Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гиббса теплота

    Аддитивными методами можно рассчитывать как термодинамические величины (например, критические постоянные, мольную теплоемкость, энтальпию, энтропию, свободную энергию образования Гиббса, теплоту испарения, поверхностное натяжение, мольный объем, плотность и т. д.), так и молекулярные коэффициенты (коэффициенты вязкости, теплопроводности, диффузии). [c.84]


    При изучении характера поверхности порошкообразных или пористых материалов измерение угла смачивания 0 затруднительно, поэтому используют другие характеристики процесса смачивания. Например, можно количественно определить калориметрическим методом теплоту смачивания, которая выделяется при погружении твердого вещества в жидкость. Теплоту смачивания обычно относят к единице поверхности или массы смачиваемого вещества и выражают в Дж/м или Дж/кг. Смачивание твердой поверхности жидкостью приводит к образованию новой фазовой границы твердое тело — жидкость вместо исходной границы раздела твердое тело — воздух и сопровождается уменьшением поверхностной энергии Гиббса. Теплота смачивания равна изменению полной поверхностной энергии 1 кг твердого вещества при перенесении его из воздуха в жидкость и связана с изменением поверхностной энергии уравнением Гиббса—Гельмгольца  [c.314]

    Зависимость константы равновесия диссоциации от температуры описывается уравнением изобары Вант-Гоффа. По температурной зависимости константы диссоциации можно рассчитать ряд термодинамических функций процесса диссоциации энергию Гиббса, теплоту диссоциации, энтропию диссоциации (см. с. 70, 71). Эти зависимости можно использовать для изучения растворимости малорастворимых соединений. Зависимость растворимости от температуры выражается уравнением [c.277]

    Вместе с убыванием энтальпии поверхности уменьшается и ее энергия Гиббса. Теплота смачивания АМс всегда отрицательна, т. е. при смачивании теплота выделяется. Интегральная теплота смачивания— теплота, выделяющаяся при нанесении какого-то количества жидкости С на чистую поверхность. С увеличением количества жидкости, взаимодействующей с поверхностью, возрастает интегральная теплота смачивания. Последняя связана с дифференциальной теплотой смачивания уравнением [c.290]

    Обобщен обширный материал по термодинамическим свойствам веществ, относящихся к различным классам кислородсодержащих органических соединений. Даны критические обзоры литературных данных и таблицы рекомендуемых значений. Приводятся величины теплоемкости, энтальпии, энтропии, энергии Гиббса, теплот фазовых превращений, теплот образования и термодинамических констант для твердого, жидкого и газообразного состояния вещества. [c.304]


    При бесконечном разбавлении обычно подразумевают, что эксперимент проводится в области Генри, где наблюдаются только межмолекулярные взаимодействия сорбат — неподвижная фаза, а взаимодействием молекул сорбата между собой можно пренебречь [6, 69]. В этом случае хроматографические пики являются симметричными, а время удерживания не зависит от количества введенного вещества. С термодинамическими характеристиками системы сорбат — сорбент (стандартные энергии Гиббса, теплоты и энтропии сорбции) непосредственно связан исправленный объем удерживания Уд, который равен произведению исправленного времени удерживания на объемную скорость газа-носителя Ес  [c.309]

    Гиббс ввел понятие свободная энергия . (Необходимость введения этого понятия была обусловлена тем, что измерить изменение величины свободной энергии легче, чем измерить изменение энтропии.) Любая химическая реакция сопровождается изменением свободной энергии системы. Изменение теплосодержания строго соответствует уменьшению свободной энергии и увеличению энтропии. Поскольку обычно самопроизвольные реакции сопровождаются выделением теплоты, то теплосодержание системы при протекании таких реакций уменьшается. Однако в некоторых, хотя и считанных случаях изменение свободной энергии и энтропии бывает таким, что теплосодержание системы увеличивается, и тогда самопроизвольная реакция идет с поглощением энергии. [c.113]

    Скорость, с которой меняется свободная энергия при изменении концентрации отдельного вещества, называется химическим потенциалом системы, и Гиббсу удалось показать, что именно химический потенциал является движущей силой химических реакций. Химическая реакция идет самопроизвольно от точки с высоким химическим потенциалом к точке с низким химическим потенциалом, подобно тому как теплота самопроизвольно передается от точки с высокой температурой к точке с низкой температурой. [c.113]

    Уравнения (21) и (22) известны как уравнения Гиббса — Гельмгольца часто это название применяется и к уравнениям (15) — (18). Уравнения Гиббса — Гельмгольца связывают между собой изменение энергии системы с количеством выделенной или поглощенной ею теплоты. Вместо (17) и (18), учитывая (12) и (13), можно написать [c.16]

    Поскольку теплота и энергия сольватации связаны между собой соотношением Гиббса — Гельмгольца [c.54]

    В табл. 17-4 приведены значения стандартной свободной энергии для реакции диссоциации SO3 при различных температурах, вычисленные по экспериментальным данным о константе диссоциации. По мере повышения температуры стандартное изменение свободной энергии для рассматриваемой реакции становится все более отрицательным, а константа равновесия возрастает, и для установления равновесия реакция должна все более смешаться вправо. Приведенные в этой таблице данные позволяют определить теплоту и энтропию реакции. Для того чтобы понять, как это делается, разделим левую и правую части уравнения (17-13) на Т, при этом получится соотношение AG°/T = АН°/Т — AS°, называемое уравнением Гиббса-Гельмгольца. Если воспользоваться этим уравнением и построить график зависимости величины AG°/T от 1/7 то тангенс угла наклона графика к оси абсцисс в каждой точке графика дает значение АН° при соответствуюшей температуре. [c.110]

    Растворимость хлорида калия в воде при 20°С равна 347 г л а при 100 С возрастает до 802 г -л Вычислите произведение растворимости, ПР, для КС1 при каждой из этих температур. При помощи графика Гиббса-Гельмгольца, подобного изображенному на рис. 17-3, вычислите теплоту растворения КС1. Является экзотермическим или эндотермическим процесс растворения КС1  [c.117]

    Для определения термодинамических параметров алкенов разумнее использовать ограниченное число справочных данных, на основе которых по определенным правилам можно было бы рассчитать характеристики алкена заданного строения. С этой целью нами на основе известных термодинамических величин [I—3] определены поправки — изменения теплоемкости ср, энтропии S , теплоты образования Aff и изобарно-изотермического потенциала (энергии Гиббса) при образовании AG для следующих изменений в молекуле олефина  [c.7]

    В термодинамических таблицах приводят термодинамические функции веществ, измеренные или рассчитанные при стандартном давлении (р°= 101325 Па) теплоемкость Ср°, энтропию 5°, энтальпию (теплоту) образования АН°ов, энтальпию (теплоту) сгорания АН°, энергию Гиббса образования АО°об, логарифм константы равновесия образования lg/ °poб. По этим величинам находят стандартную энергию Гиббса исследуемой реакции А0°, а по ней константу равновесия Кр° и равновесный состав  [c.64]

    А. Реакции в растворе обычно протекают без существенного-изменения объема (Аи л 0). Поэтому ДЯ = А / +рАи А / и величины теплот реакций при постоянных давлении (АЯ ) и объеме (А1 ) практически совпадают. По той же причине совпадают изменения энергий Гиббса и Гельмгольца. [c.80]


    Для реакций в реальных растворах расчеты теплот АЯ, изменений энтропии А5, энергии Гиббса АС можно выполнять так же, как и для идеальных растворов или газовых систем (см. выще), поскольку соотношения для расчета ДЯ, Д5, ДС получены без использования закона Рауля. Подчеркнем, что и для реальных растворов можно определить ДЯ, Д5, ДС по термодинамическим величинам для компонентов реагирующей смеси как для газового, так и для жидкого состояния. Для реальных растворов справедливы следующие условия. [c.85]

    Нужно подчеркнуть, что для всех компонентов реагирующей смеси (газообразных, жидких, твердых) можно определить стандартные термодинамические функции и по ним — стандартные теплоту реакции АН°, изменение энтропии Д5° и изменение энергий Гиббса А0° для гетерогенной реакции. Как правило, необходимые величины имеются в стандартных термодинамических таблицах. Возникает, однако, задача использования величины Д0° для расчета равновесных составов. [c.87]

    Расчеты для теплоты реакции лучше согласуются с рассматриваемой концепцией, чем для изменения энергии Гиббса. Это связывают с тем, что изменения энтропии не столь постоянны при присоединении мономерных единиц, как изменения теплот. Однако можно для достаточно хороших оценок термодинамических характеристик газофазной полимеризации использовать соотношения [c.252]

    В работе [77] рекомендовано для определения термодинамических функций алкенов различного строения использовать поправки, учитывающие изменение термодинамических функций при переходе от н-алкена-1 к алкену заданной структуры. Эти поправки учитывают изменения теплоемкости С°р, энтропии 5°, теплоты образования АН°об и стандартной энергии Гиббса образования газообразного алкена А0°об = —ЯТ 1п К°р об для следующих изменений в молекуле  [c.386]

    Теплота смешения, которая выражается через избыточную свободную энергию Гиббса как [c.119]

    Внутренняя энергия Функция Гиббса Функция Гельмгольца Отношение теплоемкостей Теплота парообразования Теплоемкость вдоль линии фазового перехода Степень сухости Коэффициент теплопроводности [c.185]

    Наряду с ранее публиковавшимися сводными таблицами данных, по теплотам образования и теплотам сгорания различных соединений впервые появляются сводные таблицы со значениями энтропии различных веществ, энергии образования Гиббса, констант равновесия в реакциях образования и впервые получают широкое применение стандартные условия и стандартные состояния веществ. Вместе с тем совершенствуются методы расчета химических равновесий. [c.19]

    Справочник Термодинамические свойства индивидуальных веществ , выпущенный в 1962 г. коллективом авторов (Л. В. Гурвич, Г. А. Хачкурузов, В. А. Медведев и др.) под редакцией В. П. Глушко содержит данные о теплотах образования (АЯ ) при 298,15 и при О К, теплоемкости (Ср), энтальпии (Яг — Яо), энтропии (5г), функции энергии Гиббса (Сг — Яо)/Г, функции /г при базисной тем-, пературе 293,15 К, lgK реакций образования или диссоциации при [c.75]

    Определите температуру кипения хлорбензола при 266,Q Па, если его нормальная температура кипения 405,4 К, а при 5,332 10 Па он кипит при 382,2 К. Вычислите теплоту испарения, изменение энтропии, внутренней энергии, энергий Гиббса и Гельмгольца при испарении 1 моль хлорбензола при нормальной температуре кипения. [c.153]

    Определите давление насыщенного пара, теплоту испарения, изменение энтро ши, энергии Гиббса и ДСф.п при испарении 1 моль фреона при 298 К. [c.153]

    ЛНТ — энтальпия смешения /-го компонента, называемая дифференциальной теплотой растворения. Энергию Гиббса смешения определяют [c.164]

    Эти неравенства показывают, что работа необратимого процесса ниже максимально полезной работы. Снижение величины полезной работы в необратимом процессе связано с расходом некоторой части энергии Гиббса непроизводительно на теплоту, которая рассеивается во внешнюю среду. Самопроизвольные процессы характеризуются убылью энергии Гиббса во времени, что определяется неравенством  [c.120]

    При равновесии Д( г° = 0. Это условие выполняется, когда температура будет равна 369 К. Тогда из уравнения (11.49) получим /=—0,292. Изменение энергии Гиббса при Г=298 К будет равно +56,63 Дж/моль, теплота этой реакции равна  [c.220]

    Понятие о степени свободы вероятности и скорректированной с ее помощью величине х можно было бы ввести и раньше (с самого начала главы), однако мы преднамеренно сделали это только сейчас. Расхождение между значениями к и 5 только тЬгда значительно, когда п — относительно малое число п < 30). Мы надеемся, что читатель понимает, что степени свободы, которые вводятся в различные области знания, в различные и независимые друг от друга разделы науки (механику, учение о теплоте, теорию вероятностей и т. д.) — степени свободы Гиббса, обнаруживают общность, как об этом говорилось в гл. 4. [c.258]

    Диф4)еренциальную теплоту адсорбции можно получить отсюда по формуле Гиббса—Гельмгольца [c.511]

    Определить суммарную теплоемкость калориметрической системы, как это оппсано в работе 2, пи. 2—16. 3. Вычислить удельную теилоту растворения карбамида в воде. 4. Вычислить дифференциальную теплоту растворения карбамида в воде по уравнению Гиббса—Дюгема [c.150]

    Расчет изменения энергии Гиббса, константы равновесия и предельной температуры полимеризации. Если теплоты и изменения энтропии при полимеризации установлены, то расчет изменения энергии Гиббса или Гельмгольца, константы равиО" весия и предельной температуры выполняется по известным, соотношениям (АОм=АЯм—ГАХм, АО°и= —ЯТ п К, 7 пр= = АЯм/А5м) и не вызывает затруднений. Нужно лишь подчеркнуть, что для высокомолекулярной полимеризации константа равновесия есть отношение констант скоростей роста полимерной цепи и деполимеризации  [c.265]

    В случае полярных растворителей методики расчета перераспределения компонентов между фазами дансе для отдельных конкретных систем пока не разработаны. Менсду тем использование энергии Гиббса в уравнении параметра растворимости удобно в том отношении, что в изобарно-изотермический потенциал входят лишь две функции— тепловая и энтропийная. Не требуется отдельно искать математическую зависимость степени ассоциации молекул растворителя при разных температурах процесса, так как этот эффект учитывается изменением теплоты смешения. [c.247]

    Справочник У. Д. Верятина и др. Термодинамические свойства неорганических веществ под редакцией А. П. Зефирова содержит для большого числа веществ значения теплот образования (АЯ , 293), энтропии (Згэз), параметров фазовых переходов, коэффициентов уравнений, выражающих температурную зависимость теплоемкости, давления насыщенного пара и изменения энергии Гиббса при реакциях образования (АСг . г), а также термодинамические свойства металлических сплавов. Данные приведены из разных источников. Наряду с этим приводятся характеристики кристаллической структуры веществ. Все величины, зависящие от единиц измерения энергии, выражены параллельно через джоули и термохимические калории.  [c.76]

    Справочник Коуфлин (1953 г.) по теплотам и энергиям Гиббса образования окислов существенно отличается от названных раннее. Он содержит значения только этих двух функций образования, рассчитанные автором с широким использованием различных эмпирических методов оценки, и охватывает 170 различных окислов, в основном в пределах от 298,15 до 2000 К. В названных работах Келли, Ма и Коуфлин наряду с таблицами приводятся и интерполяционные уравнения. [c.79]

    Справочник Глесснера 2 содержит сводку данных о теплоте образования (АЯ/.зэз), энтропии (5298), энергии Гиббса образования (ДОд 29а)и коэффициентах уравнений, выражающих температурную зависимость ДО/, г до 2500 К, а также термодинамические параметры фазовых переходов для окислов, фторидов и хлоридов разных элементов. [c.79]

    Вышел справочник Уикса и Блока содержащий данные о термодинамических свойствах 65 элементов, их окислов, галогенидов, карбидов и нитридов при обычных и высоких температурах. В справочнике приведены уравнения для расчета или непосредственно значения теплоемкости (С ), энтропии (5г), высокотемпературной составляющей энтальпии [Нт — Яадз), теплоты образования [АН].т) и энергии Гиббса образования (ДО/, г) при разных температурах, а также параметры фазовых переходов. Вышел русский перевод этого справочника .  [c.79]

    Для р< акции, протекающей обратимо в гальваническом элементе, дано урапнение зависимости э. д. с. от температуры. При заданной температуре Т вычислите э, д. с. Е, изменение энергии Гиббса АС, изменение Э1тальпии АН, изменение энтропии А5, изменение энергии Гельмгольца ДЛ и теплоту Q, выделяющуюся или поглощающуюся в этом процессе. Расчет дроизводите для 1 моль реагирующего вещества. [c.317]

    Расчет равновесных (теоретических) выходов целевых и побочных продуктов реакции, определение термодинамической устойчивости веществ и направления само- и несамопроизволь-ного протекания реакций в изучаемых условиях является одним из важнейших этапов при исследовании новых химических реакций, при проектировании промышленных химических установок, при подборе оптимальных по составу катализаторов и разработке математических моделей для управления химическими процессами. Равновесный состав смеси химических веществ можно определить экспериментально или рассчитать по термическим данным с привлечением данных по теплоемкостям, теплотам и энтропиям веществ, а также по величинам изменения энергий Гельмгольца и Гиббса. [c.206]

    Стирол в промышленности получают дегидрированием этилбензола в присутствии 2п—Ре оксидного катализатора при Г=833К. Рассчитать тепловой эффект реакции и изменение энергии Гиббса и определить константу равновесия. Рассчитать равновесные выходы стирола при разбавлении смеси водяным паром в отношении воды ЭБ=1, 3, 5, 7, 10, 20, 30 и Р=0,01 0,1 0,5 и 1,0 атм, теплоту реакции с учетом равновесных выходов прн разных давлениях и выявить оптимальное разбавление смеси водяным паром, если коэффициенты в уравнении для расчета прибыли таковы < 1 = 1, 2—0,008 и Сз=0,03. [c.282]


Смотреть страницы где упоминается термин Гиббса теплота: [c.387]    [c.401]    [c.545]    [c.273]    [c.233]    [c.242]    [c.93]    [c.156]    [c.169]   
Адсорбционная газовая и жидкостная хроматография (1979) -- [ c.55 , c.57 , c.58 , c.68 , c.70 ]




ПОИСК





Смотрите так же термины и статьи:

Гиббс

Гиббсит

Приведенная энергия Гиббса, приращение энтальпии и стандартная f теплота образования (при Т 0 К) некоторых веществ в состоянии идеального газа



© 2025 chem21.info Реклама на сайте