития Ы -р 0 = Н -Ь jHe. Л. используют для изготовления регулирующих стержней в атомных реакторах, как теплоноситель в урановых реакторах. Л. применяют в черной и цветной металлургии, в химии (литийорганические соединения). Соединения Л. применяются Б силикатной промышленности и др. [c.77]

    В органической химии, и особенно в биохимии, эти два радиоизотопа будут дополнять друг друга, поскольку в тех случаях, когда могут проявляться либо катализируемые ферментами обменные реакции, либо различие массы протия и трития, либо различие в энергиях активации связей С — Н и С — Т, применение трития становится проблематичным. [c.663]

    Теоретческне соображения, в которые мы не имеем возможности здесь углубляться, подтверждаемые многочисленными экспериментальными данными, приводят к выводу о том, что если данный атом в переходном состоянии реакции связан менее прочно, чем в реагенте, то ama реакция с более тяжелым изотопом пойдет медленнее. Изотопы водорода имеют наибольшее относительное различие в массах атомов дейтерий (D) вдвое, а тритии (Т) втрое тяжелее протия. Вследствие этого изотопные эффекты для водорода имеют максимальную величину, их легче всего измерить и их чаще всего изучают (также и в силу особого значения водорода в органической химии если последнее утверждение вызывает у вас сомнение, то взгляните на структуру почти любого нз соединений в этой книге). [c.343]

    Величины хроматографического удерживания тесно связаны с изменением геометрической структуры и химии поверхности модифицированных сорбентов. Существенное значение имеет полярность жидкой фазы. Показано [29, 64—69], что ири модифицировании полимерных сорбентов на основе сополимеров стирола и дивинилбензола неполярными жидкими фазами (скваланом) наблюдается уменьшение удерживаемых объемов VR молекул всех классов, обуслог-ленное соответствующим уменьшением удельной поверхности сорбентов. При модифицировании указанных полимерных сорбентов полярными жидкими фазами (полиэтиленгликолем, диглицерииом, цианэтилированным пентаэрп-тритом) наблюдается уменьшение Vц для молекул углеводородов. Для полярных молекул некоторое уменьшение Vа при нанесении 0,5—5% (в некоторых случаях 10%) полярной неподвижной жидкой фазы сменяется увеличением Уя при нанесении 10—40% полярной неподвижной жидкой фазы. Это увеличение Vц зависит от полярности фазы и от особенностей электронной структуры молекул сорбатов. Оно наиболее значительно, в частности, для молекул воды, органических кислот, спиртов, нитрилов, аминов. Различие в изменении объемов удерживания веществ приводит в ряде случаев к изменению порядка их элюирования. [c.76]

    Несомненно, одним из выдающихся исследований в этой обла сти и органической химии в целом было изучение стереохимического протекания ферментативно катализируемых реакций, включающих интерконверсию метильной и метиленовой групп [25]. Две группы исследователей независимо друг от друга избрали очень сходные подходы для решения этих очень тонких стереохимических проблем [26, 27]. Были получены образцы уксусной кислоты, метильные группы которых в результате изотопного замещения Н, Н, Н) имели либо / (29), либо 5 (30) конфигурацию. Хотя почти все метильные группы в таких образцах содержат Н и Н, лишь одна метильная группа примерно на 10 молекул содержит атом трития ( Н) и, следовательно, является хиральной. При определении хиральности метильной группы в таком образце уксусной кислоты применяемая аналитическая процедура должна различать ту очень малую фракцию, которая содержит все три изотопа водорода. Поэтому аналитическая методика основана главным образом на определении изотопа трития. [c.27]

    Sjiij 29,16 Дж/(моль -К). Степень окисл. +1. Быстро тускнеет на воздухе из-за образования пленки LiN и LijO, энергично реаг. с водой, разбавл. минер, к-тами, галогенами. Получ. электролиз расплавл. смеси Li l и КС1 (или ВаСЬ) с послед, очисткой от примесей вакуумной дистилляцией, ректификацией или зонной плавкой. Примев. катализатор полимеризации анод в хим. источниках тока компонент сплавов на основе Mg и А1 жидкий Л.— рабочая среда тепловых трубок , теплоноситель в ядерных реакторах Li — в произ-ве трития. Попадая в организм, вызывает слабость, потерю аппетита, головокружение, сонливость. [c.303]

    На, НС1, органические соединения), выступая в виде положительно заряженного протона в к-тах, в виде отрицательно заряженного Н в солеобразных гидридах и участвуя в металлической связи в гидридах переходных металлов. Природный В. состоит из смеси изотопов легкого В., или протия Ш (99,98%) и тяжелого В. ( Н), или дейтерия D (0,02%) с массовыми числами соответственно 1 и 2. В небольших количествах существует в природе и получен искусственно бета-радиоактивный изотоп В. ( Н), или тритий Т с массовым числом 3, период полураспада к-рого 12,262 года. Изотопы В. сильно отличаются по своим св-вам вследствие большого различия масс, В.— самый распространенный элемент вселенной, напр, атмосфера Солнца содержит 84% В. Земная кора на 1,0% по массе и на 16 ат.% состоит из В., гл. обр. в виде воды. Почти все орган, вещества содержат В. он встречается в вулканических и др. природных газах. Впервые В. выделил англ. физик и химик Г. Кавендиш в 1766, назвав его горючим воздухом . В 1787 франц. химик А. Лавуазье определил горючий воздух как новый хим. элемент и дал ему современное название. В обычных условиях молекула В, состоит из двух атомов, связанных ковалентной связью. При высоких т-рах молекулярный В. диссоциирует на атомы (степень диссоциации при т-ре 2-500° С равна 0,0013, при [c.196]

    В приведенных выше примерах газ-носитель, содержащий радиоактивные соединения, просто проходил через окно экранированного счетчика. Такое устройство мало пригодно для двух очень полезных изотопов, применяемых в органической химии — углерода-14 и трития, так как их излучение настолько мало, что не проникает через окно счетчика. Вольфганг и Роуланд [108] преодолели это затруднение тем, что ввели метан в поток элюента, чтобы превратить его в подходящий газ, который можно было бы пропускать непосредственно через специально сконструированный пропорциональный счетчик. Легко определялась радиоактивность, не превышающая 10 —10" кюри. Конструктивное оформление счетчика допускало работу при температурах до 200° С, что делало метод полезным для определения многих высококипящих соединений. Другой пример прямого определения элюируемых соединений, меченных изотопом углерод-14, описали Лове и Мур [70], которые конденсировали в циркулирующем жидком фосфоре разделенные компоненты — раствор дифенилок-сазола в ксилоле. Сцинтилляции, вызываемые в фосфоре углеродом-14, детектировались с помощью фотоумножителя. [c.254]

    Путем алкилирования можно блокировать гидроксильные группы. Если надо, например, окислить соединение с сохранением гидроксильной группы, то ее можно защитить перед реакцией алкилированием и после проведения окисления снова расщепить простую эфирную связь. Особенно удобен для блокирования первичных гидроксильных групп хлористый трифенилметил (хлористый тритил ), который легко реагирует с первичными спиртами в пиридине. Простой трифенилметиловый эфир можно уже на холоду гидролизовать кислотой. Эта реакция, которую называют трити-лированием, часто применяется прежде всего в химии сахаров. [c.184]

    Тяжёлая вода, характеризуясь высокой теплоёмкостью, являясь апро-тонным растворителем, обладает также низким сечением захвата тепловых нейтронов дейтерием а = 0,0015 барн), которое в 200 раз меньше, чем для лёгкого изотопа водорода — протия а = 0,3 барн). Тяжёлая вода по замедляющей способности в отношении нейтронов в 3-4 раза эффективнее графита. Отмеченные обстоятельства обеспечивают использование тяжёлой воды в качестве теплоносителя и замедлителя нейтронов в энергетических и исследовательских ядерных реакторах, в ЯМР-спектроскопии, в фундаментальных научных исследованиях, связанных с изучением структуры атомного ядра. Тяжёлая вода, так же как и входящий в её состав дейтерий, широко используется при производстве большой гаммы дейтерий содержащих меченых химических соединений, широко применяющихся в медицине, биологии, в различных отраслях химии, в ядерной физике, в ЯМР и других видах спектроскопии. В виде дейтерида лития дейтерий входит в состав термоядерного оружия. По общему убеждению специалистов, в будущем дейтерий наряду с тритием станет компонентом топлива энергетических термоядерных реакторов, в первом поколении которых будет осуществлена реакция синтеза Т (В, п) Не + 17,6 МэВ. Эта реакция в сравнении с другими реакциями синтеза, предполагающими участие изотопов водорода, характеризуется наибольшим энерговыделением и, как следствие, наименьшим расходом дейтерия (100 кг/год на 1 ГВт электрической мощности). [c.210]

    Наконец, хотя химия горячих , атомов не является предметом книги, здесь уместно упомянуть, что реакция гомолитического замещения водорода у sp -гибридизованного атома углерода с ядром отдачи трития происходит с ктически полным сохранением [c.17]

    Коукс, Тобин и Эмметт первыми указали на возможность применения счетчика Гейгера, последовательно соединенного с хроматографической колонкой. Эванс и Уиллард разделяли методом газовой хроматографии соединения, меченные радиоактивным галогеном, и устанавливали радиоактивность вымываемого газа счегчиксм, чувствительным к жестким 3- и 7-лучам. В этих типах газовых хроматографов газ-носитель пропускался под счетчиком с тонкими стенками. К сожалению, два наиболее ценных для органической химии радиоизотопа имеют очень слабое излучение, которое в случае трития совсем не проникает через стенку счетчика, а в случае углерода С —проникает очень слабо. [c.50]


Библиография для Тритий в химии: [c.595]    [c.366]    [c.579]   
Смотреть страницы где упоминается термин Тритий в химии: [c.303]    [c.400]    [c.292]    [c.6]    [c.166]    [c.689]    [c.9]    [c.215]    [c.197]    [c.14]   
Химия изотопов Издание 2 (1957) -- [ c.268 , c.269 , c.375 , c.419 , c.428 ]




ПОИСК





Смотрите так же термины и статьи:

Тритий

Тритил



© 2025 chem21.info Реклама на сайте