Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры атомов оптические электронные

    Из табл. 2 видно, что ато- МЫ с двумя оптическими электронами (Ва, Са, 5г, Mg, Ве) могут иметь М = или Л = 3 (уровень расщепляется на три). Спектры атомов с тремя оптиче-ски.мн электронами могут иметь М = 2 или М = 4. [c.18]

    Спектр атома любого элемента существенно отличается от спектра его иона в связи с изменением числа оптических электронов при ионизации. Поэтому в таблицах спектральных линий рядом с символом химического элемента приводят римскую цифру, по которой можно судить о кратности ионизации атома. Цифра I относится к нейтральному атому (например, Nal относится к Na), цифра П — к однократно ионизированному атому (NaH относится к Na+) и т. д. [c.12]


    Являясь одним из наиболее тяжелых элементов, уран отличается очень сложным рентгеновским спектром. Нейтральный атом урана в своем наиболее низком энергетическом состоянии имеет целиком законченные электронные оболочки К (2 электрона), L (8 электронов), М (18 электронов), N (32 электрона) и частично заполненные оболочки О (21 электрон), Р (9 электронов) и р (2 электрона). Распределение шести наружных электронов по группам 5/ (Оу1—уп), 6с1(Р1у-у) и 75 (РО соответствует, вероятно, конфигурации (см. стр. 49). Эти шесть электронов являются валентными электронами урана в результате их возбуждения получается оптический спектр. Остальные 86 электронов представляют собой внутренние электроны , и их возбуждение дает рентгеновский спектр, который, таким образом, должен состоять из серий К, I, М, М, О и Р. Однако линий, принадлежащих последним двум ультрамягким сериям, до сих пор еще не обнаружено. [c.14]

    Отмечено [102, 103] сходство между спектрами поглощения соединений редкоземельных элементов с их резкими линиями и спектрами соединений урана спектры некоторых соединений урана также имеют узкие отчетливые полосы поглощения. Можно считать, что этот факт указывает на наличие таких состояний, в которых роль оптических электронов играют хорошо экранированные /-электроны. Влияние анионов на спектр катиона также сходно для солей редкоземельных элементов и солей урана. Однако спектры, о которых идет речь, являются спектрами ионов U(IH), U(IV), а многовалентные ионы имеют большую тенденцию к распределению электронов без образования незаполненных внутренних оболочек, чем нейтральные атомы. Поэтому предположение о том, что у нейтрального атома урана имеется два /-электрона и что от тория начинается ряд торидов , у элементов которого достраивается 5/-оболочка, не было обоснованным. Надежные сведения по этому вопросу получены в последнее время путем вышеописанного анализа спектра. Этот анализ показал, что свободный ион U+ и свободный нейтральный атом урана имеют следующие основные термы  [c.49]

    Атом урана с его 92 электронами обладает очень богатым оптическим спектром, который состоит из многих тысяч переходов (спектральных линий), связывающих несколько сотен уровней. Потенциал ионизации атома урана равен 6,2 эВ. Во многих предложенных схемах должно быть использовано более двух длин волн, чтобы достигнуть энергии 6,2 эВ, необходимой для ионизации атомов урана. Общая селективность многоступенчатых процессов выше, чем двухступенчатого, поскольку она равна произведению селективностей, достигаемых на отдельных ступенях. [c.265]


    Молекулы АТ обладают некоторой гибкостью, т. е. способностью к конформационным превращениям. С помощью поляризованной люминесценции комплексов IgG с люминесцирующими красителями были установлены времена вращательной релаксации т, оказавшиеся порядка 50 не (см. 5.5). Эти значения соответствуют броуновскому вращательному движению не всей молекулы белка, но малых ее участков, т. е. указывают на гибкость молекулы белка. По-видимому, домены обладают подвижностью. Взаимодействие гаптена с АТ приводит к заметному увеличению X, что указывает на изменение конформации АТ. Было установлено, что при образовании комплекса АТ—А Г конформация АГ также меняется. Данные оптических измерений подтверждаются исследованиями спектров электронного парамагнитного резонанса антител, содержащих парамагнитные метки. [c.126]

    Из изложенной выше теории в полном согласии с опытом следует, что для возбуждения рентгеновского излучения, соответствующего какой-нибудь линии, недостаточно в отличие от периферийных оптических спектров сообщения атому извне такого количества энергии, которое бы отвечало частоте данной линии, но требуется большая энергия. Так, для возбуждения ЛГ -линии с частотой недостаточно сообщить энергию 8ц = ЛГц, так как эта энергия была. бы в состоянии перенести электрон только до 1,-уровня, между тем как для возникновения этого излучения электрон необходимо поднять по крайней мере до периферии атома. Если требующуюся для этого энергию обозначить через 8 , а напряжение трубки, которое необходимо приложить, чтобы сообщить отдельным частицам катодных лучей энергию — через то эту энергию можно определить из соотношения [c.259]

    В то время как для более тяжелых элементов вплоть до лития потенциалы возбуждения соответствуют только границам абсорбции (следовательно, тем частотам излучения, которые атом может абсорбировать, но которые он, согласно изложенному в предыдущем разделе, не может излучать сш), примыкающие абсорбционные границы спектров гелия и водорода (расположенные в ультрафиолетовой части спектра) соответствуют не только частотам абсорбируемого, "но также и частотам испускаемого излучения. Следовательно, у этих элементов непосредственно вращающиеся вокруг атомных ядер электроны не находятся уже во внутренней сфере они больше не окружены дру- гимн электронами, находящимися на более высоких уровнях энергии. Таким образом, для этих двух атомов зависимость Мозли, которая здесь опять замечательным образом оправдывается, распространяется и на область оптических спектров. [c.261]

    Деформируемость электронной оболочки сказывается и на оптических свойствах веществ. Поглощение тех или иных лучей связано с возбуждением внешних электронов. Электронные переходы отвечают тем меньшим энергиям, чем более поляризуема частица. Если последняя устойчива, то возбуждение требует больших энергий им отвечают ультрафиолетовые лучи. Если атом (ион) легко поляризуется, то возбуждение возникает при небольших энергетических затратах им отвечает видимая часть спектра. Вещество оказывается окрашенным. Поэтому наряду с веществами, цветность которых обусловлена окраской содержащегося в них иона (ионов), существуют окрашенные соединения, образованные бесцветными ионами в таких случаях цветность соединения является результатом межионного взаимодействия. [c.220]

    Возбудить атом можно, лишь сообщив ему извне дополнительную энергию. Возбуждение ядра требует большой энергии, порядка 10 эВ, что соответствует квантам у-излучения. В условиях получения оптических и рентгеновских спектров энергия атомных ядер остается неизменной и внутренняя энергия атомов зависит только от энергетических состояний электронов. [c.25]

    Рентгеновские спектры отличаются от оптических не только механизмом образования. Они проще по своей структуре и почти не изменяются, даже если атом элемента входит в химическое соединение. Это ценное качество позволяет широко использовать лучи Рентгена и их спектры для расшифровки внутренней структуры атомов и строения веществ. Рентгеновский спектр атома полностью выявляет его внутреннюю электронную структуру. Поэтому рентгенография является мощным современным средством установления строения веществ. [c.126]

    Линии в характеристическом спектре, подобно линиям в оптическом, группируются в серии. Если рентгеновские лучи образовались в результате выбивания из ближайшей к атому электронной оболочки, то образуется /С-серия, в следующей ва ней L-серия и так далее. [c.53]

    В отличие от оптических спектров, рентгеновские спектры мало зависят от того, находится ли атом в свободном состоянии или входит в какое-либо химическое соединение. Это объясняется тем, что оптические спектры связаны в основном с внешними (валентными) электронами. При образовании химических соединений состояния этих электронов изменяются, что сказывается на оптических спектрах. Поскольку характеристическое рентгеновское излучение связано с переходами электронов между внутренними оболочками атомов, то они оказываются мало подверженными влиянию химических связей. Как и оптические, рентгеновские спектры состоят из отдельных групп линий, различающихся по длинам волн, и называемых сериями. Серии рентгеновских спектров в отличие от оптических сравнительно просты. [c.8]


    В предыдущей главе были рассмотрены свойства захваченных электронов. Имея в виду изучить впоследствии свойства молекулярных радикалов, можно сделать следующий шаг и перейти к рассмотрению спектров ЭПР атомов в различных матрицах. Значение данной главы состоит не только в том, что в ней устанавливается связь между моделями электрона, захваченного потенциальной ямой, и электрона, движущегося в поле нескольких ядер, но также и в том, что в ней показано, как в ряде случаев можно обнаружить и объяснить влияние окружения. Это связано с тем, что часто известны параметры, характеризующие свободный атом. Тогда можно судить о возмущениях, вносимых матрицей, по разности значений параметров для свободных атомов и атомов, внедренных в матрицу. В данной главе рассмотрены в основном эффекты, обусловленные наличием матрицы, и лишь вскользь затрагивается очень важный вопрос о самих атомах в междоузлиях и их связи с полупроводниковыми свойствами. Результаты, полученные для атомов в газовой фазе, подробно не излагаются, так как они не дают более полной информации о структуре по сравнению с уже имеющимися данными оптической спектроскопии. Достаточно сказать, что этим методом можно очень точно измерить параметры спектра. Кроме того, изучение спектров ЭПР атомов в газовой фазе представляет интерес с точки зрения исследования хода реакций и идентификации различных атомов, присутствующих в малых концентрациях. [c.96]

    Достаточные количества энергии ( 10 ккал моль" и более) вызывают электронные переходы. Соответствующие им сигналы (как и в оптической атомной спектроскопии) появляются в области видимого (12 500— 25 ООО см- ) и ультрафиолетового (25 000—50 ООО см" ) излучений. Если молекуле сообщается достаточно большое количество энергии, то она может диссоциировать или молекула и атом могут ионизироваться. Диссоциация и ионизация проявляются в спектре в виде характерных непрерывных участков.  [c.179]

    Наиболее сложные спектры у элементов, в атомах которых идет достройка й- и /-оболочек (лантаноиды, актиноиды, ( -элементы с недостроенной -оболочкой). Такие атомы содержат значительное число оптических электронов, и их уровни характеризуются высокой мулыиплетностью. Например, атом железа геРе 15 252р 3 2 р (1Ч5 имеет восемь оптических электронов и мультиплет- [c.37]

    Энергии термов находят, изучая атомные спектры. Последние возникают, когда атом, поглощая или испуская квант энергии, переходит из одного стационарного состояния в другое. Как правило, оптические спектры атома связаны с переходом одного из электронов внешнего слоя. Допустимы переходы, для которых выполняются условия, называемые правилами отбора [c.42]

    Феноменологический подход применим к электронным спектрам мнокомпонентных, молекулярных и атомарных веществ. Принцип квазилинейной связи выполняется в ато.марных,. молекулярных, сложных высоко.мо-леку.цярных систе.мах. Квази.чинейная функция, наиболее точно описывающая зависи.мость свойств и оптических характеристик, имеет вид кубической зависимости, без исключения. Полученные законо.мерности реко.мендуются для прогнозирования свойств органических вегцеств, вычисляя их по соответствующим уравнениям. [c.101]

    Деформируемость электронной оболочки сказывается и на оптических свойствах веществ. Поглощение лучей связано с возбуждением внешних электронов. Электронные переходы характеризуются тем меньшими, энергиями, чем более поляризуема частица. Если частица малополяризуема, возбуждение тр ует больших энергий, им отвечают ультрафиолетовые лучи. Если атом (ион) легко поляризуется, то возбуждение требует квантов небольшой энергии им отвечает видимая часть спектра. В этом случае вещество оказывается окрашенным. Таким образом, наряду с веществами, цвет которых обусловлен окраской содержащихся в них ионов, существуют окрашенные соединения, образованные бесцветными ионами, окраска таких соединений является результатом межионногх) взаимодействия. Чем больше поляризация и поляризующее действие ионов, тем больше оснований ждать появления окраски. Очевидно также, что с усилением этих эффектов окраска должна углублят1ч я. [c.122]

    Спектры атомов. При сообщении атому энергии изменяется по крайней мере одно квантовое число. Появляющиеся при этом сигналы относятся к видимой (800—200 нм) и рентгеновской (1 —10 А) областям спектра. В рентгеновской области спектра для аналитических целей используют сигналы, связанные с изменением главного квантового числа п. Интересные для аналитиков оптические спектры связаны в основном с изменением побочного квантового числа I (наряду с изменением и или т ). Ввиду большего разнообразия переходов оптические спектры имеют значительно большее число линий, чем рентгеновские. Если вырождение спинового момента электрона /Пз снимается внешним магнитным полем, то становятся возможными энергетические переходы с изменением т , дающие сигналы в микроволновой области (10 —10 Гц). Эти сигналы образуют спектр электронного парамагнитного резонанса (ЭПР). Атомное ядро подобно электрону может обладать собственным вращательным моменгом, ядерным спином. Воздействие внешнего магнитного поля также снимает его вырождение, что делает возможным энергетические переходы в области радиочастот (10 —10 Гц). Получающиеся при этом спектры называют спектрами ядерного магнитного резонанса (ЯМР). Оба метода, ЭПР и ЯМР, относят к резонансной магнитной спектроскопии [c.177]

    Третья модель была разработана в 1904 г. японским физиком X. Нагаокой (1865—1950). Вкратце сущность идеи Нагаоки заключалась в том, что атом он представлял в виде массивного положительного заряда, вокруг которого по окружности через определенные интервалы располагаются электроны в некоторой аналогии с кольцами Сатурна. Он предположил, что малые колебания электронов относительно положений равновесия вызывают оптическое излучение, и получил качественное и частично даже количественное согласие с наблюдаемыми свойствами оптических спектров. [c.45]

    Энергии связи электронов 5/-, 7з-оболочек, участвующих в оптических переходах атомов урана и других тяжелых элементов, имеют очень близкие значения, а сам атом урана обладает низким ионизационным потенциалом. Спектр урана, как и других трансурановых элементов, является чрезвычайно сложным. В нем вместе с линиями нейтральных атомов присутствуют линии однократноио-низированных атомов, поэтому спектр урана представляет собо11 сплошную сетку линий, расположенных на фоне интенсивного непрерывного спектра. В связи с этим обычные методы спектрального анализа не могут применяться для успешного определения малых количеств примесей в уране. [c.358]

    Электрошшю аномалии выражаются в различном характере изменения параметров зонного спектра (и определяемых ими свойств — например, оптических) в области разбавленных (по одному из компонентов) ТР и при их сравнимой концентрации, рис. 2.14. Предполагается [102, 104], что наличие электронных аномалий в ТР следует ожидать в тех случаях, когда в пределе разбавленного твердого раствора примесь, замещающая исходный атом, будет формировать глубокий примесный центр (см. выше). В противных случаях изменения электронных свойств будут следовать регулярной зависимости (2.3). [c.61]

    К началу XX столетия на основании изучения оптических спектров элементов, природы катодных и каналовых лучей, явлений электролиза, термо- и фотоэлектронной эмиссий и самопроизвольного радиоактивного распада атомов тяжелых элементов было установлено, что атом является сложной системой, состоящей из положительно заряжещюго ядра и движущихся электронов, составляющих в совокупности его электронную оболочку. [c.37]

    МОЖНО судить о характере дефекта. Так, изучение /-центров в кристаллах галогенидов щелочных металлов методом ЭПР показывает, что их электронная волновая функция является линейной комбинацией 5- и р-орбиталей электронов иона натрия при некотором перекрывании с волновой функцией иона галогена. Подобные исследования были проведены на простых полупроводниках при изучении различных дефектов, в частности кластеров, образующихся при взаимодействии дефектов (см. гл. 7). Было показано, что ЭПР —это уникальный метод идентификации структуры сложных дефектных центров. Например, при облучении кремния частицами с высокой энергией образуются дефекты, одним из которых, как показал анализ спектров ЭПР, оказался атом примеси кислорода, расположенный рядом с вакансией. Метод ЭПР применяется для детального исследования электронной структуры центров, например парамагнитного иона Мп + в инертной матрице А12О3, и позволяет объяснить некоторые важные оптические и магнитные свойства твердого тела. [c.84]

    Деформируемость электронной оболочки сказывается и на оптических свойствах веществ. Поглощение лучей связано с возбуждением внешних электронов. Электронные переходы отвечают тем меньшим энергиям, чем более поляризуема частица. Если частица малополяризуема, то возбуждение требует больших энергий им отвечают ультрафиолетовые лучи. Если атом (ион) легко поляризуется, то возбуждение требует квантов небольшой энергии им отвечает видимая часть спектра. В этом случае вещество оказывается окрашенным. Таким образом, наряду с веществами, цвет которых обусловлен окраской содержащихся в них ионов, существуют окрашенные соединения, образованные бесцветными ионами, окраска которых является результатом межионного взаимодействия. Чем больше поляризация и поляризующее действие ионов, тем больше оснований ждать появления окраски. Очевидно также, что с усилением этих эффектов окраска должна углубляться. Эти положения можно подтвердить множеством примеров. Ограничимся некоторыми нз них, причем предоставим читателю возможность самому объяснить каждый. РЫг окрашен, ala бесцветен среди сульфидов металлов встречается гораздо больше окрашенных соединений, чем среди оксидов в ряду Ni b — NiBrs — Nib окраска соли углубляется если бромид данного элемента не окрашен, то вряд ли будет окрашен его хлорид молено назвать ряд веществ, приобретающих окраску при нагревании. [c.115]

    Возмущающий электростатический потенциал электрического квадрупольного момента ядра нарушает сферическую симметрию замкнутых оболочек и наводит в них конечный квадрупольный момент. Взаимодействие валентного электрона с этим индуцированным квадрупольным моментом приводит к изменению константы квадрупольного взаимодействия. Такой же эффект производит валентный электрон, создавая тем самым конечный градиент поля на ядре. Эти два дополнительных непрямых взаимодействия можно учесть путем умножения e Qg . на (1 —уоо). При этом дается выражением (5-5) уоо — так называемый фактор Штернхаймера для свободного атома. Если уоо > О, то эта величина выражает экранирующий эффект внутренней оболочки электронов, если Уоо < О, то антиэкранирующий. В приложении I перечислены известные значения уоо для атомов и ионов. Учет фактора Штернхаймера особенно важен для ионных кристаллов, в которых градиент электрического поля вызывается, в основном, зарядами соседних ионов, так как для р-электронов и зарядов, внешних по отношению к атому, фактор Штернхаймера различен. В молекулярных кристаллах с ковалентными связями влияние 7 0 на градиент электрического поля в месте атомного ядра в молекуле (создаваемого в основном р-электронами) и в свободном атоме предполагается одним и тем же [2]. Поскольку можно определять из данных спектроскопии атомных пучков и оптических спектров, то особой поправки на (1 — уоо) при вычислениях и теоретических оценках в этих случаях не требуется. [c.70]

    Нейтральный атом радона имеет электронную конфигурацию 5 / ° 65 6р . Оптический спектр радона похож на спектры атомов других благородных газов. Первый потенциал ионизации радона равен 10,745 эв. До недавнего времени (1962 г.) радон и другие благородные газы считались инертными, т. е. не образующими химических соединений. Однако ученым Англии и США удалось получить соединение ксенона с гексафторидом платины Хе(Р1Рб)2 и тетрафторид ксенона Хер4 [55]. При нагревании микроколичеств радона в смеси со фтором при 400° С в никелевом сосуде в течение 30 мин получается соединение радона со фтором, состав которого не установлен. Соединение весьма устойчиво и перегоняется в вакууме 10 —10 " мм рт. ст. при 230— 250° С. Полученное соединение можно восстановить до радона водородом при 500° С [55]. [c.217]

    В той же мере неудовлетворительным является предложение определять псевдокислоту на основе эффекта изменения электронной структуры (или смещения заряда), которому она подвергается при ионизации и которое проявляется в оптических спектрах. В нитропарафинах это изменение проявляется довольно резко и состоит в смещении заряда от атома углерода к атому кислорода. Однако изменения этого типа, как сейчас полагают, в разной степени присущи широкому классу кислотно-основных систем. Например, нитрамид (ЫНгКОг) образует анион, который можно записать либо как КН- МОа, либо как [c.21]

    Позднее было доказано [4], что в у-облученном ЫаЫО , содержащем примесь AgN0.2, действительно образуется радикал N0.,, спектр ЭПР которого представляет собой триплет. Интересно, что выход НОг при радиолизе продукта, не содержащего AgN02, приблизительно в 10 раз меньше. При нагревании электрон, захваченный в дефекте кристаллической решетки, высвобождается и снова захватывается радикалом -МОз, который вновь превращается в ион N02. Исследуя нитрат калия К МОд, те же авторы [5] пришли к заключению, что образование радикала N02 происходит в две стадии. Сначала под действием у-излучения от аниона N0, отрывается атом кислорода и образуется нон N02. Затем происходит отрыв электрона и образование радикала ЫОз. Было также установлено, что при облучении К НОз и К МОд образуется ион N0,, который идентифицирован как по спектру ЭПР, так и по спектру оптического поглощения (максимум при л — 3550 А). При больших дозах (3- 10 зз-г ) образуются радикалы Характерная для N02 полоса поглощения в области X = 35004-8000 А наблюдается и в спектре кристалла. Радикал N02, кзк и ион N01 исчезает при облучении светом с л = 3300 - 5200 А. Следовательно, при этом происходит переход электрона от иона N0 к радикалу N02- [c.287]

    Электроны, достигнув отмеченной критической энергии, выбивают электроны из внутренней оболочки атома. На место выбитого электрона из какого-либо дальнего слоя переходит электрон с бмьшей энергией, чем выбитый. При этом переходе выделяется энергия, определяющаяся разностью энергетических уровней до и после перехода, в виде квантов рентгеновского излучения. Поэтому каждый элемент дает определенный, присущий только ему спектр. Рентгеновский характеристический спектр является в связи с этим чисто атомным свойством. Он возникает независимо от того, находится ли атом, излучающий рентгеновские лучи, в свободном состоянии или входит в химическое соединение. Этим рентгеновские спектры отличаются от оптических, где один и тот же элемент дает различные спектры в атомном или молекулярном состоянии. Эта разница обусловливается тем, что [c.52]

    Особенно детально изучены спектральные закономерности люминесценции щелочно-галоидных кристаллов, активированных таллием Т1+ и другими ионами, имеющими конфигурацию электронов 5 , например 1п+, РЬ +, В1 +. Поскольку такой же электронной конфигурацией обладает нейтральный атом ртути, то эти ионы часто называют ртутеподобными [72, 23]. Оптические переходы в них обычно происходят между основным 5о-уровнем, отвечающим конфигурации электронов 5 , и Я-уровпями, соответствующими р-конфигурации. В спектрах излучения при достаточно высоких температурах обычно преобладает полоса, обусловленная переходом 5о. [c.210]


Смотреть страницы где упоминается термин Спектры атомов оптические электронные: [c.222]    [c.9]    [c.16]    [c.223]    [c.115]    [c.211]    [c.179]    [c.37]    [c.444]    [c.7]    [c.301]    [c.100]    [c.475]    [c.108]   
Руководство по аналитической химии (1975) -- [ c.228 ]




ПОИСК





Смотрите так же термины и статьи:

Оптические спектры,

Спектры атомов оптические

Спектры оптические электронные

Спектры электронные

Электрон в атомах



© 2025 chem21.info Реклама на сайте