Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кремний адсорбция

    На рис. 3.7 представлена технологическая схема процесса изомеризации алкенов фракции Сб—С, бензина термического крекинга (30—100 °С). Сырье подают в адсорбер /, заполненный окисью кремния. Адсорбцию проводят при 137 °С и 0,035 МПа. 1-Алкены вытесняют в адсорбере 1 ранее сорбированный нонан, который затем используют в качестве десорбента в аппарате 2. В адсорбере / [c.82]

    Помимо силикагеля для разделения этого класса веществ используют окись алюминия. Поверхность окиси алюминия также содержит гидроксильные группы, и, следовательно, механизм адсорбции в принципе одинаков у обоих сорбентов. В то же время вследствие разницы в координационных числах алюминия и кремния адсорбция на окиси алюминия должна быть сильнее. [c.334]


    УГЛЕРОД И КРЕМНИЙ. АДСОРБЦИЯ. КОЛЛОИДЫ Домашняя подготовка [c.133]

    Адсорбция водорода на кремнии. Адсорбция атомарного и молекулярного [c.176]

    Глинистые минералы составляют группу слоистых и слоисто-ленточных силикатов и состоят в основном из двух структурных элементов - кремнекислородного тетраэдра и алюмокислородного октаэдра. Они характеризуются гидрофильной поверхностью, способностью к сорбции и ионному обмену [1,2]. Из-за изоморфного замещения атомов кремния и алюминия на катионы более низкой валентности плоские грани кристаллической решетки глинистых минералов приобретают отрицательный заряд. Его компенсация происходит за счет адсорбции ионов Mg Са, Ре", К и На" . Эти катионы представляют ионообменный комплекс глин. Сила взаимодействия катионов ионообменного комплекса с кристаллической решеткой глин обусловливает их физико-химические и механические свойства, в частности, набухаемость. При контакте глин с водой молекулы воды проникают в межплоскостное пространство структурных [c.199]

    Адсорбция анионов на стекле происходит по ионообменному механизму, и в сильнокислых растворах поверхность электрода приобретает свойства анионита, подобно тому как в щелочных растворах поверхность приобретает свойства катионита, чем и объясняется сходство ошибок стеклянного электрода в кислой и щелочной областях. Анионный обмен на поверхности электрода связан с некоторой амфотерностью кремневой кислоты, благодаря которой проявляются основные свойства у соединений кремния в набухшей пленке стекла. Гидратированная окись кремния в очень кислых растворах проявляет свои основные свойства в том, что она присоединяет протон водорода реакция идет с образованием соли катионной кислоты [c.435]

    Рассмотрим сначала простейший случай адсорбции цеолитом одноатомных молекул благородных газов. Чтобы рассчитать потенциальную энергию межмолекулярного взаимодействия адсорбат — цеолит, надо выбрать силовые центры в решетке цеолита. Таких центров несколько ионы алюминия и кремния, окружающие их по углам тетраэдров ионы кислорода (см. рис. 2.2, а) и, наконец, [c.207]

    В случае адсорбции этана цеолитом NaY (рис. 11.5, б) значение 3 заметно меньше, чем при адсорбции этана цеолитом NaX, и составляет около 0,72. Поправочный множитель р отражает изменение концентрации алюминий-кислородных тетраэдров и вызываемое этим изменение распределения отрицательного заряда по ионам кислорода в алюминий-кислородных и разделяющих их кремний-кислородных тетраэдрах (см. рис. 2.2, а). [c.215]


    Это условие соблюдается при использовании силикагеля, который, являясь по своему химическому составу двуокисью кремния, обладает такой же энергией адсорбции, как и окисная пленка. [c.215]

    Время установления равновесия между силикагелем и молекулами воды в корпусе прибора при Т = 300 К составляет не менее 1—2 суток, что существенно больше времени адсорбции на поверхности германия или кремния. [c.216]

    Почему коллоидные частички, находясь в беспрерывном движении и все время встречаясь друг с другом, не слипаются Слипанию коллоидных частиц препятствует наличие у них электрического заряда — у одних коллоидов положительного, у других — отрицательного. Заряд у коллоидных частиц возникает либо вследствие отщепления ими со своей поверхности ионов того или иного знака в раствор (как при диссоциации электролитов), либо вследствие адсорбции поверхностью коллоидных частичек ионов того или другого знака из раствора. Так, от частичек гидроокиси кремния, как кислоты, отщепляются в раствор ионы водорода, и частички получают отрицатель- [c.111]

    Двойной электрический слой мон ет возникать на границе раздела фаз твердое тело —раствор (электролит) в результате избирательной адсорбции одного из ионов электролита из раствора на поверхность твердого тела (см. гл. VII, 8) или в результате диссоциации поверхностных молекул вещества твер>. дой фазы с переходом ионов в другую фазу. Примером двойного электрического слоя, образованного в результате диссоциации, является ионный слой частиц гидрозоля диоксида кремния. Поверхностные молекулы диоксида кремния при взаимодействии с водой образуют кремниевую кислоту, которая диссоциирует  [c.197]

    Адсорбция катионов на кремнии и германии из трави-телей и промывных вод достигает 10 —i0 ионов на [c.216]

    Кремний легко реагирует со щелочами, в том числе и с очень разбавленными их водными растворами, полученными, например, при соприкосновении со щелочьсодержащим стеклом. Кислоты, за исключением НР, не реагируют с кремнием. Адсорбцию газов на кремнии изучали Лоу и Франсуа [374], а диффузию примесей в нем—Данлэп [375]. [c.11]

    Отделение теоретической и прикладной химии Заведующий G. R. Ramage Направление научных исследований кинетика реакций в аэродинамической трубе термометрическое титрование тонкослойная хроматография анализ кристаллической структуры неорганических веществ синтез и строение боргидридов и фторборатов получение пористого угля и окиси кремния адсорбция на различных окислах использование полифосфорной кислоты в синтезе меченые атомы в изучении ферроценов катализ на ионообмен ных смолах радиационная химия фторированных алифатиче ских углеводородов литий- и магнийорганические соединения реакции реактивов Гриньяра с азолактонами перегруппировка Клайзена реакция Канниццаро синтез /г-дибромбензола стирол, пентаэритрит и их производные реакции галоидирован ных ароматических аминов гетероциклические соединения синтез аминокислот и пептидов на основе пиридина, хинолина стероиды методы синтеза природных ксантонов способы полу чения ярких и прочных красителей фотохимия красителей полимеризация виниловых мономеров эмульсионная полимери зация хелатные инициаторы полимеризации облучение поли меров и их растворов свойства и методы испытания полимеров [c.269]

    Причиной молекулярной ассоциации в водных растворах и многих жидкостях часто является возникновение водородной связи между соприкасающимися полярными частями молекул, содержащих, например, гидроксильные группы (см. стр. 164). Такая ассоциация проявляется также и при адсорбции на адсорбентах, содержащих на поверхности гидроксильные группы, например при адсорбции воды, спиртов, аммиака, аминов и т. п. на поверхностях гидроокисей, т. е. на гидроксплированных поверхностях силикагелей, алюмогелен, алюмосил икатных катализаторов и т. п. адсорбентов. Поверхность силикагеля покрыта гидроксильными группами, связанными с атомами кремния кремнекислородного остова. Вследствие того что электронная -оболочка атома кремния не заполнена, распределение электронной плотности в гидроксильных группах поверхности кремнезема таково, что отрицательный заряд сильно смеш.ен к атому кислорода, так что образуется диполь с центром положительного заряда у атома водорода, размеры которого невелики. Часто молекулы адсорбата, обладающие резко смеш,енной к периферии электронной плотностью или неподеленными электронными парами (например, атомы кислорода в молекулах воды, спиртов или эфиров), образуют дополнительно к рассмотренным выше взаимодействиям водородные [c.496]

    Такое химическое модифицирование поверхности твердого тела путем прнзиакн больших инертных групп резко снижает энергию адсорбции не только молекул, способных специфически взаимодействовать с гидроксильными группам (например, азота, этилена, бензола, эфира, спиртов и т. п.), но и всех молекул вообще. Это происходит в результате того, что при образовании подобных модифицирующих слоев молекулы адсорбата, во-первых, не могут прянти в соприкосновение непосредственно с основным скелетом твердого тела и, во-вторых, они приходят в соприкосновение с гораздо меньшим числом атомоз, поскольку расстояния между смежными группами СН.ч в модифицирующем слое соответствуют их ван-дер-ваальсовым размерам, а расстояния между атомами кислорода и кремния в основном скелете кремнезема соответствуют гораздо более коротким расстояниям химических связей. [c.503]


    Изучена каталитическая активность кремнецинковых катализаторов [56]. Чистые окиси кремния и цинка не проявляют ни кислотных, ни основных свойств и каталитически не активны в изомеризации бутена-1. При исследовании смешанных цинксиликатных катализаторов различного состава, приготовленных соосаждением, оказалось, что максимальная кислотность отвечает составу ZnO Si02=3 7, а максимальная основность — составу ZnO Si02=7 3. ИК-Спектры адсорбированных на катализаторе оснований (пиридин, аммиак) показали, что кислотные центры являются льюисовскими. Именно они ответственны за изомеризацию бутена-1, так как адсорбция кислотного окисла (СОг), уменьшающая число основных центров, на каталитическую активность не влияла. Подтверждением этого является и то, что изомеризация протекала через внутримолекулярный перенос водорода это показали опыты со смесью недейтерированного и дейтерированного 1 с-бутена-2. [c.165]

    Имеются доказательства, что при пластической деформации атомы цинка концентрируются преимущественно у границ зерен Различия в составе приводят к электрохимическому взаимодей ствию таких участков с зернами. По этой причине в ряде агрес сивных сред небольшая межкристаллитная коррозия может про исходить и без приложенного напряжения. Однако участки пла стической деформации при определенных значениях потенциала могут способствовать адсорбции комплексных ионов аммония, что в свою очередь приводит к быстрому образованию трещин. Аналогичный эффект может наблюдаться и вдоль линий скольжения (транскристаллитное растрескивание). По-видимому, выделение цинка на границах зерен является существенной причиной наблюдаемой межкристаллитной коррозии латуней в то же время наличие структурных дефектов в области границ зерен или линий скольжения играет большую роль в протекании КРН. Следовательно, разрушение медных сплавов в результате растрескивания наблюдается не только в сплавах меди с цинком, но также и со множеством других элементов, например кремнием, никелем, сурьмой, мышьяком, алюминием, фосфором [21 и бериллием [31]. [c.338]

    Силикагель представляет собой гидратированную форму окислов кремния 8102 пНгО. Его применяют в виде частиц шарообразной формы или в виде гранул. В зависимости от размеров пор и формы зерен выпускают крупно- и мелкрт пористый силикагель марок АСК, КСК, НСК, ЩСК и др. Силикагели имеют чрезвычайно развитую поверхность адсорбции. Удельная поверхность, силикагелей достигает [c.59]

    Как показали работы М. М. Дубинина и его сотрудников [60, 61 ], при физической адсорбции на поверхности полярных адсорбентов, к которым относятся природные отбеливающие земли, силикагель, синтетические алюмосиликаты, активированная окись алюминия и др., основную роль играют ориентационное и индукционное взаимодействия. Молекулы этих адсорбентов, состоят в основном из окислов кремния и алюминия с включением конституционной и кристаллизационной воды, а в природных адсорбентах также из окислов других металлов. Структурные решетки этих адсорбентов образованы ионами , А " ", Мд " , 0 , ОН или комплексами (310 ) , (А1О4) и т. д. Ионы, лежащие на поверхности адсорбента, хотя в химическом отношении и уравновешены связанными с ними ионами противоположного заряда, находящимися в массе адсорбента, обладают электростатическими зарядами, силовые поля которых лишь частично скомпенсированы внутренними ионами. Нескомпенсированные силовые поля по- [c.234]

    Механизм действия кремнийорганических (ПМС) и суспензионных (парафин, резиновая и полиэтиленовая крошки) пеногасите-лей отличается от изложенного выше. Присутствие в промывочных жидкостях высокогидрофобного материала приводит к адсорбции на его поверхности пузырьков воздуха, которые при благоприятных условиях (снижение давления) коалесцируют и в виде крупных пузырей выходят из системы [55]. Дегазация происходит на поверхности глобул эмульгированного реагента (кремний-органические добавки) или на поверхности гидрофобной суспензии. [c.167]

    Примерно такие же исследования были произведены в отношении суспензий двуокиси кремния в ксилене (см. ссылку 96). В результате этих исследований было установлено, что металлические нафтенаты, лецитин и различные марки аэрозоля оказались так же как и при опытах с углеродом, наиболее эффективными. Имеются данные, подтверждающие значительную степень адсорбции двуокисью кремния поверхностно-активных средств. Такое явление вполне совместимо с предположением, что стабилизация зависит от защитного действия коллоидов. [c.106]

    Другим примером золя о отрицательно заряженными гранулами является гидрозоль диоксида кремния (рис.7/3). Причем в этом случае заряд гранулы возникает не за счет адсорбции ионов из -№8, как у золей Те (ОН) 2 и серы, а за счет элоктролитической диссоциации поверхностного слоя самого ядра. Поверхностные молекулы диоксида кремния, взаимодействуя с водой, дают кремниевую кислоту, которая диссоциирует  [c.24]

    Впрочем, образотание двойного электрического слоя в результате избирательной адсорбции одного из ионов, присутствующих в дисперсионной среде, может происходить и тогда, когда достройки кристаллической решетки нет. Например, двойной электрический слой образуется на частицах парафина, диспергированного в слабом растворе щелочи, за счет избирательной адсорбции гидр-+ оксильного иона, который в данных условиях проявляет лучшую адсорбируемость, чем ион щелочного металла. Возникновение двойного электри- ческого слоя за счет ионизации мож- но проиллюстрировать образованием двойного электрического слоя на частицах водного золя двуокиси кремния. Молекулы 5102, находящиеся на поверхности таких частиц, взаимодействуют с дисперсионной средой, гидратируются и образуют кремневую кислоту, способную ионизироваться  [c.172]

    Мы рассмотрели строение мицелл, у которых ионогенная часть образуется в результате адсорбции стабилизующего электролита, отличающегося по своей химической природе от вещества дисперсной фазы. В других случаях ионогенная часть мицеллы может образоваться из вещества самого агрегата. Примером такой коллоидной системы может служить достаточно постаревший гидрозоль двуокиси кремния. Поверхность агрегата, реагируя с окружающей его водой, образует метакремневую кислоту HaSiOa, которая и будет являться стабилизатором. Строение мицеллы такого золя, очевидно, следует изображать формулой.  [c.244]

    Теоретическое исследование адсорбции силикалитом необходимо для создания молекулярной теории адсорбции на аморфных формах кремнезема. Эта теория должна основываться, во-первых, на найденных с помощью адсорбции силикалитом атом-атомных потенциалах фА(молекулы)... 0(ЗЮ ) , во-вторых, на модельных кривых распределения кремний-кислородных тетраэдров по скелету кремне- [c.221]

    Степень адсорбции ионов электролитов частицами различных минералов неодинакова. Минералы, в которых между структурными элементами решеток действуют преимущественно близкодействующие ковалентные связи (кварц, глинистые минералы) с небольшой долей ионной составляющей (определяется степенью замещения кремния алюминием в полимерных каркасах, слоях) и с малой плотностью ее, характеризуются меньшей степенью воздействия на ионы электролитов. Наоборот, решетки, в которых связь между ее элементами преимущественно ионная (дальнодействующая) и плотность распределения зарядов по поверхности высокая (Са +СОз -, Мд +СОз - и др.), будут сильнее воздействовать на заряженные частицы электролитов. Таким образом, избирательная способность к ионам солей у известняков (а также у полевых шпатов, гематита) выше, чем у кварца и глинистых минералов. Кроме того, поскольку катионы обычно состоят из одной частички, имеющей малый размер и большую подвижность, а анионы чаще всего являются радикалами (СОз -, 5042") более крупных размеров и меньшей подвижности, на поверхности твердых тел быстрее адсорбируются катионы, чем анионы. Какая-то часть катионов Ыа+, К+, Са +, Mg2+ избирательно адсорбируется (в порядке Мд>Са>ЫаЖ) под действием поверхностной энергии Гиббса в первую очередь на поверхности зерен известняка, полевого шпата, затем кварца, сообщая этим зернам положительный заряд. Под непосредственным воздействием этих ионов на поверхности частиц упорядочиваются молекулы ПАВ и воды, создавая вместе с ионами адсорбционную оболочку вокруг зерен. Наличие положительных зарядов на таких адсорбционных комплексах (известняк —катионы — ПАВ — вода) приводит к тому, что вокруг них ориентируются отрицательно заряженные глинистые частицы и ионы 8042-, НСО3-, тоже предварительно адсорбировавшие на себе молекулы ПАВ и воды. Какая-то часть ионов Ыа+, К+, Mg +, Са2+ и 5042-, НСО3- остается в гидратированном виде в жидкой фазе. Таким образом, в суспензии действуют силы электростатического притяжения и отталкивания крупных адсорбционных комплексов (известняк —катионы —ПАВ — вода), мелких катионов и анионов, дипольные взаимодействия между униполярными комплексами, водородная связь между молекулами воды. Свободная же вода, разделяющая все частицы друг от друга, обеспечивает текучесть суспензии. [c.286]

    Причиной адсорбции веществ на поверхности твердых и жидких тел является неполная насыщенность химических или вандерваальсовых сил у молекул и атомов (ионов), находящихся в поверхностном слое, так как число соседей всегда меньше, чем у тех, что находятся в объеме. Например, поверхностные атомы кристаллов германия или кремния в лучшем случае связаны ковалентными связями с тремя другими, а не с четырьмя, как в объеме, и поэтому имеют по крайней мере одну ненасыщенную валентность. Во всех случаях средняя энергия связи в расчете на одну молекулу, один атом или ион поверхностного слоя меньше, чем у частиц, находящихся в объеме тела запас же их свободной энергии больше, чем у частиц внутри объема. Частицы конденсированных тел стремятся расположиться так, чтобы суммарная энергия химической связи между ними стала макримальной, а О [c.168]

    Химическая адсорбция кислорода и воды (и других веществ) на поверхности кремния и германия. Адсорбдия ионов [c.174]

    Адсорбция катионов на кремнии и германии из травнтелей и промывных вод достигает IQi —IQi ионов на 1 см," при концентрации их в растворе 10 —вес.%. Величина адсорбции их на кремнии зависит от pH и от концентрации HF в травильных смесях. Наблю ,алась значительная адсорбция ионов иода на германии из растворов KI, зависящая от pH и степени окисления поверхности. Методом меченых атомов исследовалась адсорбция ионов на порошке GaAs. Доказано, что ионы серебра, золота, меди, ртути адсорбируются прочно, а ионы натрия и цинка — обратимо и легко отмываются с поверхности. [c.175]

    Причиной адсорбции веществ на поверхности твердых и жидких тел является неполная насыщенность химических или вандерваальсовых сил у молекул и атомов, (ионов), находящихся в поверхностном слое, так как число соседних частиц всегда меньше, чем у тех, что находятся в объеме. Например, поверхностные атомы кристаллов германия или кремния в лучшем случае связаны ковалентными связями с тремя другими, а не с четырьмя, как в объеме, и поэтому имеют по крайней мере одну, ненасыщенную валентность. Во всех случаях средняя энергия связи в расчете на одну молекулу, один атом или ион поверхностного слоя меньше, чем у частиц, находящихся [c.208]


Смотреть страницы где упоминается термин Кремний адсорбция: [c.228]    [c.104]    [c.426]    [c.258]    [c.316]    [c.202]    [c.63]    [c.236]    [c.351]    [c.221]    [c.115]    [c.206]    [c.208]    [c.45]    [c.216]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте