Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алкилгалогениды замещения

    В ряде случаев для введения ОН-группы в ароматическое ядро используются галогенопроизводные аренов. Так, из хлорбензола фенол можно получить, обрабатывая е НзС , 10%-ным раствором НаОН при 300 °С под давлением. В отличие от алкилгалогенидов замещение атома С1 (аналогично Вг и I) происходит у аренов с большим трудом, так как С1 находится в т-сопряжении с ядром арена и связь С1 намного прочнее связи -С1. [c.425]


    Образование сложных эфиров при реакции бензилхлорида с твердыми солями в толуоле, катализируемой третичными аминами или четвертичными аммониевыми солями, также проходит в органической фазе и имеет первый порядок по субстрату и катализатору [94]. Кинетика замещения 81—83] и этери-фикации с использованием краун-эфиров в качестве МФК в системах жидкость/жидкость [55, 81—83] и твердая фаза/жидкость [73] также подтверждает общую схему механизма МФК. Реакцию между твердым фенолятом калия и алкилгалогенида-ми в толуоле могут катализировать даже линейные полиэфиры, связанные с полимерным носителем, и кинетика реакции оказывается точно такой же, как и с растворенным катализатором. Эти наблюдения указывают на возможность тесного контакта между смолой-носителем катализатора и твердой солью [74]. [c.54]

    О НИЗКОЙ основности голого ацетата. Соотношение скоростей элиминирования для различных уходящих групп в реакции с 1-замещенными гексанами составляло приблизительно Вг ОТз С1 = 4 2 1. Два изученных вторичных алкилгалогенида дали только по 10% олефина — продукта элиминирования. [c.130]

    Алкилгалогениды и спирты широко применяют в лабораторной практике при синтезе алкилбензолов. Использование их позв >-лило установить многие важнейшие закономерности реакций Ш в частности значительно расширить и углубить представления в механизме электрофильного замещения в ароматическом ряду. [c.105]

    Различные производные углеводородов (алкилгалогениды, альдегиды, кетоны, карбоновые кислоты, нитросоединения и др.) Сохраняют способность к замещению. [c.389]

    Аналогично реакции нуклеофильного замещения N2, реакция элиминирования у первичных алкилгалогенидов, названная 2, является бимолекулярном, и ее скорость также зависит как от концентрации субстрата, так и от концентрации реагента который действует в данном случае не как нуклеофил, а как основание. [c.106]

    Как уже было показано, атом галогена в алкилгалогенидах может быть замещен большим числом нуклеофильных реагентов. Однако нуклеофильное замещение гидроксигруппы в спиртах удается осуществить только в ограниченном числе случаев  [c.138]

    В чем заключается причина меньшей склонности спиртов по сравнению с алкилгалогенидами к реакциям нуклеофильного замещения  [c.139]

    Кинетические исследования реакции натрийацетоуксусного эфира с алкилгалогенидами в безводном этаноле, приводящей к С-алкилпроизводным ацетоуксусного эфира, показали, что она имеет второй порядок, аналогично реакциям гидролиза и алкоголиза алкилгалогенидов. На этом основании можно утверждать, что эта реакция относится к реакциям нуклеофильного замещения, протекающим по механизму N2, причем анион натрийацетоуксусного эфира, подобно ионам СМ и ЫОг , можно рассматривать как амбидентный нуклеофильный реагент, в котором местом с наибольшей нуклеофильной реакционной способностью является атом углерода метинной группы, а местом с наибольшей электронной плотностью — атом кислорода карбонильной группы. [c.244]


    Реакция нуклеофильного замещения атома галогена всегда осложняется тем, что с ней в большей или меньшей степени конкурирует реакция отщепления галогеноводорода. Как было рассмотрено выше, реактивы Гриньяра являются сильными основаниями, способными отщеплять протон от молекулы субстрата—алкилгалогенида. Поэтому наряду с реакцией нуклеофильного замещения SN2, проходящей через переходное состояние (9), протекает реакция элиминирования 2, для которой переходное состояние с более удлиненной цепью рассредоточения электронной плотности соответствует структуре (10). Не исключено также, что при реакции элиминирования реализуется шестичленное переходное состояние (11) [c.268]

    Существенное влияние на скорость реакции и выход продукта замещения оказывают наличие и объем заместителей при атакуемом атоме углерода. Реакционная способность алкилгалогенидов в реакциях нуклеофильного замещения уменьшается в последовательности, прямо противоположной склонности к реакции элиминирования  [c.269]

    В арилгалогенидах наличие -/-эффекта приводит к возникновению дефицита электронной плотности бензольного кольца, что сказывается в понижении их реакционной способности в реакциях электрофильного замещения по сравнению с бензолом. Под влиянием —/-эффекта в большей степени обедненными электронной плотностью должны оказаться орто- и пара-положен я и электрофильные реагенты должны атаковать мета-положения, где дефицит электронной плотности меньше. Однако кроме сильного —/-эффекта атомы галогенов обладают также +М-эффектом, обусловленным наличием неподеленных пар р-электронов. Этот эффект сравнительно невелик, но он обнаруживается в галогенбензолах даже в стационарном состоянии молекулы. Это подтверждается уменьшением дипольных моментов галогенбензолов по сравнению с соответствующими алкилгалогенидами  [c.338]

    В реакциях замещения один или несколько атомов водорода в молекулах углеводорода замещается другими атомами или группами. Алифатические соединения с трудом вступают в реакции замещения. Одна из важнейших реакций замещения алканов заключается в замещении водорода атомом галогена. Хлорирование алканов протекает в условиях фотовозбуждения, т. е. под действием света, который вызывает диссоциацию молекулы lj на реакционноспособные атомы хлора. Затем атом хлора атакует алкан, вытесняя из него атом водорода в результате образуются НС1 и алкильный радикал. Вслед за этим алкильный радикал атакует молекулу lj, что приводит к образованию алкилгалогенида и атома хлора  [c.425]

    Наиболее характерные реакции алкилгалогенидов относятся к типам нуклеофильного замещения или отщепления. [c.74]

    Реакции замещения алкилгалогенидов [c.193]

    Реакция бимолекулярного нуклеофильного замещения алкилгалогенидов (S ) [c.200]

    Реакции мономолекулярного замещения алкилгалогенидов (5 ) [c.202]

    Алкилгалогениды гидролизуются до спиртов. Обычно для этой цели используется гидроксид-ион, за исключением особо активных субстратов, таких, как соединения аллильного или бензильного типов, которые могут быть гидролизованы водой. Обычные алкилгалогениды тоже гидролизуются водой при использовании в качестве растворителя ГМФТА или М-метил-2-пирролидона [370]. В отличие от большинства реакций нуклеофильного замещения у насыщенного атома углерода эту реакцию можно проводить и с третичными субстратами при этом не происходит существенного образования побочных продуктов в результате реакций элиминирования. В синтетических целях эта реакция используется редко, так как сами алкилгалогениды обычно получают из спиртов. [c.100]

    В качестве субстратов вместо спиртов часто используют алкилгалогениды. При этом обычно берут соль неорганической кислоты и реакция идет как нуклеофильное замещение у атома углерода. Важным примером служит реакция алкилгалогенидов с нитратом серебра, приводящая к алкилнитратам (реакция часто применяется как тест на алкилгалогениды). В некоторых случаях наблюдается конкуренция со стороны центрального атома. Так, нитрит-ион, будучи амбидентным нуклеофилом, может давать нитриты или нитросоединения (см. реакцию 10-62). В некоторых случаях субстратами могут быть и простые эфиры. Диалкиловые и алкилариловые эфиры, например, можно расщепить действием безводных сульфоновых кислот [602]  [c.138]

    Реакция между алкилгалогенидами и аммиаком или первичными аминами обычно непригодна для синтеза первичных или вторичных аминов, так как последние являются более сильными основаниями, чем аммиак, и сами предпочтительно атакуют субстрат. Однако эта реакция может оказаться весьма полезной для получения третичных аминов [657] и четвертичных аммониевых солей. Если в качестве нуклеофила выступает аммиак, то три или четыре алкильные группы, связанные с атомом азота в продукте, окажутся одинаковыми. При использовании первичных, вторичных или третичных аминов можно получить соединения, в которых с атомом азота связаны различные алкильные группы. Превращение третичных аминов в четвертичные соли называется реакцией Меншуткина [658]. Иногда этим методом удается приготовить также первичные амины (при использовании большого избытка аммиака) и вторичные амины (при использовании большого избытка первичного амина). Однако ограничение такого подхода хорошо иллюстрируется реакцией насыщенного раствора аммиака в 90 %,-ном этаноле с этилбромидом при молярном отношении реагентов 16 1, в которой выход первичного амина достигал лишь 34,2 %, (при отношении реагентов 1 1 выход составлял 11,3%) [659]. Субстраты лишь одного типа дают приемлемые выходы первичных аминов (при условии, что аммиак взят в большом избытке) — это а-замещенные кислоты, которые превращаются в аминокислоты. [c.146]


    В случае других восстановителей механизм не всегда представляет собой нуклеофильное замещение. Например, восстановление оловоорганическими гидридами обычно происходит [893] по свободнорадикальному механизму [894], так же как и восстановление пентакарбонилом железа [874]. Алкилгалогениды, включая фториды и полигалогениды, восстанавливаются действием магния и вторичного или третичного спирта (чаще всего изопропилового) [895]. Это пример осуществления приведенной ниже последовательности реакций в одну стадию  [c.178]

    С-Алкилирование щелочных енолятов ацетоуксусного эфира легко осуществляется под действием первичных алкилбромидов и алкилиодидов. Для вторичных алкилгалогенидов замещение всегда сопровождается элиминированием, а третичную алкильную группу этим методом вообще не удается ввести. В подобных случаях предпочтительным становится алкилирование не енолята, а самого енола под действием карбанионов тшн родственных им соедниений. Так, например, а-трет-бутилацетоуксусный эфир получается при взаимодействии ацетоуксусного эфира с комплексом т/7ет-бутилбромида с борфторидом серебра. [c.1351]

    С алкилгалогенидами замещенные 2-0. образуют реакционноспособные соли оксазолнния (напр., ф-лы IV) эти соед. легко восстанавливаются под действием ЫаВЙ4 до производных оксазолидина и конденсируются с ароматич. альдегидами, напр.  [c.345]

    Иногда в качестве катализаторов используются самые не-oжидaнньie вещества. Реакции обмена проводили в присутствии 10—15 мол.% фосфортриамида (А). Радикал R представляет собой какую-либо липофильную группу (но не метильную) [16]. Реакции замещения 5ц2 катализировали тетракис-(аЛкилсуль-финил метил) метаном [95] или метил-2-пиридилсульфоксидом [96]. Соединения В—F также использовали при проведении алкилирования бензилметилкетона алкилгалогенидами в присутствии водного раствора гидроксида натрия при комнатной температуре [17].  [c.78]

    Получение цианидов, катализируемое ониевыми солями, проходит намного быстрее с первичными (2—8 г при 100 °С выход 95%), чем со вторичными, субстратами. Циклогексилгалогениды и третичные алкилгалогениды дают главным образом продукты элиминирования. 2-Хлороктан на 85—90% превращается в цианид и на 10—15% элиминируется. При реакции замещения в оптически активном 2-октилметансульфонате образуется инвертированный продукт, рацемизация достигает 30% [4]. Субстраты, содержащие бензильную группу, реагируют уже при комнатной температуре (17 ч). Скорость реакции зависит от величины уходящих групп, т. е. OMes>Br> l. [c.121]

    Используя этот метод Брендстрём смог получить (с выходом до 90%) эфиры даже таких стерически затрудненных кислот, как о,о -диметил- или диметоксизамещенных бензойных кислот. Получение эфиров дикарбоновых кислот в большинстве случаев проходит без каких-либо затруднений. Только очень липофильные кислоты дают низ.кий выход (например, выход эфиров винной кислоты 40%). Однако аминокислоты этим методом этери-фицировать нельзя. В то же время Ы-замещенные аминокислоты легко дают разнообразные эфиры растворяют Ы-производное аминокислоты в насыщенном водном растворе бикарбоната натрия и добавляют смесь молярного количества адогена 464 и небольшого избытка алкилгалогенида. Смесь выдерживают при комнатной температуре в течение 3—24 ч 1225]. [c.128]

    Механизм реакции нуклеофильного замещения алкилгалогенидов мы рассмотрим подробно, но чуть позже, а пока продолжим знакомиться с другими типами реакцш алкилгалогенидов. [c.200]

    Амины взаимодействуют с алкилгалогенидами. образуя более замещенные амины, т.е. из перви шых образуются вторичные, из них -гретичные, а из третичных аминов - четвфтичные аммониевые соли  [c.138]

    По этой причине аллилгалогенид СН2 = СНСН2Х и бензил-галогенид eHs HgX в реакциях замещения атома галогена по механизму 5n2 более реакционноспособны, чем алкилгалогениды. Если принять реакционную способность метилхлорида за единицу, то для аллил- и бензилхлоридов она раина 1,3 и 4,0 соответственно. [c.115]

    В чистом виде уменьшение реакционной способности, обусловленное экранирующим действием алкильных групп, можно наблюдать на примере ряда первнчных алкилгалогенидов. В частности, неопентилбромид (16) с трудом вступает в реакции нуклеофильного замещения по механизму 5 2. Если реакционную способность метилхлорида принять за единицу, то для иео-пентмлхлорида она составляет 3- 10  [c.122]

    Скорость реакции, протекающей по механизму 5м1, имеет первый порядок относительно алкилгалогенида и нулевой — относительно нуклеофильного реагента. Существование мономоле-кулЯ )ного механизма нуклеофильного замещения 5 1 подтверждают следующие экспериментальные факты независимость скорости реакции от концентрации нуклеофильного реагента сравнительно высокие значения энергии активации, наблюдающиеся обычно при гетеролитическом разрыве свя )ей рацемизация при использонании в качестве субстрата оптически активного третичного алкилгалогенида, а котором атом галогена связан с асимметрическим атомом углерода, нуклеофильное замещение галогена по механизму I и и.аеальном случае сонро- [c.127]

    Примером такой реакции, сопровождающейся перегруппировкой углеродного скелета, служит реакция гетеролиза неопентилбромида. Несмотря на то что этот бромид — первичный алкилгалогенид, он практически не способен к реакциям нуклеофильного замещения по механизму N2 из-за пространственных затруднений, создаваемых разветвленным трег-бутиль-ным радикалом при подходе нуклеофильного реагента. Сольво-лиз неопентилбромида по механизму 5ы1, т. е. в протонных растворителях, также исключается, потому что он — первичный алкилгалогенид. Однако его можно заставить реагировать по механизму N1 в присутствии водных растворов солей серебра, так как ион серебра вырывает из молекулы алкилгалогенида анион брома, образуя бромид серебра. При этом первоначально образовавшийся менее устойчивый карбокатион (23), у которого положительный заряд находится на первичном атоме углерода, перегруппировывается в более энергетически выгодный третичный карбокатион (24), который затем и реагирует по трем возможным направлениям  [c.132]

    К подобным реакциям относится и так называемая реакция Фриделя-Крафтса, приводящая к замещению одного из атомов водорода ароматического кольца на алкильную группу в результате взаимодействия алкилгалогенида с ароматическим соединением в присутствии А1С1з  [c.426]

    Галоген в галогенкислотах претерпевает реакции нуклеофильного замещения и элиминирования почти так же легко, как в случае алкилгалогенидов, что используется для синтеза кислот, содержащих различные функциональные группы (—ЫНз, —ОН, N и др.). [c.98]

    По механизму электрофильного замещения протона протекают и реакции гидроксилов с А1(СНз)з, 2п(СНз)2, Li Hз, Ь[СбН5 и др., а также с алкилгалогенидами металлов  [c.23]

    Амиды представляют собой очень слабые основания, слишком слабые, чтобы атаковать алкилгалогениды, поэтому вначале их необходимо превратить в сопряженные основания. Таким методом из незамещенных можно получить М-замещенные амиды, а из них — М,Ы-дизамещенные [744]. В качестве субстратов используют также эфиры серной или сульфокислот. В случае третичных субстратов идет элиминирование. Побочно иногда образуются продукты О-алкилирования [745]. Алкилирование амидов и сульфамидов проводили также в условиях межфа.зного катализа [746]. [c.161]

    Изучались реакции сочетания алкилгалогенидов с другими металлоорганическими соединениями [1031]. Натрий- и калий-органические соединения более реакционноспособны, чем реактивы Гриньяра, и поэтому вступают в реакции даже с менее активными галогенидами. Сложность заключается в их приготовлении и достаточно долгом сохранении, чтобы успеть прибавить алкилгалогенид. Алкены можно синтезировать сочетанием виниллитиевых соединений с первичными галогенидами [1032] или винилгалогеиидов с алкиллитиевыми соединениями в присутствии палладия или рутения в качестве катализатора [1033]. При обработке медьорганическими соединениями п кислотами Льюиса (например, н-ВиСи-ВРз) аллилгалогениды вступают в реакцию замещения с практически полной аллильной перегруппировкой независимо от степени разветвления обоих концов аллильной системы [1034]. [c.191]


Смотреть страницы где упоминается термин Алкилгалогениды замещения: [c.218]    [c.204]    [c.210]    [c.124]    [c.166]    [c.245]    [c.227]    [c.132]    [c.193]    [c.398]   
Органическая химия (1964) -- [ c.235 ]




ПОИСК





Смотрите так же термины и статьи:

Алкилгалогениды



© 2024 chem21.info Реклама на сайте