Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иридий структура

    К восьмой группе элементов периодической системы относятся три триады железа, рутения и осмия. Номер группы обычно отвечает максимальной валентности элементов по кислороду. На этом базировались попытки К. Горалевича (1929—1932 гг.) получить восьмивалентные соединения железа, никеля и кобальта. Как известно, эти попытки окончились неудачно. Позже Б. Ф. Ормонт, исходя из современных представлений о нормальной и возбужденной валентности, показал, что для этих элементов невозможно достичь валентности, равной восьми. Из девяти элементов этой группы только два элемента рутений и осмий проявляют эту высокую валентность. Поэтому в ряде вариантов периодической системы в последнее время номер 8В над этой группой не ставят. Все рассматриваемые элементы относятся к а -типу, но электронные структуры оболочек атомов железа, кобальта и никеля различны. Если с точки зрения строения атома аналогия -элементов в каждой подгруппе определяется суммарным числом внешних 5- и -электронов слоя, соседнего с внешним, то истинными аналогами следует считать подгруппы элементов, расположенные по вертикали. Таким образом, в 8В-гру-ппе элементов три подгруппы железо-рутений—осмий кобальт—родий—иридий и никель—палладий—платина. Свойства этих элементов и их соединений и будут нами рассматриваться по данным подгруппам. [c.345]


    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]

    Общая характеристика платиноидов. Структуры валентных электронных оболочек платиновых элементов отличаются значительным разнообразием вследствие возможности проскока и5-электронов на (п—1) -орбиталь. В силу малого различия энергий соответствующих орбиталей относительные устойчивости разных электронных конфигураций сравнимы. Легкость взаимных переходов электронов между различными уровнями обеспечивает разнообразие валентных состояний и степеней окисления. Поэтому нередко проскоки -электронов не связаны с достижением стабильной ( -конфигурации, что характерно для элементов подгруппы меди. Нормальное заполнение валентных орбиталей (без проскоков электрона) характерно лишь для осмия и иридия, электронные конфигурации которых аналогичны таковым для железа и кобальта. Палладий — единственный элемент в периодической системе, который в нормальном состоянии не имеет электронов на з-оболочке. У платины стабильна -конфигурация, что также не наблюдается у других элементов периодической системы. Некоторые характеристики элементов и простых веществ семейства платиноидов приведены ниже. [c.416]


    Два внешних электронных слоя атома иридия содержат слой О — 15 и слой Р — 2 электрона. Представить схему электронной структуры этих слоев. [c.50]

    Термическая стабильность дисперсной структуры платины увеличивается не только в среде воздуха, но и водорода, при введении в алюмоплатиновый катализатор добавок рения, олова и кадмия [175]. Положительный эффект получен также и при добавлении иридия, но он имеет место только в среде водорода [185]. [c.83]

    Электронные структуры железа, кобальта, никеля и платиновых металлов указаны в табл. 19.1 эти структуры соответствуют энергетическим уровням, приведенным на рис. 5.6. Следует отметить, что каждый из рассматриваемых атомов имеет два внешних электрона в случае железа, кобальта и никеля это электроны на 45-орбитали, для рутения, родия и палладия — на 5 -орбитали для осмия, иридия и платины — на б5-орбитали. Следующая внутренняя оболочка у этих элементов не завершена Зй-орбиталь (или соответственно 4d- и 5d- [c.543]

    Простые вещества. В компактном состоянии рутений — серовато-белый, осмий — серебристо-белый металлы с плотнейшей гексагональной структурой, твердые, хрупкие и тугоплавкие. Химически чистый родий имеет вид светло-серого порошка. Сплавленный, он напоминает алюминий. Дисперсный порошок родия черного цвета называется родиевой чернью. При сплавлении родия с цинком и дальнейшей обработке сплава соляной кислотой получают взрывчатый родий. Причиной взрыва является каталитическое свойство родия взрывать смесь адсорбированных газов (водорода и кислорода). Коллоидальный родий, полученный диспергированием чистого металла в воде или восстановлением из растворов его солей, обладает еш,е большими каталитическими свойствами, чем родиевая чернь. Компактный иридий — серебристо-белый металл, подобно родию имеет структуру гранецентрированного куба, очс иь твердый и хрупкий. Платина и палладий — серовато-белые блестящие мягкие металлы. Платина легко прокатывается и вытягивается в проволоку, палладий поддается ковке, обладает большей вязкостью, чем платина. [c.403]

    Иридий — серебристо-белый, очень твердый и довольно ломкий металл с явно кристаллической структурой. Как видно из табл. 112, он обладает очень высокими температурами плавления и кипения. [c.369]

    Как известно, элементы подгруппы железа и платины в свою очередь подразделяются на металлы подгруппы железа (Ре, О), N1) и металлы подгруппы платины (Ки, КЬ, Н(1, Оз, 1г, Р1), которые по сходству их свойств делятся на три диады рутений и ось-мий, родий и иридий, палладий и платина. Структуры внешних электронных оболочек атомов металлов подгруппы железа и платины приведены в табл. 20. Там же содержится ряд других данных, представляющих интерес для качественной характеристики строения расплавленных металлов этой подгруппы. Так как все эти металлы тугоплавки, строение и свойства их расплавов пока еще слабо изучены. [c.193]

    К первому классу относятся поверхности большинства металлических кристаллов. Ко второму классу принадлежат поверхности полупроводников, диэлектриков и некоторых металлов (золото, иридий, платина). При этом поверхностная структура многих полупроводников может изменяться при изменении температуры. Например, кремний в процессе нагрева дважды изменяет поверхностную структуру — при 700 и 800° С. Такое поведение поверхности может быть объяснено релаксацией атомов у поверхности в направлении, перпендикулярном к плоскости поверхности [6] у некоторых металлов поверхностная релаксация атомов может привести к фазовому превращению в поверхностном слое. Например, на грани (100) золота, иридия, платины в поверхностном слое происходит превращение г. ц. к. в г. п. у. [c.446]

    Как и ожидалось из сравнения металлохимических свойств титана и металлов группы платины, в этих системах существуют первичные твердые растворы и интерметаллические соединения. Количество соединений при переходе от рутения к родию и палладию и от осмия к иридию и платине увеличивается. В составе, структуре и свойствах этих соединений при определенном сходстве наблюдается и существенное отличие (рис. 6). Для сравнения рассмотрим также соединения, образующиеся в сплавах титана с железом, кобальтом и никелем [3, 17]. (Диаграммы состояния двойных систем титана с железом, кобальтом и никелем на рис. 6 приведены из справочника Р. П. Эллиота Структуры двойных сплавов , системы с платиной — по данным [22 ). [c.187]

    Известные органические реагенты, предложенные для определения иридия, содержат в своей структуре различные по строению и природе атомов функционально-аналитические группы (ФАГ)  [c.35]

    Особенностью металлов подгруппы платины является то, что они обладают максимальным процентом d-характера металлической связи и незаполненными d-орбиталями. Поэтому металлы семейства платины парамагнитны наиболее парамагнитен палладий, наименее — осмий. Другая важная особенность этих металлов состоит в том, что как гексагональные структуры рутения и осмия, так и плотные кубические решетки родия, палладия, иридия и платины имеют на поверхности треугольные плоскости, удобные геометрически для сорбции шестичленных углеводородных циклов. Кроме того, наименьшие расстояния между атомами этих метал- [c.169]


    Для металлов семейства платины общим являются тугоплавкость, высокие температуры кипения, малый атомный объем, составляющий от 1/7 до 1/5 атомного объема калия. Особенность кристаллической структуры этих металлов состоит в том, что как гексагональные структуры рутения, осмия, так и плотнейшие кубические решетки родия, палладия, иридия и платины имеют на поверхности треугольные плоскости, геометрически удобные для сорбции шестичленных углеводородных циклов. Кроме того, наименьшие межатомные расстояния между атомами этих металлов приблизительно соответствуют расстоянию между атомами Б ненасыщенных связях. Другой важной особенностью металлов платиновой подгруппы является то, что они обладают максимальным процентом -характера металлической связи (решетка их необычайно прочна) и что их d-зона не заполнена. Поэтому металлы семейства платины парамагнитны наиболее парамагнитен палладий, наименее—осмий. [c.999]

    Образование (Ме Agm) поверхностных структур и падение активности при катализе перекиси водорода, когда варьируемым компонентом берется серебро, а также образование поверхностных бертоллидов и рост активности в системах с рутением, родием, осмием, иридием и рением согласуются с принятым механизмом катализа перекиси водорода металлами [19—22]. [c.64]

    Структура комплексов трехвалентного иридия охарактеризована также недостаточно. Выводы о строении тех или иных веществ в большинстве случаев делаются в результате химических превращений комплексов, причем есть предположение, что изомеризация во всех рассматриваемых случаях отсутствует. Так было установлено строение ряда сульфитаммиачных комплексов. Например, для комплексов состава На7[1г(50з)4С12] и К4[1т(50з)2С1з] на основании координационной теории можно ожидать образования следующих изомеров  [c.160]

    Металлохимия. Черная металлургия. Чугуны и стали. Как и подавляющее большинство переходных металлов, железо, кобальт и никель являются хорошими растворителями в твердом состоянии. Они образуют непрерывные твердые растворы не только между собой, но и с другими переходными металлами, обладающими подходящими металлохимическимн свойствами и изоморфной структурой. Так, а-железо образует неограниченные твердые растворы с V и Сг (ОЦК), у-железо и -кобальт (ГЦК) с 7-марганцем (ГЦК), родием, иридием, палладием и платиной. Последнее подтверждает определершую аналогию между всеми элементами VniB-группы. -Кобальт (ГПУ) непрерывно взаимно растворим с изоморфными Re, Ru, Os. Никель обнаруживает металлохимическое сходство с Y-Fe и - o, но в отличие от них образует непрерывные твердые растворы с металлами 1В-группы — медью и золотом. Таким образом, элементы триады железа служат своеобразным связующим звеном между металлами VHB- и 1В-групп. [c.413]

    Платиновые металлы. Общая характеристика платиноидов. Структуры валентных электронных оболочек платиновых э.пементов отличаются значительным разнообразием вследствие возможности проскока ns-электронов на (и — 1)валентных орбиталей (без проскоков. электрона) характерно лишь для осмия и иридия. [c.495]

    Таким образом, все металлы УП1 группы образуют с титаном фазы на основе эквиатомных соединений с кристаллической структурой типа СзС1. Эта структура в системах с железом, рутением, осмием и кобальтом устойчива вплоть до комнатной температуры во всей области гомогенности этих фаз. В системах с родием и иридием существует узкий интервал ее устойчивого состояния при сравнительно низких температурах за счет стабилизации избыточным, по сравнению с эквиатомным составом, содержанием титана. В сплавах близких к эквиатомному, а в системах с никелем, палладием и платиной — во всей области гомогенности — с понижением температуры [c.187]

    В водном растворе разряд карбокснлатов возможен лишь на анодах из гладкой платины и иридия или из углерода. Если структура кислоты такова, что может образоваться продукт сочетания, то для получения его с оптимальным выходом следует выбрать анод нз платины, иридия или, в некоторых случаях, из стеклоуглерода. На аноде из графита или пористого уь-зерода многие карбоксилаты дают продукты, источником которых почти исключительно служит ион карбения [19—23]. Однако описаны и исключения нз этого правила [24, 25]. В неводиых растворителях роль материала электрода пе так велика, хотя и в этих случаях использование угольных анодов способствует механизму с участием иона карбения, а использование платины —радикальному механизму [19, 23]. Диоксид свинца, по-видимому, ведет себя при окислении ацетата аналогично углероду [26], но необходимы дополнительные эксперименты для того, чтобы выявить, насколько общим является это поведение [27]. Реакция Кольбе может Сыть проведена на стеклоуглероде и спеченном угле [26, 28] Для пиролитического углерода распределение продуктов зависит от тою, проводится ли реакция на гранях илн плоскостях электрода [28] это подтверждает, что раА.1ичия связаны с адсорбционными свойствами. [c.426]

    Данные экоперимента показывают, что действие рутения, осмия, родия, иридия и рения в ряду варьируемых компонентов специфично. Оно связано с электронным строением атомов и различием в таких важных характеристиках для сг- элементов, как валентные состояния, атомные радиусы, потенциалы ионизации, сродство к электрону, электроотрицательности, энергии атомизации (см. табл.). Это отражается на распределении электронной плотности между атомами образующихся структур, их опин-валентной насыщенности, а следовательно, и активности. Так, в случае (Р<1+Еи)-, (РсЦ-Оз)- и (Р(1 + 1г)-катали-заторов (рис. 5, 6) при гидрировании имеет место значительное расхождение аддитивной и наблюдаемой активностей. Интересно, что в этих условиях (Ки)т— (Ой) г-Структуры неактивны, а (1г)т — малоактивны. Особенно заметен рост активности для палладий-рутениевых, лалладий-осмиевых и палладий-иридиевых катализаторов в интервале [c.65]

    Химическое изучение реакционной способности С70 пока затруднено, поскольку выделение С70 всфечает значительные трудности по сравнению с Сбо- О химии высших фуллеренов известно пока также недостаточно. Наиболее информативной является работа Болча , в которой описаны синтез и структура иридиевого ко.иплекса Сщ. Успешный анализ структуры кристаллов дал полную информацию о длинах связей и углах. Геометрия координационного узла иридия одинакова в комплексах не только [c.141]

    Свойства. Твердый, довольно хрупкий металл. Структура типа меди (а= 3,839 А), /пл 2443°С. При прокаливании на воздухе >700°С образует летучий 1гОз, так что при окислительном обжиге масса иридия и его сплавов уменьшается. Очень устойчив к действию минеральных кислот, царской водки и анодному окислению. При более высоких температурах реагирует с хлором, особенно в присутствии хлоридов щелочных металлов, с образованием более или менее растворимых комплексов—[Ir U] и [Ir UF . [c.1835]

    Свойства. Волокнистые, похожие на вату, тесно переплетенные между собой дихроичные иголки медно-коричневого цвета, в течение короткого времени устойчивые на воздухе. Не растворяется практически во всех обычных органических растворителях. ИК (нуйол) 2135 (пл.), 2080 (с.), 2050 (пл.), 2020 (пл.) [v( O)] 320 (ср.) [v(Ir I)] см-. Соединение имеет колончатую структуру с квадратно-плоскостной координацией у атома иридия (Ir—Ir) = = 2,844(1) А [3]. [c.2072]

    Большое значение имеют исследования структуры поверхности катализаторов. Согласно теории А. А. Баландина катализ происходит только при структурном и энергетическом соответствии реагирующих молекул данному катализатору (1929 г.). А. А. Баландин предсказал, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. Шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей, валентный угол которых близок к тетраэдрическому углу. Этими условиями обладают п-алладий, платина, иридий, родий, осмий. Предсказание А. А. Баландина полностью подтвердилось. Другие металлы, имеющие такой же атомный радиус, но иную структуру или такую же структуру, но другой атомный радиус, не проявили каталитической активности в упомянутых реакциях. [c.54]

    За исключением некоторых благородных металлов группы Vni (рутения, родия, палладия, иридия и платины) все переходные металлы образуют ряд карбидов и нитридов [43], состав которых соответствует эмпирическим правилам, постулированным Хаагом в 1931 г. Если отношение радиусов атомов неметалла и металла менее 0,59, то образованные соединения имеют простую, с внутренними промежутками структуру [1] в противном случае образуются более сложные структуры. В добавление к таким бинарным соединениям синтезировано несколько полиметаллических карбидов и нитридов, среди которых особый интерес вызывают октаэдрические фазы Новотны [43]. Они содержат два или три переходных металла и представляют собой сложные структуры, многие из которых родственны оксидным структурам, обсуждаемым ранее. Пе-эовскиты карбида и нитрида (см. табл. 9-1), например PtaZn 1], по-видимому, изменяют свойства исходных металлов в объеме, что в свою очередь должно отражаться на химии поверхности данных материалов. [c.122]

    Можно ожидать, что поверхностный атом, имея меньшее число соседей, чем объемный, должен связываться менее прочно, и это подтверждают данные температурной зависимости рефлексов ДМЭ и мёссбауэровские спектры высокодисперсных металлов. Для граней (100), (110) и (111) металлов с г. ц. к. и о. ц. к. структурами (N1, Р(1, Pt, Ag, Си, 1г, РЬ, ДУ, Мо, Сг, ЫЬ) отношение дебаевских температур поверхностных и объемных атомов составляет 0,4—0,85 [1, 2], а среднеквадратичные амплитуды колебаний, перпендикулярных поверхности, в 1,2—2,5 раза больше амплитуд колебаний объемных атомов. Из-за ангармоничности атомных колебаний увеличение их амплитуды приводит к растяжению поверхностных слоев в направлении, перпендикулярном поверхности. Степень растяжения, однако, относительно мала не превышает 5% [3], а более вероятно 1—2% [4]. В то же время для грани (110) алюминия (непереходного металла), по-видимому, наблюдается сжатие поверхностных слоев, достигающее 10—15% [5]. Причина такого поведения алюминия неизвестна. Для трех металлов — золота, платины и иридия — методом ДМЭ обнаружена перестройка поверхностных слоев, стабильная нри комнатной температуре и соответствующая, по-видимому, отсутствию на поверхности примесей [6, 7]. После очистки ионной бомбардировкой и отжига грани (100) этих металлов дают картины ДМЭ, которые можно объяснить перестройкой самого внешнего слоя металлических атомов. На грани (100) Р1 наблюдаются дифракционные картины от двух структур внешнего слоя—(1X2) и (1x5), а на гранях (100) Ли и 1г — от одной структуры (1x5). Структура (1X5), несомненно, возникает от совмещения решетки грани (100) подложки и решетки внешнего слоя, представляющей собой несколько сжатую структуру С (1x2). Обе структуры наблю- [c.110]

    Во втором доказательстве делокализации основываются на сверхтонкой структуре спектров лигандов. Если, как в предыдущем примере, вблизи атомов хлора л-электроны находятся в недостаточном количестве, то у каждого лиганда появится некоторый результирующий спин. При этом возникнет взаимодействие между спином этой дырки и спином ядра атома хлора, приводящее к возникновению сверхтонкой структуры уровней, наложенной на основную сверхтонкую структуру атома иридия. В результате расщифровки спектра оказалось [133], что дырка приблизительно на 74% находится на атоме 1г и на 26% — на атоме С1. Эти данные отличаются от полученных из оценки [c.314]

    Изучены катализаторы, содержащие Pi и ur, на различных носителях (Г, SlOq , активированных углях. Катализаторы, полученные пропиткой окисей алюминия раствором платинохлористоводородной. шслоты, наряду с высокодисперсными частицами металла содержат комплекс, включаюи1ий в себя ион металла. Комплекс образуется на стадии активации катализатора перед восстановлением в результате взаиюдействия ионов платины или иридия с поверхностными дефектами шпинельной структуры носителя /8,9/. [c.238]

    При коксовании катализаторов [12] происходит аморфизация носителя под действием кокса, увеличение разупорядоченности его шпинельной структуры. Это приводит к образованшо новых вакантных мест, которые могут быть заняты металлом. На кривой РРА для закоксованного кататизатора уменьшаются пики металлической фазы (плагины,иридия. ) и увеличиваются пики шпинельной фазы. [c.240]


Смотреть страницы где упоминается термин Иридий структура: [c.187]    [c.94]    [c.187]    [c.426]    [c.182]    [c.187]    [c.189]    [c.405]    [c.338]    [c.54]    [c.268]    [c.254]    [c.338]    [c.54]    [c.137]    [c.140]    [c.239]    [c.253]    [c.64]    [c.64]   
Органические синтезы через карбонилы металлов (1970) -- [ c.49 ]




ПОИСК





Смотрите так же термины и статьи:

Иридий

Иридий электронная структура

Иридий-191 и иридий

СОДЕРЖАН И Е Порай-Кошиц, Т. С. Ходашова, А. С. Анцышкина Успехи кристаллохимии комплексных соединений Кристаллические структуры координационных соединений рутения, осмия, родия и иридия



© 2024 chem21.info Реклама на сайте