Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метиловый палладия

    В 1867 г. Г. Дикон разработал получивший всемирную известность хлорный процесс—получение хлора окислением НС1 воздухом над медными соединениями. В 1867 г. А. Гофман получил впервые формальдегид окислением метилового спирта воздухом над платиной. В 1871 г. М. Г. Кучеров открыл замечательную реакцию гидратации ацетилена разбавленной серной кислотой в присутствии ртутных солей, которая лежит в основе многих каталитических превращений ацетилена, его гомологов и производных. В 1875 г. Кл. Винклер разрешил, наконец, проблему каталитического окисления SO, в SO3 воздухом в присутствии платинового катализатора, разработав промышленный способ контактного синтеза серной кислоты. Этот вопрос имеет многолетнюю интересную историю, начиная с работ И. Деберейнера и патента П. Филлипса в 1831 г., рекомендовавшего также платиновый катализатор, по потерпевшего неудачу из-за неумения проводить очистку сернистого газа от контактных ядов. В 1877 г. М. М. Зайцев опубликовал свои исследования по восстановлению различных органических соединений водородом в гетерогенной фазе над платиной или палладием, предвосхитив по существу методику гидрирования, разработанную гораздо позднее. В том же 1877 г. Н. А. Меншуткин начал свои классические исследования по приложению химической кинетики к органическим ссединениям в области изучения скоростей этерификации различных карбоновых кислот спиртами. В 1878 г. А. М. Бутлеров открыл реакцию уплотнения олефинов под действием серной кислоты, что явилось преддверием к синтезу высокомолекулярных соединений и процессов алкили-рования, имеющих сейчас огромное значение. Г. Г. Густавсон провел ряд исследований по каталитическому действию галогенидов алюминия на органические соединения, несколько опередив работы Ш. Фриделя и Дж. Крафтса. [c.15]


    В остальном аналитическая методика, примененная в цитируемом исследовании, вкратце сводилась к следующему. Раздельное определение формальдегида и ацетальдегида достигалось полярографическим методом [54, 55]. Для раздельного нахождения метилового спирта и суммы высших спиртов был применен метод окисления хромовой смесью [57] (с предварительным отделением спиртов от остальных продуктов, в особенности альдегидов [58]). Сумма кислот определялась титрованием щелочью. Для определения углеводородов был усовершенствован метод низкотемпературного испарения в высоком вакууме [59]. Определение СО2, непредельных углеводородов, О2 и СО производилось обычным образом в приборе типа Орса. Водород определялся сожжением над окисью меди или поглощением раствором коллоидного палладия [60]. [c.229]

    И в верхней части трубки поднимается на 15—20 см над зоной контактирования 5 длиной в 40 см. Катализатор (палладий на угле с окисью магния )) находится на пористой пластинке 6, которая опирается на сужение трубки. Препарат вводят в верхнюю часть трубки, т. е. в зону испарения 3. Кран капельной воронки 1 должен иметь насечку (см. рис. 26), чтобы можно было точно регулировать число капель. Контактная трубка оканчивается отстойником 7 (двугорлая колба), который через холодильник соединен с ловушкой 8. Ловушку охлаждают смесью сухого льда и метилового спирта. Входная трубка ловушки 8 должна быть широкой, чтобы не происходило ее закупоривания. [c.360]

    При обработке всех фолликулярных гормонов (в виде их метиловых эфиров) палладием при 350° с хорошим выходом получается 1-этил-2-метил-7-метоксифенантрен (Г), в котором еще сохраняются все атомы углерода, за исключением Сп (Бахман)  [c.874]

    Хлоргидрат З-ф-х л орэти л)- 4- метилпиридин а. К раствору 0,3 г хлористого палладия в 10 мл горячей 2,5 н. соляной кислоты прибавляют 50 мл метилового спирта и 3 г активированного угля, промытого соляной кислотой. Смесь обрабатывают водородом и прибавляют раствор 6,37 г 2,6-дихлор-3-( -хлорэтил)-4-метилпиридина в 100 мл метилового спирта. Гидрируют реакционную смесь в течение двух часов при комнатной температуре и давлении 2,1 атм. Затем отфильтровывают катализатор и отгоняют спирт под уменьшенным давлением. Остаток растворяют в абсолютном спирте и отгоняют спирт эту операцию повторяют несколько раз для того, чтобы полностью отогнать воду. Кристаллический остаток растворяют в небольшом количестве абсолютного спирта и осаждают эфиром выход вещества равен 5 г (85,5% от теорет.). Образец для анализа после двух перекристаллизаций из смеси спирта и эфира и одной перекристаллизации из ацетона плавится при 170—171° [341]. [c.259]


    Катализируемая солями палладия реакция Хека находит широкое применение в синтезах алкеновых производных гетероарома-тических соединений. Мы использовали реакцию Хека в синтезе метилового эфира 2-амино-3-бром-5-метоксифенилакриловой кислоты 3 и [c.24]

    Все четыре двойные связи циклооктатетраена восстанавливаются водородом с образованием циклооктана (т. пл. 13°С) в нейтральной среде после поглощения 3 моль водорода реакция идет очень медленно. Так, циклооктен (т. кип. 142 °С) может быть получен с выходом 90% при гидрировании циклооктатетраена над палладием в метиловом спирте. При окислении циклооктена хромовой кислотой образуется суберо-новая кислота (выход 64%>). Однако избытком надбензойной кислоты циклооктатетраен окисляется только в моноокись, которая при гидрировании превращается в циклооктанол. [c.127]

    Продукт суюцииилирования тетралина был превращен в у-(на ф-ТИЛ-,2)-масляную кислоту путем нагревания соответствующего метилового эфира с осажденным на древесном угле палладием (Ньюмен, 1943) при этом ядро дегидрируется, а соседняя с ним карбонильная группа восстанавливается до метиленовой группы  [c.458]

    Когда хотят получить свободную аминокислоту или пептид, то в качестве восстанавливающего агента применяют триэтилсилан (т. кип. 107°С). Смесь кбз-1произ1водного (0,01 моль), триэтилсилана (0,04 моль), триэтиламина (4 капли) и хлористого палладия (50 мг) кипятят в течение 3 ч. Обра ювавшийся раствор фильтруют и разбавляют метиловым спиртом, который осаждает аминокислоту или пептид (Биркофер, [c.676]

    Нитрогруппу обычно восстанавливают алюмогидридом лития, являющимся одним из наиболее сильно действующих гидридов. Действительно, в то время как боргидрид натрия в водном растворе метилового спирта при 25 °С не действует на нитрогруппу [20], алюмогидрид лития в сочетании с палладием, нанесенным на активированный уголь, в щелочном растворе оказывает достаточно эф- фективное действие [21]. Восстановление третичных алициклических нитросоединений алюмогидридом лития осложняется изомеризацией образующихся в качестве промежуточных соединений производных тидроксиламина, что приводит к образованию первичных и вторичных аминов [22]. [c.472]

    Метиловый эфир л-ацетилбензойной кислоты был получен этери-фикацией зтой кислоты метиловым спиртом в присутствии хлористого водорода гидрированием метилового эфира л-трихлорацетилбензой-ной кислоты в присутствии палладия, осажденного на углекислом [c.311]

    R"= 2H5, СНз, СНаСбНб, Na, К Карбоксильную группу второго компонента защищают путем этерификации или образованием солей. Чаще всего пользуются метиловыми и этиловым эфирами, в последнее время также бензиловыми эфирами. Метиловые и этиловые эфиры полученных пептидов гидролизуют обычно щелочью на холоду, бензиловые эфиры разрушают гидрированием ha палладии. [c.488]

    При каталитическом гидрировании в органических растворителях (уксусная кислота, спирты, ДМФ и др.) или в водно-органическои фазе с катализаторами (палладиевая чернь, палладий на угле или палладий на сульфате бария) наряду со свободным пептидом получаются не мещающие выделению толуол и диоксид углерода. Окончание выделения СО2 означает одновременно заверщение процесса отщепления. В том случае, если в пептиде присутствуют остатки цистеина или цистина, гидрогенолитического отщепления не происходит, но его можно проводить в присутствии эфирата трифторида бора [59] или 4 г-экв. циклогексиламина [60]. Такие же условия нужно соблюдать и при деблокировании в присутствии метионина. При восстановительном расщеплении натрием в жидком аммиаке [61] наряду с желаемым пептидом образуются 1,2-дифенилэтан и небольщие количества толуола углекислота же связывается в карбонат натрия. При работе по этому методу одновременно с бензилоксикарбонильным остатком отщепляются N-тозильная, N-тритильиая, S- и О-бензильные группы, а метиловые и этиловые эфиры частично переводятся в амиды. В качестве побочных реакций наблюдается частичное разрущение треонина, частичное деметилирование метионина, а также расщепление некоторых пептидных связей, например -Lis-Pro- и - ys-Pro-. [c.103]

    Некоторые кислоты, в особенности ароматические, при нагревании декарбоксилируются, чего не наблюдается в случае метиловых или этиловых эфиров, применяемых для синтеза биарилов, содержащих карбоксильные группы, по Ульману [328]. При термическом дегидрировании гиббереллиновой кислоты в присутст-ствии палладия на древесном угле происходит декарбоксилирование, тогда как из метилового эфира гиббереллиновой кислоты образуется метиловый эфир дегидрогиббереллиновой кислоты [396]. Применение метиловых эфиров с целью предотвращения декарбокси-лирования при замещении в ароматическом ряду уже упоминалось выше (см. газдел Карбоксильная группа , стр. 196). [c.244]


    При каталическом гидрировании алкилгалогенидов в присутствии палладия галоид количественно отщепляется в виде галоидоводорода. При гидрировании же галоидобензола по Бушу замещение галоида на водород происходит только частично и в конечном результате два арильных остатка соединяются, образуя дифенил, выход которого достигает 75% от теоретического. Большое значение при этом имеет подбор катализаторов платина, осмий, рутений и родий оказались для этих целей непригодными неактивными оказались и некоторые никелевые катализаторы. Образование дифенила в присутствии палладия надо приписать специфичности действия этого катализатора и присутствию спирта в присутствии метилового спирта вне зависимости от того, применяется ли водород или гидразин при гидрировании образуется дифенил. Имеется предположение, что при этом сначала гидрируется спирт и образуются двойные соединения [c.471]

    Разделение изомерных кислот дробной красталлизацией их метиловых эфиров и дегидрированием в присутствии палладия, осажденного на угле [114], дает чистую карбазол-2-карбоновую кислоту. [c.252]

    Палладиевые ката, также-Лиидлара катализатор Палладий — барии сульфат IV 66. 120 Палладии но угле 1П 172 Палладий хлористый I ЮО П 53 1 66 Палладия(И) ацетат 1П 53, 54 Палладия гидроокись кик катализатор V 34 Пальмитиновая кисло а II 77, 78. 248, 319 метиловый зфир I 1 ) [c.685]

    Метилдибснзофурания борфторид. Натрий — нафталин. Натрия гидрид. Натрия бис- (2 Метоксиэтокси) -алюмогидрид. Палладий хлористый. ,2,2,б,6-11ентаметилпиперидин. Серебра окись. Фторсульфоновой кислоты метиловый эфир. Хлоругольной кислоты этиловый эфир, Этилат таллия (I). Эгилвнииловый эфир, [c.662]

    Заиита карбоксильной группы.Защита гидроксила карбоксильной группы достигается с помощью образования сложного эфира. Ваибольшее значение в этом плане имеют бензиловый, трет.-бутиловый и метиловый эфиры первые два - потому, что они легко могут быть удалены (гидрирование на палладии для бензилового эфира, мягкий КИСЛЫЙ гидролиз для трет.-бутилового), последний -потому, что эту группу легко ввести с помощью диазометана. Бен-йиловый эфир получают действием хлористого бензила на соль кислоты, трет.-бутиловый - действием на кислоту изобутилена в кислой среде. Можно применять также эфиры 2,2,2-тригалогенэтапо-Ла. Их разрушают электролитически или при действии цинка п уксусной кислоте. [c.92]

    Пропилен, метанол, СО Метиловый эфир изомасляной кислоты (I), метиловый эфир масляной кислоты (И) mempoKu -(Трифенилфосфин)-палладий С,н. = 13 бар, Рсо = 200—700 бар. 90° G. В продуктах 1 И = 140 82 (вес.). Общий выход 100% (на прореагировавший gHg) [368] [c.792]

    Коллоидный палладий готовили на аравийской камеди, гуммиарабике или крахмале в качестве защитного коллоида [3]. Водород получали электролизом раствора NaOH. Опыты проводили в обычном приборе для гидрирования. Растворителями служили вода, метиловый или этиловый спирты. Реакция велась при комнатной температуре и атмосферном давлении со скоростью 120 качаний колбы в минуту. [c.201]

    Взаимную связь процессов дегидрогенизации и гидрогенизации можно особенно хорошо наблюдать на необратимых каталитических реакциях, открытых Н. Д. Зелинским в 1911 г. на примере превращения метилового эфира тетрагидротерефталевой кислоты в метиловый эфир терефталевой и цис-гекса-гидрофталевой кислоты. Необратимые каталитические превращения состоят в перераспределении водородных атомов между несколькими [одинаковыми молекулами частично гидрогенизованных ароматических циклов. В качестве другого примера можно назвать превращение циклогексена в бензол и циклогексан, происходящее уже при обыкновенной температуре в присутствии платиновой или палладиевой черни. Метилциклогексены в присутствии палладия при 117°, С превращаются в толуол и метилциклогексан. Такого же типа [изменениям подвергаются и более сложные замещенные. У соединений, содержащих в шестичленном цикле две двойные связи, способность к необратимым каталитическим превращениям выражена еще больше. Например, оба изомера циклогексадиена в присутствии палладия моментально превращаются в бензол и циклогексен. Реакция идет с саморазогреванием. Образующийся циклогексен превращается дальше в бензол и циклогексан. / -Дигидронафталин превращается в тетралин и нафталин. В одной из ранних работ (1924 г.) по необратимому катализу Н. Д. Зелинский обнаружил, что метиленциклогексан подвергается превращениям, дающим те же продукты реакции, что и метилциклогексен. Это превращение объясняется предварительной миграцией семициклической двойной связи в цикл, [c.19]

    В каталитических реакциях, при которых глинозем мсжет быть активен, он заменяется алундом, т. е. искусственно приготовленным корундсд . Сналлинг [378] считает алунд подходящим носителем для медного катализатора при приготовлении формальдегида из метилового спирта. Паннет [301] рекомендует пользоваться алундом как носителем для пятиокиси ванадия при приготовлении малеинового ангидрида. В некоторых случаях активность никеля, как дегидрогенизирующего катализатора, можно понизить осаждением металла на глиноземе, применяемом в качестве носителя [329, 430] в этом случае катализатор по своему действию похож на палладий и платину. Зелинский и Комаревский [430] готовили катализатор следующим образом  [c.500]

    Сэндвичевый комплекс никеля — бис (циклопентадиенил) никель (1П) — подвергается одноэлектронному окислению з катион [51]. Полярографические потенциалы полуволны для комплекса с никелем(II), комплекса с никелем(III) и их смеси оказались одинаковыми. Это свидетельствует об обратимости реакции. Для циклопентадиенилаллилпалладия в смесях метилового спирта с водой обнаружены две полярографические волны [52]. Показано, что первая отвечает двухэлектронному процессу с участием атома металла, а вторая состоит в восстановлении связи аллил-палладий. Полагают, однако, что в полярном растворителе комплекс не сохраняет сэндвичевой структуры .  [c.390]

    Метод определения углеродного скелета можно осуществлять в различных вариантах. Реакцию гидрогено-лиза, гидрирования или дегидрирования веществ можно провести независимо от его хроматографического определения, используя известные химические методы [6]. Некоторые зарубежные фирмы выпускают специальные микрогидрогенаторы, представляющие собой небольшие автоклавы для цроведения гидрирования в жидкой фазе. Для проведения гидрирования метиловых эфиров ненасыщенных кислот используют суспензию платинового катализатора (Р102). Гидрирование проводят в этанольном растворе в течение 15—30 мин. Па-лимент [7] предложил простую аппаратуру для проведения гидрирования вне хроматографа. Исследуемый образец (в частности, предварительно отобранная при хроматографическом разделении в ловушку целевая фракция) 20—1000 мкг вносят в пробирку (4 смХ Х8 мм), содержащую 0,1 мл метанола и 0,5 мг катализатора (10% палладия на углероде). В пробирку пропускают водород со скоростью один пузырек в 1 с. Поток водорода перемешивает суспензию растворитель-— катализатор, содержащую анализируемое вещество. После окончания гидрирования смесь центрифугируют и аликвотную часть реакционной смеси отбирают для газохроматографического анализа. Для получения (выделения) чистых соединений эффективны методы улавливания фракций после разделения на насадочных [8] и капиллярных [9] колонках. Этот вариант исследования структуры вещества является, по-видимому, наиболее надежным, хотя и более длительным. [c.121]

    Метиловый эфир шикимовой кислоты ЬХ1У восстанавливается над палладием на сульфате бария без гидрогенолиза [270]. [c.72]

    Метиловый эфир винатикойевой кислоты [464] также гидрируется в этих условиях [464]. При восстановлении XXVIII над никелем происходит только насыщение ацетиленовой группы [722]. Соединение XXIX может быть восстановлено по двойной связи в боковой цепи, но фурановый цикл в нем также легко гидрируется (над палладием) [473]. [c.87]


Смотреть страницы где упоминается термин Метиловый палладия: [c.464]    [c.686]    [c.87]    [c.127]    [c.233]    [c.317]    [c.350]    [c.346]    [c.35]    [c.384]    [c.22]    [c.662]    [c.142]    [c.412]    [c.201]    [c.202]    [c.131]    [c.306]    [c.207]    [c.172]    [c.178]    [c.254]   
Фотометрическое определение элементов (1971) -- [ c.304 ]




ПОИСК





Смотрите так же термины и статьи:

Палладий

Палладий палладий



© 2024 chem21.info Реклама на сайте