Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Льюис, теория образования связей

    После открытия электрона стало возможным дальнейшее развитие теории связи. Появляются ионная теория химической связи Косселя (1915) и электронная теория валентности Льюиса (1916), которая является наиболее общей и охватывает основные типы химической связи ковалентную и ионную. В последующем много было сделано в математическом описании теории валентности, но в основе представлений о химической связи лежит теория Льюиса. Существенным в указанных теориях служит то, что в образовании химической связи участвуют лишь внешние (валентные) электроны. [c.73]


    Разрабатывая теорию химического строения, Бутлеров не ставил перед собой задачу выяснения природы химической связи, справедливо считая, что химия в то время еще не была готова к решению этой задачи. Действительно, необходимой предпосылкой создания теории химической связи было выяснение строения атома. Лишь после того, как стали известны основные черты электронной структуры атомов, появилась возможность для разработки такой теории. В 1916 г. Дж. Льюис высказал предположение, что химическая связь возникает путем образования электронной пары, одновременно принадлежащей двум атомам эта идея послужила исходным пунктом для разработки современной теории ковалентной связи. В том же 1916 г. В. Коссель предположил, что при взаимодействии двух атомов один из них отдает, а другой принимает электроны при этом первый атом превращается в положительно заряженный, а второй [c.100]

    По теории Льюиса — Сиджвика химическая связь всегда осуществляется электронной парой. Эта пара становится общей для комплексообразователя и лиганда. Поэтому в случае присоединения лиганда число электронов комплексообразователя увеличивается на два, т. е. увеличивается эффективный атомный номер . Таким образом, под названием эффективный атомный номер комплексообразователя следует понимать число электронов, имеющихся у комплексообразователя в свободном состоянии, плюс число электронов, осуществляющих донорно-акцепторные связи с лигандами. Присоединение лигандов к комплексообразователю должно продолжаться до тех пор, пока последний не достигнет эффективного атомного номера , равного такому числу электронов, которое имеет ближайший благородный газ. Эта теория позволила объяснить образование ряда ковалентных комплексов. с качественной стороны. Однако она не дает сведений о количественной стороне комплексообразования и не позволяет объяснить физические и химические свойства комплексных соединений. Теория донорно-акцепторной связи в принципе является правильной и поэтому получила свое дальнейшее развитие в квантовомеханических теориях. [c.135]

    До открытия электрона невозможно было понять природу химической связи. Правда, понятие о валентности существовало уже в 1852 г. и в эти же годы существовали некоторые представления о геометрических формах молекул. Вант Гофф и Лебель установили тетраэдрическую структуру атома углерода, а Вернер создал стереохимию комплексных ионов. Очевидно, для того чтобы молекула имела определенную геометрическую форму, должны существовать какие-то связывающие силы между ее частями. В структурных формулах такую химическую связь между связанными атомами изображали черточкой. Она указывала на существование связи, но, разумеется, не давала никакого описания ее природы. Незадолго до открытия электрона Аррениус предположил существование свободных ионов. На основе этого предположения были сделаны многочисленные попытки найти объяснение силам, связывающим атомы. Хотя эти попытки были неудачными, они содействовали представлению об электрическом заряде как основе образования связи. После открытия электрона стало возможно дальнейшее развитие теории связи. В течение немногих лет, основываясь на положительно и отрицательно заряженных атомах, было предлол<ено много разных объяснений образованию связи, но почти не было попыток связать заряды атома с его строением. В 1916 г. Льюис предложил свою теорию валентности. С тех пор было много сделано в области применения математики в теории валентности, но в основе представления о химической связи лежит по-прежнему теория Льюиса. Согласно Полингу , химическая связь возникает между двумя атомами в том случае, если связывающая атомы сила настолько велика, что приводит к образованию достаточно устойчивого агрегата, чтобы обеспечить его существование в виде самостоятельной частицы. Обычно различают пять типов химической связи ионная, ковалентная, металлическая, связь, обусловленная силами Ван-дер-Ваальса, и водородная, причем три первых очень прочны. Все эти связи одинаково важны, но металлическая связь здесь не будет рассмотрена о ней можно прочесть в других источниках . [c.134]


    В начале настоящей главы мы расскажем о том, как атомы могут объединяться в молекулы. Рассмотрев различные типы связей, которые существуют в органических соединениях, мы обсудим теорию молекулярных орбиталей и применение этой теории для описания связей в некоторых малых молекулах. Затем мы перейдем к теории отталкивания электронных пар валентной оболочки и к понятию гибридизации, которые помогут нам представить образование связей в более сложных молекулах. Далее мы кратко расскажем о том, как структуры Льюиса используются для представления органических молекул. Часть этого рассказа будет посвящена расчету заряда ( формального заряда ) на атомах в молекулах. Наконец, мы остановимся на очень важной для понимания строения и реакций органических соединений теории резонанса. [c.27]

    Согласно предложенной Льюисом теории ковалентной связи, каждый атом в такой ситуации завершает образование электронной конфигурации не в результате переноса электрона, а в результате обобществления электрона с другим атомом  [c.466]

    Физический смысл представления об электронной паре, положенный Льюисом в основу теории образования связи, стал ясен только в результате развития квантовой механики, когда оказалась возможной математическая трактовка связи. [c.232]

    Теория Льюиса впервые позволила понять образование связи между одинаковыми атомами, как, например, в Н2 или р2. Два атома водорода обобществляют свои электроны, чтобы каждый из них приобрел завершенную электронную конфигурацию Не символически это можно изобразить так  [c.466]

    До развития квантовомеханических представлений (до 30-х гг. XX в.) в теории связи господствовал метод локализованных электронных пар. классифицирующий связи как ионные, ковалентные и координационные (семиполярные) (В. Коссель, Г. Льюис). Согласно теории Льюиса, элементы образуют связи до заполнения внешней оболочки и образования устойчивого октета электронов. Это правило соблюдается, однако, лишь для элементов периодической системы от бора до фтора. Кремний, фосфор и сера могут иметь на внешней оболочке до 12 электронов (5Р , РС , [c.24]

    Роль отдачи и присоединения электронов в образовании химической связи впервые рассмотрена немецким ученым Косселем в 1916 г. В том же году американским ученым Льюисом предложена теория образования химической связи с помощью электронных пар, одновременно принадлежащих двум атомам. На базе работ Косселя и Льюиса развилось современное учение о химической связи. [c.74]

    Коссель (1915) и Льюис (1916) применили атомную модель Бора к объяснению электровалентной и ковалентной теории химической связи. Валентный штрих, символизирующий в теории строения связь между атомами, стал обозначать общую пару (дублет) связующих электронов. Так была установлена электростатическая природа химической связи, причина положительной и отрицательной валентности. Однако не был еще ясен сам механизм образования связующих пар валентных электронов, суть электронного дублета. [c.257]

    Ковалентная связь. Химическая связь между атомами, осуществляемая обобществленными электронами, называется ковалентной связью. Ковалентная связь является универсальным типом химической связи. Идея об образовании химической связи с помощью пары электронов, принадлежащих обоим соединяющимся атомам, была высказана в 1916 г. американским физико-химиком Дж. Льюисом. Идея Льюиса в дальнейшем была использована при разработке теории ковалентной связи. [c.33]

    В 1916 г. Льюис и Ленгмюр выдвинули так называемую октет-ную теорию химической связи, считая, что всякая перестройка атома объясняется его стремлением принять устойчивую восьмиэлектронную оболочку атома ближайшего инертного газа. Поэтому атомы одинаковых или разных элементов объединяют свои электроны так, чтобы каждый из них имел восьмиэлектронную оболочку, содержащую обобщенные электроны. Пример графического изображения молекул простых веществ дан на рис. 29. Однако объяснения процесса объединения электронов по существу эта теория не дала. Развитие волновой механики атома явилось основой современного учения о химической связи и строения молекул. Причиной возникновения связи между атомами является уменьшение энергии двух или нескольких изолированных атомов при образовании общего, более устойчивого агрегата — молекулы. При соединении атомов между собой их орбитали с одним электроном (незаконченные) образуют общую систему орбиталей молекулы с выделением энергии, так как полученная система [c.69]

    Впервые теория ковалентных связей была предложена в 1916 г. Льюисом, Согл-асно этой теории, устойчивые молекулы из атомов получаются в том случае, когда осуществляется образование устой- [c.61]


    Для того чтобы быть основанием в соответствии с теорией Бренстеда — Лоури или Льюиса, молекула должна иметь электронную пару для образования связи. Наличие этих свободных электронов определяется в основном атомом, несущим эту пару его электроотрицательностью, размером и зарядом. Влияние этих факторов, конечно, противоположно влиянию в случае кислотности чем сильнее атом удерживает электронную пару, тем менее доступна она для образования связи. [c.35]

    Работы американского ученого Дж. Льюиса (1916 г.), высказавшего предположение, что химическая связь возникает посредством образования электронных пар, одновременно принадлежащим двум атомам, явились основой для разработки теории ковалентной связи. Согласно современным представлениям, образование общих электронных пар происходит посредством неспаренных электронов взаимодействующих атомов, причем они должны иметь антипараллельные спины. Атомы же с неспаренными электронами, имеющими параллельные спины, отталкиваются, и химическая связь между ними не возникает. [c.113]

    Дж. Льюисом (1923) была предложена более общая теория кислот и оснований, опирающаяся на строение внешних электронных оболочек атомов. По теории Льюиса кислотные и основные свойства соединений определяются их способностью принимать или отдавать пару электронов с образованием связи. [c.112]

    Согласно теории химической связи, наибольшей устойчивостью обладают внешние оболочки из двух или восьми электронов (электронные группировки благородных газов). Это и служит причиной того, что благородные газы при обычных условиях не вступают в химические реакции с другими элементами. Атомы же, имеющие на внешней оболочке менее восьми (или иногда двух) электронов, стремятся приобрести структуру благородных газов. Такая закономерность позволила В.Косселю и Г.Льюису сформулировать положение, которое является основным при рассмотрении условий образования молекулы При образовании молекулы в ходе химической реакции атомы стремятся приобрести устойчивую восьмиэлектронную (октет) или двухэлектронную (дублет) оболочки . [c.42]

    Для органических соединений была приспособлена разработанная Г. Льюисом и В. Косселем (1916) теория образования неорганических ионных соединений, т. е. принцип дублета—октета. И. Ленг-мюр (1919) ввел понятие ковалентная связь (в противопоставление ионной связи). В ковалентной связи электроны принадлежат одно- [c.25]

    Применение метода ЛКАО позволяет найти наглядное соответствие между молекулярной орбиталью У имеющейся молекулы А—В и атомными орбиталями Уд и Уд, из которых она образована. Представим себе, что два электрона, заселяющие орбиталь У, являлись валентными электронами атомов А и В, которые эти атомы и предоставляли для образования связи А—В. Очевидно, что этим электронам соответствовали АО Уд и Уд. Не менее очевидно, что при удалении атомов А и В на достаточно большое расстояние связь А—В разрывается, МО перестает существовать и оба электрона оказываются на Уд- и Рд- орбиталях. Это, хотя и весьма грубое описание, помогает лучше понять как взаимную связь атомных и молекулярных орбиталей, так и общий подход теории молекулярных орбиталей и более ранних электронных теорий (Льюис, Ленгмюр) к образованию химической связи. [c.609]

    Первые попытки подведения физического обоснования под постулаты координационной теории были предприняты Сиджвиком, который применил теорию химической связи Льюиса к комплексным соединениям. Согласно этой теории химическая связь образуется за счет обобществления Пары электронов, причем каждый из двух атомов поставляет в эту пару по одному электрону. Движущая сила образования химической связи — тенденция к созданию электронной конфигурации благородного газа, которая отличается высокой устойчивостью. Так,- образование молекулы аммиака [c.70]

    Если вместо кислот по Лаури—Бренстеду принять кислоты по теории Льюиса, то титрование ионов металла при помощи комплексообразующего реагента будет являться особым случаем равновесия кислота— основание. Нейтрализация по Льюису — это образование координационной ковалентной связи, например [c.297]

    По теории Косселя, при этом появляется отрицательный заряд у атомов азота, фосфора и т. д., так что трижды отрицательно заряженный атом приобретает возможность связывать эквивалентные количества других электроположительных атомов. Согласно представлениям Льюиса и Лангмюра, образование октета достигается в результате совместного обладания электронами, которое, по квантово-механической теории атомной связи, возможно вследствие того, что происходит насыщение спинов трех неспаренных /7-электронов, существующих по спектральным данньш в атомах элементов главной подгруппы пятой группы, спинами такого же [c.632]

    Идея об одновременном участии электронов электронных оболочек двух соседних атомов в образовании связей между атомами явилась основой так называемой октетной теории, или теории электронных пар, возникшей в результате работ Косселя, а затем Льюиса и Лангмюра. Основное положение этой теории состоит в том, что связь (простая) между атомами всегда образуется не за счет одного, а за счет двух валентных электронов, которые в результате этого становятся общими для двух атомов. При изображении электронов точками формулы молекул водорода, хлористого водорода, воды, аммиака, метана будут иметь следующий вид  [c.51]

    Теоретическое объяснение валентности и сродства ионов при образовании ими сложных химических соединений на основе электростатических представлений дал немецкий ученый Коссель в 1915—1916 гг. В те же годы американский исследователь Льюис развил теорию ковалентных связей особенно важную для объяснения образования комплексных соединений, в которых лигандами являются нейтральные молекулы. [c.277]

    Разрабатывая теорию химического строения, Бутлеров не ста-вил перед собой задачу выяснения природы химической связи, справедливо считая, что химия в то время еще не была готова к решению этой задачи. Действительно, необходимой предпосылкой создания теории химической связи было выяснение строения атома. Лишь после того, как стали известны основные черты электронной структуры атомов, появилась возможность для разработки такой теории. В 1916 г. американский физико-химик Дж. Льюис высказал предположение, что химическая связь возникает путем образования электронной пары, одновременно принадлежащей двум атомам эта идея послужила исходным пунктом для разработки современной теории ковалентной связи. В том же 1916 г. немецкий ученый В. Коссель предположил, что при взан.мо-действии двух атомов один из них отдает, а другой принимает электроны при этом первый атом превращается в положительно заряженный, а второй — в отрицательно заряженный ион взаимное электростатическое притяжение образовавшихся ионов и приводит к образованию устойчивого соединения. Дальнейшее развитие идей Косселя привело к созданию современных представлений [c.119]

    Изложенные нами представления о химической связи в ионных соединениях были впервые высказаны в 1916 г. немецким физико-химиком Косселем, а на значение для химической связи образования электронных пар было указано в том же году американским физико-химиком Льюисом. Теория ковалентной связи и пред-стзв.чения о возбужденных состояниях атомов, образующих связь, были развиты английским физиком Лондоном в 1928 г. [c.101]

    Образование ковалентной связи за счет локализованной пары электронов было постулировано еще в 1916 г. Льюисом, который разработал электронную теорию гомеополярной связи. По Льюису, химическая связь обусловлена взаимодействием двух электронов, по одному от каждого атома, т. е. два электрона, иринадлежа-щие>разным атомам, образуют гомеополярную или ковалентную связь. [c.77]

    Как известно из курса неорганической химии, согласно электростатической теории валентности (Коссель, 1916 Льюис, Лангмюр), химическая связь между атомами осуществляется путем взаимодействия электронов внешних электронных слоев аюшов — валентных электронов. В результате у атомов, образовавших молекулу, создаются устойчивые внешние электронные слои, подобные внешним слоям инертных газов. При этом возможно образование ряда типов химической связи атомов, из которых наиболее важны электро-валентная, или ионная, связь и ковалентная связь, разновидностью последней является координационная связь. [c.25]

    В 1916 г. В. Коссель выдвинул предположение, что при образовании химической связи происходит передача электронов от одного атома к другому в результате образуются заряженные частицы, которые притягиваются друг к другу. Это представление правильно отразило природу ионной (гетерополярной, электровалентной) связи, характерной для большинства неорганических соединений. Однако было ясно, что в таких молекулах, как водород Нз, хлор С1г, метан СН4, и в более сложных органических соединениях природа связи должна быть иной. Основы для понимания этого типа связи были заложены в работах Г. Льюиса и И. Ленгмюра (1913— 1920 гг.), указавших на особую роль октета электронов как устойчивой электронной оболочки и на возможность создания октета не только путем передачи, но и путем обобщения электро1Юв. От этих работ ведет свое начало представление о существовании особого типа связи (ковалентной, гомеополярной), осуществляемой парой электронов. Так валентная черточка классической теории строения получила физическое истолкование. И все же перед учеными продолжали стоять вопросы почему именно электронная пара необходима для создания ковалентной связи, почему устойчив именно октет электронов, в каком состоянии находятся связующие электроны Поиски ответа на эти вопросы с помощью зародившейся в середине 20-х годов квантовой механики явились одним из направлений дальнейшего развития теории химической связи. Для судьбы электронных представлений в органической химии важнейшее значение имело и развитие в другом направлении объяснение с новых позиций богатого экспериментального материала органической химии предсказание новых, еще неизвестных экспериментальных фактов. [c.38]

    Дри сближении же атомов водорода, у которых спины электронов параллелыш ХиЛ >. проявляется только отталкивание. Следовательно, церекрывание атомных орбиталей не происходит и молекула не образуется. Химическую связь, образованную в результате обобщения (перекрывания) электронной плотности, взаимодействующих атомов называется ковалентной (по Льюису ковалентная связь образуется за счет обобп1е-ния электронов). В настоящее время существует два подхода, используемые для объяснения ковалентной связи метод валентных схем (ВС) и метод молекулярных орбиталей (МО). Представление Льюиса о связи посредством пары электронов находит квантово-механическое выражение в теории валентных связей. Как и МО, теория валентных связей является приближенным методом. Однако ее исходные положения [c.13]

    Теорию ковалентной связи предложил в 1916 г. американский ученый Джйльбер Льюис. Согласно этой теории, причиной образования ковалентной связи является ноз-никновение общих электронных пар между взаимодействующими атомами. [c.94]

    Из доквантовых представлений следует остановиться на теории образования, химической связи Льюиса, В 1916 г. он развил представления, в которых химическая связь рассматривалась как результат образования общей электронной пары между двумя атомами. В общую электронную пару каладый атом вносит по одному электрону. Этот тип связи получил название ковалентной. Ниже показаны схемы образования химических связей в молекулах Нг, Рг, КНз и СН4. Электроны, принадлежащие различным атомам, обозначены различными символами  [c.91]

    Теория валентности Льюиса различает два основных типа химической связи ионную и ковалентную. Считают, что причиной образования химической связи является спаривание электронов с образованием стабильных октетов, соответствующих электронной конфигурации благородных газов. Эта идея о спаривании электронов оказала существенное влияние на первые успешные в количественном отношении теории химической связи, которые в сущности и были описанием спаривания электронов на языке волновой механики. Как бз дет видно в дальнейшем, сваривание электронов тесно связано со свойством электрона, которое в 1923 г. было еще неизвестно, а именно с его спином. Прежде чем рассматривать совремепиую точку зрения на развитые Льюисом концепции, необходимо обсудить развитие новых идей в физике в период с 1900 по 1930 г. [c.13]

    Со времени возникновения теории Льюиса—Лэнгмюра было немало сделано для дальнейшей равработки теории химической связи с применением квантовомеханических представлений. Вместе с тем теория Льюиса получила широкие приложения при объяснении образования различных соединений особенно благодаря исследованиям И. Лэнгмюра. В 1923 г. Н. В. Сиджвик (1873—1952), профессор Оксфордского университета в Англии, на основе положений теории Льюиса—Лэнгмюра объяснил природу химических связей в комплексных соединениях. [c.224]

    В отдельных случаях связь образуется вечетным числом электронов, например (Н-Н)+. Теори Льюиса позволяет формально изобразить структуры многочисленных молекул, но не дает физического объяснения причин образования связи парой электронов, насыщаемости и пространственной направленности связи. [c.412]

    Существование подобных молекул объясняется разработанной Льюисом (1916) теорией ковалентной связи. В основе теории Льюиса, как и теории Косселя, лежит предположение о том, что наиболее устойчива оболочка инертных газов. Но, по Льюису, такая группировка достигается не путем перехода электронов от одних атомов к другим, а путем образования одной или нескольких электронных пар, которые становятся общими для двух соеди-няюнщхся атомов, т. е. одновременно входят в состав электронных оболочек обоих атомов. На образование электронной пары идет по одному электрону от каждого атома. [c.56]

    Связь в органических соединениях осуществляется также при помощи электронов. Однако в силу того, что валентные электроны атома углерода удерживаются прочно, здесь не наблюдается полного перехода электронов из одного атома в другой, а имеет место сдвиг валентного электрона в сторону другого атома таким образом, что электрическое поле электрона теперь заходит в этот чужой атом, не оставляя, однако, в то же время и своего коренного атома (Беркенгейм, 1916). Таким образом, электрон этот становится общим для двух связанных друг с другом атомов. Одним из важных дальнейших этапов развития электронных представлений в области органической химии явилась теория Льюиса, утверждавшая, что связь в органических соединениях осуществляется не одним, а парой электронов, которые становятся общими для связанных друг с другом атомов, В соответствии с изложенными представлениями образование метанг может быть изображено следующей схемой  [c.34]

    Около десяти лет назад было высказано предположение, что заметные отличия в константах равновесия и скоростях следует ожидать лишь для тех реакций изотопных молекул, в которых происходит разрыв или образование связи с атомом изотопа, хотя формально из теории изотопных эффектов этого и не следует. Однако Льюис и Бузер [6], а также Шай-нер [7], изучавшие различные реакции сольволиза, обнаружили, что введение атома дейтерия в р-положение к отщепляющейся группе может сказываться на скорости реакции. Такое влияние изотопов на константы скорости и равновесия реакций, протекающих без образования или разрыва связи с атомом изотопа, было пазваво вторичным изотопным эффектом. Само название указывает на то, что вторичные эффекты очень малы по величине. В настоящей статье будут рассмотрены лишь вторичные изотопные эффекты изотопов водорода, хотя незначительные вторичные эффекты наблюдались и для более тяжелых атомов [8]. [c.95]

    В разд. 5.2 было отмечено, что под влиянием работ Вернера и ею современников, а также представлений Льюиса и Сиджвика об образовании химической связи за счет пары электронов возникла мысль о том, что лиганд представляет собой группу атомов, способную отдавать пару электронов иону металла или какому-либо другому акцептору, в результате чего образуется так называемая координационная связь. Эти представления о характере химической связи в комплексных соединениях в дальнейшем были развиты Полингом и сформулированы в виде теории валентных связей. Теория Полинга пользовалась широкой популярностью среди химиков в период 30—40-х годов. Однако в 50-е годы в дополнение к ней получила распространение теория поля лигандов. Эта теория была разработана физиками, главным образом Ван Флеком и его учениками, в период 30—40-х годов и вновь открыта химиками-теоретиками в начале 50-х годов. Теория поля лигандов в ее современном виде является развитием чисто электростатических представлений, впервые сформулированных в 1929 г. Г. Бете в виде так называемой теории кристаллического поля. [c.48]


Смотреть страницы где упоминается термин Льюис, теория образования связей: [c.198]    [c.229]    [c.163]    [c.325]    [c.29]    [c.11]   
Теоретические основы органической химии (1973) -- [ c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Льюис

Льюиса образование

Связь Льюиса

Связь теория

Теория Льюиса



© 2025 chem21.info Реклама на сайте