Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Формулы химического строения также строение химическое и теория химического строения

    Важным этапом в развитии теории химического строения явились выполненные в 1863—1864 гг. работы А. М. Бутлерова. В одной из них на конкретном примере спиртов предельного ряда показывается, как можно вывести формулы изомеров, основываясь на представлениях о химическом строении. А. М. Бутлеров также предсказывал в эти годы существование двух изомерных бутанов и трех изомерных пентанов, изображая их формулами  [c.18]


    Кристаллохимическое строение — порядок расположения и природа связи атомов в пределах элементарной ячейки, их взаимное влияние друг на друга, а также распределение электронной плотности, величины эффективных зарядов. Как видно из этого определения, понятие кристаллохимического строения представляет собой превращенную форму химического строения молекул применительно к немолекулярным структурам. Вот почему теория химического строения Бутлерова — общехимическая теория, в одинаковой степени приложимая как к органическим, так и к неорганическим объектам. На рис. 6, а приведена кубическая структура стехиометрического соединения АВ. Она показывает только порядок размещения атомов в элементарной ячейке и не отображает природу межатомных связей, а также их взаимное влияние. Вообще кристаллическая структура в той мере отражает кристаллохимическое строение вещества, в какой структурная формула — химическое строение молекулы. В действительности химическое и кристаллохимическое строение — понятие динамическое, а не статическое. [c.20]

    Среди ученых, активно выступавших во второй половине XIX в. по теоретическим вопросам органической химии, был также Г. Кольбе. Совпадение взглядов Г. Кольбе по отдельным вопросам (например, единство формул) с теорией химического строения позволяло [c.26]

    В настоящем учебнике изучение новых для читателя общих теорий органической химии (гомология, изомерия и т. д.) и свойств гомеополярных соединений начинается на сравнительно простом материале ациклических соединений. Основы теории химического строения—вот что должно быть усвоено учащимися прочно и систематически. Этого преподаватель должен настойчиво добиваться, Главное на первых шагах—понимание и усвоение структурных формул и их частей (радикалов и функциональных групп), гомологических рядов и их закономерностей, а также взаимных переходов соединений различных классов. [c.12]

    По мере укрепления атомно-молекулярной теории выяснилось преимущество второго способа. Вот почему на первом международном химическом конгрессе в Карлсруэ (1860) вопрос об эквивалентах занял второстепенное место по сравнению с обсуждением понятий атом и молекула , и было принято предложение понятие об эквиваленте считать эмпирическим, не зависящим от понятий об атомах и молекулах. Отказ в конце 50-х годов от формул с эквивалентами имел огромное значение также для развития учения о валентности, а следовательно, и для создания теории химического строения. Конгресс в Карлсруэ способствовал устранению и второй помехи в установлении правильных эмпирических формул органических соединений, помехи, связанной с неудовлетворительными способами определения их молекулярных весов. [c.20]


    На основе теории химического строения, вскоре были установлены и формулы некоторых важнейших многоядерных соединений. В 1866 г. Эрленмейер, имея в виду факты, свидетельствующие о родстве в химическом отношении бензола и нафталина, высказал мысль, что молекула нафталина состоит из двух бензольных ядер, имеющих два общих углерода. В 1868 г. это предположение подтвердил прямым экспериментом К. Гребе. Таким образом была установлена формула строения нафталина. Заметим, что и в этом случае, как и в случае формулы бензола, делалось немало попыток построить формулу на основе призматической формулы бензола, а также шестиугольника с центрированными связями. Эти попытки не привели, однако, к замене формулы Эрленмейера—Гребе. [c.320]

    Вант-Гофф просил одного из своих друзей представить его работу, опубликованную на французском языке (и перевод которой составляет раздел 1 этой главы). Французскому химическому обществу. С критическими замечаниями выступил Бертло [6]. Не отрицая, что формулы Вант -Гоффа представляют интерес и даже преимущество по сравнению со структурными формулами (французский химик, как известно, был противником теории химического строения [Б I, стр. 239 и сл.]), Бертло утверждает, что полное изображение молекул химических соединений не может быть удовлетворительным, если оно не отражает вращательного и колебательного движения атомов и атомных групп в молекулах. Бертло утверждал также, что для оптически активных соединений должны существовать всегда четыре молекулярных типа правый, левый, нейтральный (комбинация правого и левого) и неактивный, как это было найдено Пастером для винных кислот. Бертло указывает, что формулы Ле Беля и Вант-Гоффа могут выразить только два (первых) типа из четырех и что, например, существование неактивной и не расщепляемой на активные молекулы яблочной кислоты, якобы подтвержденное Пастером, эти формулы вообще не предусматривают. [c.53]

    В результате объяснения явлений изомерии с позиций теории химического строения открылась возможность предсказывать число изомеров, а в некоторой степени и их свойства. Теория химического строения, пользуясь формулами строения, позволила это делать гораздо последовательнее и полнее, чем другие теории того времени. Стало возможным также установление тождества веществ одинакового состава в тех случаях, когда различие в их изученных свойствах сводилось только к разнице в реакциях их получения. [c.88]

    Н. Н. Зинин начал свои работы, когда в органической химии господствовала теория радикалов, затем, в 50-е годы, он стал горячим приверженцем теории типов после становления теории химического строения в 60-х годах он долгое время избегал пользоваться структурными формулами, ограничиваясь выражением в своих формулах лишь эмпирического состава изучавшихся им соединений. В какой-то мере это было оправдано тем, что он занимался сложными соединениями бензойного ряда, тогда как структурная формула бензола была установлена в 1865 г., а нафталина лишь в 1869 г., причем далеко не все их признавали. Перевод формул Зинина на язык структурной теории читатель найдет в примечаниях. Основное назначение примечаний — облегчить современному читателю чтение работ Н. Н. Зинина, изобилующих уже вышедшей из употребления терминологией. В примечаниях также даны необходимые справки из истории химии и библиографические отсылки к работам химиков, о которых сам Н. Н. Зинин только упоминает. Примечания к статье А. П. Бородина и А. М. Бутлерова содержат уточнения биографических сведений о Зинине, которые стало возможным сделать в результате изучения литературных, а главным образом архивных источников. [c.8]

    Теория химического строения указывает пути установления структуры молекул органических соединений. В свою очередь структурные ( р-мулы, поскольку они отображают истинное строение молекул, играют большую роль в объяснении многообразных свойств вещества. Эти формулы позволяют предсказать еще не обнаруженные и не изученные свойства, а также методы синтеза органического соединения. [c.17]

    Второй путь сохраняет для определенного химического соединеиия одну формулу. Это достигается нри помощи существенного усложнения химического алфавита за счет стрелочек, крючочков и т. д., регулирующих электронную плотность в молекуле. Таким образом строились формулы в теории электронных смещений органической химии. Впрочем, в ней же применялся и первый способ представление строения группой формул. В квантовой химии способ изображения молекулы одной формулой применяется в виде так называемых молекулярных диаграмм. Правда, в молекулярных диаграммах отсутствуют дополнения к химическому алфавиту, вроде стрелочек и крючочков, в них также отсутствуют знаки двойной и тройной связей. Молекулярные диаграммы — это структурные формулы, на которые нанесены индексы свободной валентности и порядки связей [c.95]

    Структурная теория, см. Химического строения теория Структурная химия 4/882 1/1056 2/854, 855, 1023 3/392. 393. 395. См. также Структурообразование изомерия 2/366, 368, 369, 929 3/345,579 4/1215 формулы 3/204, 205, 785 5/237, 238 Структурный анализ 4/882, 829, 883, 884 2/189-191, 1068, 1069 3/794 5/171,226.497, 874 фупповой 1/292 3/458, 794-798 5/497 [c.714]


    В сущности этими рассуждениями можно было бы и ограничиться. Классические структурные формулы дают строение отдельной химической частицы, которая или которые (катион + анион) и составляют соединение. Такая формула хорошо передает вид и число атомов и связывающих их связей. С помощью данных таблицы 1.2.2 можно на основе этой формулы оценить, какая энергия выделилась бы при образовании данного соединения из атомов в газовой фазе. Тем не менее оказалось, что значительную часть свойств органических соединений можно объяснить, только привлекая теории химической связи. Природа химической связи пока еще полностью не выяснена [1.2.2]. Ниже дается краткое изложение существенных для органической химии важнейших теоретических представлений, а также излагается качественное их применение для объяснения свойств некоторых классов соединений. В заключение разбираются несвязные и межмолекулярные взаимодействия. [c.53]

    Второй важнейший недостаток состоит в том, что нет никаких положений квантовой механики, с помощью которых можно было бы обосновать, что все ядерно-ядерные взаимодействия, относящиеся к ядрам химически несвязанных атомов (согласно классической формуле строения), следует отбрасывать в операторе Н (как это требует рассматриваемое приближение), а все ядерно-ядерные взаимодействия, относящиеся к парам химически связанных атомов (согласно классической теории), оставлять в операторе Я. Также нельзя обосновать с точки зрения квантовой механики отбрасывание всех электронно-ядерных взаимодействий, кроме тех, которые относятся к паре ядер определенной связи и одному а-электрону, для которого фа(г) принимается локализованной на данной связи. [c.81]

    Нужно рассказать учащимся о жизни замечательного русского ученого А. М. Бутлерова. Необходимо также сообщить учащимся следующие сведения. Немецкий химик Кекуле в 1857 г. высказал мнение, что углерод в органических соединениях имеет валентность, равную 4. Затем в 1858 г. Кекуле и Купер предположили, что углеродные атомы могут соединяться с другими углеродными атомами, образуя цепи. Химические формулы Купера были весьма схожи с современными. Купер был первым химиком, использовавшим линии между символами элементов для обозначения валентных связей. Однако только А. М. Бутлерову удалось суммировать все разрозненные теоретические данные и сформулировать основные положения теории химической связи в ее современном виде. Термин химическое строение был впервые применен А. М. Бутлеровым в 1861 г. Им было установлено, что необходимо изображать структуру каждого вещества одной формулой, которая должна показывать, каким образом каждый атом в молекуле связан с другими. [c.42]

    Если мы сравним наше современное представление о строении органических соединений, приняв во внимание все то, что мы можем сказать об их геометрии и электронном строении, с понятием о химическом строении в классической его формулировке, то последнее нам будет представляться как безусловно верная, но в то же время чрезвычайно упрощенная модель действительного строения химических частиц. Но если эта модель верно отражает одну из сторон объективной действительности — распределение, межатомных связей в органических соединениях, становятся понятными не только те огромные успехи, которые были достигнуты при ее помощи в структурный период, но и возможность ее применения тогда, когда нет необходимости или возможности применить более сложную модель или когда приближенное изучение какого-либо объекта должно по логике вещей предшествовать его более глубокому исследованию. Действительно, квантовохимические расчеты и вообще электронные представления можно применить к огромному больпшнству органических соединений лишь тогда, когда известно их химическое строение. Изучение геометрии молекул, особенно сложных, также в большинстве случаев невозможно без предварительного знания их химического строения. Таким образом, классическая теория химического строения остается руководителем химика-органика, а также и физика, прилагающего свои методы к органической химии, на первых шагах любой их работы. Когда химик-органик собирается получить новое вещество, он руководствуется его планом — формулой химического строения, во вторую очередь — стереохимической формулой когда же он встречается с новым веществом — природ- [c.15]

    В заключение следует кратко остановиться на вопросе о способах написания структурных формул, так как богатство идей, лежащих в основе теории химического строения Бутлерова, находилось и все еще находится в известном разрыве с теми способами отображения строения молекул, которыми располагает органическая химия. Это проявляется наиболее отчетливо при наличии в молекулах сопряженных систем связей и неподо-.иепных электронных пар, когда взаимное влияние атомов, сказывающееся особенно сильно, не находит должного отображения в обычных структурных формулах. ТЗедь ири помощи последних невозможно сколько-нибудь правильно отображать строение, а также степень и характер взаимного влияния атомов в таких соединениях, как, например, трополоны, цианины, некоторые циклические бетаины, ароматические углеводороды и их ироиз-водные. [c.101]

    В этих словах Бутлерова с полной определенностью объявлен разрыв с известным правилом, которым, как мы показали в главе I, химики руководствовались до создания теории химического строения и которое подразумевало обусловленность свойств органических соединений пространственным расположением атомов в их молекулах. Но, что самое интересное, этот разрыв объявлен только токамёст (в немецком тексте доклада соответствующее слово — vorlaufig — выделено разрядкой). Таким образом, выдвигая на первый план зависимость химических (а впоследствии и физических) свойств органических соединений от их химического строения, Бутлеров вовсе не отбрасывал возможности возвращения в будущем к отвергнутому им правилу. И действительно, определение пространственного строения молекулы и условное изображение его формулами Бутлеров не считал невозможным, в противоположность Кекуле и Кольбе. Полемизируя с ними, Бутлеров писал Я не верю, что невозможно, как это думает Кекуле, представить на плоскости положение атомов в пространстве очевидно, что это можно сделать с помощью математических формул, и надо надеяться, что законы, которые управляют образованием химических молекул, со временем найдут свое математическое выражение. Я также не верю, в отличие от Кольбе, что, признав однажды существование атомов, мы ни- [c.24]

    Мы уже упоминали о том, что одна из задач экспериментальной проверки выводов теории химического строения относительно изомерии сводилась к проверке соответствия между числом предсказываемых или допускаемых теорией изомеров и числом, найденным из опыта. В русском издании, а также в немецком переводе Введения [8, стр. 124] Бутлеров упоминает, например, о том, что в литературе имеется указание на существование трех изомеров формулы С2Н4ВГ2 вместо двух возможных согласно теории химического строения. И Бутлеров замечает Если правильность таких наблюдений подтвердится, то придется принять различие единиц сродства у многоатомных паев (многовалентных атомов.— Г. Б.) . [c.35]

    Период от А. Л. Лавуазье до возникновения теории химического строения характеризуется появлением и совершенствованием методов количественного анализа органических соединений. Установлением количественного элементного состава ряда соединений был заложен фундамент научного здания органической химии [1, стр. 41]. Лавуазье указал правильный путь, определив количества углекислоты и воды (последнюю — косвенным путем), об-разуюш иеся при полном сгорании навески данного вещ ества. Метод не был точным, но химики, работавшие в этом направлении, получили ценные результаты. Усовершенствование его Ж. Л. Гей-Люссаком, Л. Тенаром, И. Берцелиусом, Ю. Либихом дало в руки исследователей простой и надежный способ определения состава. С развитием аналитического метода существенно менялись воззрения на органические соединения. Химики все более убеждались в том, что закон кратных отношений применим также и к последним, что формулы, вошедшие в употребление при изучении минеральных веществ, применимы и к органическим [2, стр. 107]. [c.213]

    Кроме работ с изобутиленом, Бутлеров занимался в то время также теоретическим и экспериментальным исследованием воцроса о строении этилена и пропилена — вопроса, далеко еще не очевидного для химиков того времени. Хотя Бутлерову не удалось внести полной ясности в этот вопрос, по на основании его опытов можно было утверждать, что формулы со свободными единицами сродства СН2 — СНд — СНг или СН"— СНа — СНз или дажо СНз — С"--СНз менее вероятны, чем формула СНа --СН — СНз. От этой формулы к принятой затем и самим Бутлеровым формуле с двойной связью СНг = СН — СНз перейти было уже но так трудно. Можно добавить, что именно Эрленмейер — один из первых сторонников теории химического строения на Западе — предложил в 1865 г. формулы с двойными и тройными связями, хотя он не был последователен, продолжая писать также формулы с двухвалентным углеродом. К вопросу о строении непредельных углеводородов Бутлеров возвращался и позднее, о че.м будет сказано в главе XIV. [c.91]

    На месте, оставшемся после крушения теории радикалов, Жерар начал строить новое здание, подойдя к органической молекуле не со стороны ее углеродистого радикала, а как бы с противоположной точки зрения со стороны функциональной группы. Не претендуя на познание строения молекулы, опираясь лишь на известные аналогии в поведении веществ, Жерар сформулировал теорию типов, согласно которой органические соединения можно сопоставлять с простейшими неорганическими веществами (водород, хлористый водород, вода, аммиак) и рассматривать их как аналоги неорганических молекул, в которых вместо водорода помещены органические остатки. Теория типов содействовала становлению учения о валентности, поскольку стало ясным, какое число атомов или групп может быть связано с водородом, кислородом, азотом. Максимальной вершины теория типов достигла в работах Кекуле, который установил тип метана и тем самым открыл четырехвалент-ность углерода. Кекуле принадлежит также огромная заслуга в том, что он обнаружил способность атомов углерода насыщать валентность друг друга, т, е. образовывать цепи. И все же Кекуле не сделал решающего шага, необходимого для того, чтобы стать творцом принципиально новой теории последователь Жерара, он продолжал считать химическую конституцию тел непознаваемой, а свои формулы — лишь удобным способом описания некоторых превращений и аналогий веществ. [c.8]

    Теории валентности и стереохимия развивались в прошлом столетии в очень тесной связи, так что достижения одной обычно были результатом успехов другой. В 1852 г. Фрэнкленд предложил концепцию валентности и показал, что элементы при образовании соединений реагируют с определенными количествами других элементов, и эти количества теперь называют эквивалентными. Кекуле в 1858 г. и Кольбе в 1859 г. расширили представление о валентности и постулировали, что атом углерода четырехвалентен. В 1858 г. Кекуле предположил, что атомы углерода соединяются друг с другом в неограниченном числе, образуя цепи в том же году Купер ввел концепцию валентной связи и нарисовал первые структурные формулы. Термин химическое строение- ввел в 1861 г. Бутлеров, который отметил важность написания простейших формул соединений, показывающих, как соединены атомы в молекулах. Он также установил, что свойства соединений определяются их молекулярным строением, и если известно строение, то можно предсказать свойства. Однако только в 1874 г. был сделан первый основной шаг к наглядному представлению молекулярного строения в трех измерениях. В этом же году Вант-Гофф и ле Бель независимо друг от друга постулировали тетраэдрическое расположение четырех связей атома углерода и таким образом дали возможность классической органической стереохимии по крайней мере на двадцать лет опередить неорганическую стереохимию. [c.191]

    Ошибочные п спорные положения, если они имеют серьезное значение п могут ввести в заблуждение современного читателя, оговорены в примечаниях. В них приведены также более или менее пространные выдержки из других работ и рукописей Марковникова, отмечены важнейшие исправления текста и формул, разъяснена терминология, даны необходимые пояснения по существу вопроса, справки из истории химии, ссылки на работы Бутлерова и т. д. Примечания к работам раздела Теория химического строения составлены Г. В. Быковым, примечанпя к работам по химии нефти и химии алициклических соединений — А. Ф. Платэ, к речи Оэв-рзмеипая химия и русская химическая промышленность — редакторами и П. М. Лукьяновым, к остальным речам —Г. В. Быковым. [c.10]

    Если не считать этого места диссертации, то в остальном автор ее не выходит за рамки теории типов. Он применяет также формулы с эквивалентными знаками вместо атомных. Все это говорит о том, что к моменту подачш диссертации Марковникова Бутлеров еще не лришел к идеям теории химического строения. Если бы это было иначе, он познакомил бы с ними своего ученика, и они нашли бы отражение в его работе. [c.12]

    Я стр. 439). На выступление Бутлерова Меншуткин немедленно ответил большой и запальчивой статьей Данные для сравнения теории замещения и теории химического строения (ЖРХО, 1885, 17, 303—339). Меншуткин особенно протестует против этого пункта. Он пишет Бутлеров не обратил вцимания на различие наших отправных точек... Чтобы указать на различия в постановке вопросов, укажем, например, что для типика химические фор.мулы выражают только состав соединения, для последователя теории строения формулы выражают также взаимную связь атомов для типика главная исходная точка есть разбор химических превращений, тогда как представитель теории строения и здесь видит главным образом замену между атомами элементов одних связей другими (стр. 320). [c.611]

    Гьельт отмечает заслуги Кекуле и Купера в создании основ структурно-химических воззрений и вместе с тем говорит, что понятие о химическом строения, введенное Бутлеровым, было необходимо, чтобы покончить с типическими взглядами и внести ясность в создавшееся положение, в то время как сам Кекуле медлил с применением новых взглядов к химическим формулам . Одновременно Гьельт отмечает, что химическое строение по Бутлерову ничего не говорит об истинном расположении атомов в молекулах, т. е. не является тем, что Жерар, а также Кекуле (вначале) понимали под строением молекул . Согласно Гьельту, именно взгляды Бутлерова на объяснение изомерии были признаны всеми [10, с. 151, 152, 155, 170]. Удивительно противоречивую позицию занимает также и Гребе. С одной стороны, он утверждает, что в 1859 и 1860 гг. лишь Кекуле разрабатывал в своем учебнике структурную теорию , ас другой, у него можно прочитать Хотя Кекуле в 1859 г. в своем учебнике на отдельных примерах представлял наглядным сцепление атомов посредством графических формул, но по существу до 1864 г. он использовал типический способ написания и избегал при этом идти вплоть до элементов... Также и большинство других руководящих исследователей пользовались в начале 60-х годов типическим способом написания и были очень сдержанны в применении структурных формул [7, с. 234]. Из первой выдержки следует, что Гребе согласен с Кекуле и Л. Мейером, из второй с Бутлеровым и Марковниковым, хотя роль Бутлерова в истории структурной теории [c.43]

    Обратимся теперь к современной стереохимии. Рассмотрим в первую очередь ее, если можно так сказать, параметрический аспект. Методы изучения геометрии молекул дали очень много материала по межатомным расстояниям и валентным углам. В связи с этим появились феноменологические обобщения этого материала при помощи эмпирических формул, путем установления зависимостей между этими параметрами и типами и подтипами связей, а также посредством аддитивных схем, построенных на понятиях ковалентного и вандерваальсова радиуса. Те же физические методы исследования позволили установить, например, и строение наиболее устойчивых поворотных изомеров, обусловленных существованием потенциалов торможения вокруг простой С — С- связи, и даже величину этих потенциалов. С другой стороны, те же методы вместе с совокупностью данных, полученных химическими способами исследования, позволили далеко продвинуть вперед учение о конформациях циклогексана, его производных и других алициклов и подготовить почву для введения конформационного анализа, занимающегося изучением Зависимости свойств молекул от строения преимущественных конформаций. Далее, было установлено искажение требуемого классическими или даже электронными теориями копланарного строения многих типов соединений. Сюда относится отступление от копланарности алициклов — циклобутана и циклопентана — и молекул с сопряженной системой связей, причем характер такого искажения,например,в случае дифенила,бензфенантрена,гексаметилбензола и их аналогов неодинаков и обусловлен игрой различных структурных факторов. Характерной чертой, в буквальном смысле слова, современной стереохимии является также изучение пространственного строения органических радикалов и ионов, а также, хотя и в меньшей степени — здесь больше гипотез, и переходных комплексов. [c.353]


Смотреть страницы где упоминается термин Формулы химического строения также строение химическое и теория химического строения : [c.145]    [c.33]    [c.405]    [c.794]    [c.798]    [c.27]    [c.161]    [c.20]    [c.680]    [c.433]    [c.429]    [c.19]    [c.197]   
Сочинения Теоретические и экспериментальные работы по химии Том 1 (1953) -- [ c.74 , c.177 , c.223 ]




ПОИСК





Смотрите так же термины и статьи:

Строение химическое

Формулы химические

Химическая теория

Химического строения теория



© 2024 chem21.info Реклама на сайте