Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворимость в азотной кислоте натрия

    Целлюлоза представляет собой 1,4-р-о-глюкан, т. е. полисахарид, который состоит из одинаковых звеньев о-глюкозы, соединенных в неразветвленную молекулу посредством р-1,4-связей. Очень большое практическое значение имеют производные целлюлозы, поскольку в отличие от самой целлюлозы они растворяются в некоторых обычных растворителях, что открывает возможность различных применений. Эти производные получаются в результате модификации гидроксильных групп молекул целлюлозы (превращение в ксантогенаты, этерификация уксусным ангидридом или азотной кислотой, образование простых эфиров). Так, например, при получении вискозного шелка и целлофана сначала целлюлозу переводят в натриевую соль, так называемую алкалицеллюлозу, из которой под действием сероуглерода образуется растворимый ксантогенат натрия (разд. 6.2.12). Из ксантогената опять регенерируют целлюлозу в виде волокон (вискозный шелк) или пленки (целлофан). Ацетилированием целлюлозы получают ацетатный шелк. Вискозный и ацетатный шелк служат важным сырьем для текстильной промышленности. Нитраты целлюлозы используются как взрывчатые вещества и как лаки. Смесь нитрата целлюлозы и камфоры дает целлулоид, один из первых пластиков, недостатком которого является высокая горючесть. К важным производным целлюлозы относятся и ее эфиры, например метиловые или бензиловые (загустители в текстильной и пищевой промышленности, вещества, используемые при склеивании бумаги, и добавки в лакокрасочные материалы). [c.214]


    Образование малорастворимого хлорида серебра. Ионы серебра образуют с соляной кислотой и растворимыми хлоридами белый творожистый осадок Ag l, Хлорид серебра нерастворим в азотной кислоте, но легко растворяется в растворах аммиака, карбоната аммония, тиосульфата натрия, цианидов натрия или калия. Осадок Ag l заметно растворим в концентрированной соляной кислоте и концентрированных растворах хлоридов щелочных металлов. [c.284]

    Чтобы наметить рациональную схему анализа, необходимо уточнить перечень определяемых элементов и затем установить хотя бы ориентировочно, к какому типу относится анализируемый материал. Решение этой задачи сводится к выполнению некоторых пробных качественных реакций. Известные указания на свойства и состав анализируемого материала дает его происхождение. Светлая окраска позволяет считать, что материал является смесью соединений натрия или кальция и магния или содержит значительное количество кремниевой кислоты. Необходимо испробовать растворимость такого материала в воде, определить реакцию водного раствора, качественно проверить его на присутствие хлоридов, сульфатов, фосфатов. Если материал заметно не растворяется в воде, ни на холоде, ни при нагревании, следует подействовать на него разбавленной (1 2) соляной или азотной кислотой. При этом может начаться выделение газов, состав которых можно часто установить по запаху или специальными реактивами. Кислотный раствор следует качественно проверить на присутствие железа, кальция, сульфатов, фосфатов, меди и т. д. Интенсивность качественных реакций дает возможность судить и об [c.411]

    В три пробирки налейте по 1 мл насыщенных при комнатной температуре прозрачных растворов хлоридов натрия и бария и нитрата бария. В первые две пробирки прибавьте по 1 мл концентрированной соляной кислоты, а в третью — концентрированной азотной кислоты. Что наблюдается Как влияет увеличение концентрации одноименного иона на растворимость соли  [c.92]

    Влияние нитрата алюминия и хлористого натрия на растворимость азотной кислоты в растворах НЦГ в ЦГ [c.105]

    В исследованном интервале температур и составов растворов, присутствие нитрата алюминия и хлористого натрия ведет к увеличению растворимости азотной кислоты в растворах НЦГ—ЦГ. [c.110]

    Железо-ториевый шлам перерабатывают следующим образом шлам обрабатывают раствором сериой кислоты и хлористого калия, причем образуется труднорастворимая двойная соль —сульфат тория и калия, а железо и алюминий переходят в раствор. Чтобы полностью очистить эту двойную соль, содержащую еще некоторое количество железа, к отфильтрованному осадку приливают раствор соды. При этом образуется двойная растворимая соль — карбонат тория и натрия, а железо выпадает в осадок. Торий затем осаждается из двойной соли в виде карбоната серной кислотой. Осадок растворяют в азотной кислоте и переводят в нитрат тория. [c.85]


    Метилизобутилкетон не должен содержать более 1% органических примесей, так как увеличивается растворимость Сг и 2г. Коэффициент распределения урана и плутония между фазами улучшается в присутствии нитратов аммония, кальция, магния, натрия и аммония, а также азотной кислоты, повышение же температуры влияет неблагоприятно. Метилизобутилкетон растворяет в небольших количествах также 2г, N5, 11-238, Ки и Сг. Трибутилфосфат раство- [c.433]

    Получение малорастворимых солей лантаноидов. В пять пробирок внесите по 5—7 капель раствора соли лантаноида (лантана, церия или другого лантаноида). В первую пробирку добавьте такой же объем раствора гидрофосфата натрия, во вторую — оксалата калия или аммония, в третью — иодата калия, в четвертую — фторида натрия (калия или аммония) и в пятую — карбоната натрия. Во всех пробирках наблюдайте образование малорастворимых осадков лантаноидов фосфата, оксалата, иодата, фторида и карбоната. Изучите растворимость этих солей в разбавленных соляной и азотной кислотах. [c.242]

    При соблюдении рекомендуемых условий обжига получается пористая масса, легко растворимая в разбавленных серной и азотной кислотах. Из кислого раствора РЗЭ предложено выделять в виде фторидов, оксалатов или двойных сульфатов с натрием [44]. [c.103]

    Гетерополисоединения молибдена (VI) и вольфрама (VI). 1. В пробирку внесите несколько капель раствора любой соли ортофосфорной кислоты или раствор самой кислоты, добавьте 2—3 капли концентрированной азотной кислоты и прилейте 1—2 мл раствора молибдата аммония. Содержимое пробирки можно слегка подогреть, после чего выпадает малорастворимый в воде желтый осадок соли (NH4)3[PMoi204o]-бНгО, которая используется для количественного определения фосфора. Определите растворимость этой соли в растворе щелочи и напишите уравнения реакций образования соли и растворения ее в растворе гидроксида натрия. [c.155]

    Полезно знать следующее у азотной кислоты нет нерастворимых солей больщинство солей натрия и калия растворимы в воде. [c.82]

    Определение натрия в боре [405]. Метод основан на удалении бора в виде борнометилового эфира с последующим спектральным определением в растворе азотной кислоты. Используют аналитические линии натрия 330,30 или 330,23 нм, предел обнаружения натрия составляет 1-10 %, относительное стандартное отклонение равно 0,30. Для приготовления эталонных растворов берут растворимые в воде соли квалификации х. ч. Головной эталон содержит все определяемые примеси в концентрации 1-10 % каждого элемента в отдельности. Последовательным разбавлением головного эталона водой готовят серию эталонов, отличающихся по содержанию примесей в два раза. Метод позволяет определять также Mg, 81, А1, Си, РЬ, Ге, Р, Аз, Мо с пределом обнаружения >1-10 %. [c.106]

    Фитиновая кислота в 6М растворе азотной кислоты образует с торием (IV) осадок, нерастворимый в концентрированных кислотах, царской водке, растворах щелочей и эфире, но растворимый в присутствии цитрата натрия. Осаждение проводят в присутствии щавелевой кислоты, маскирующей титан (IV), цирконий (IV), уран (IV), железо (III), Осадок прокаливают при 1100°С до метафосфата тория ТЬ(РОз)4. [c.221]

    Дитионаты очень хорошо растворимы в воде. Дитионаты ш елочных и щелочноземельных металлов весьма устойчивы. Даже такие окислители, как бром, перманганат и азотная кислота, не действуют на них при обычных температурах. В кипящих растворах они медленно окисляются до сульфатов. При продолжительном нагревании с концентрированной соляной кислотой происходит превращение дитионатов в сульфаты с выделением двуокиси серы. Такие вещества, как амальгама натрия и цинк, в кислом растворе восстанавливают дитионаты до сульфитов. [c.167]

    Перйодат натрия, приготовленный из 100 г иода (около 225 г), суспендируют в 1 л кипящей воды, содержащей 10 мл концентрированной азотной кислоты (для увеличения растворимости перйодата). Небольшой избыток (против рассчитанного по уравнению) нитрата бария (325 г) растворяют в горячей воде раствор кипятят 1,5—2 часа при энергичном перемешивании. Затем раствор нейтрализуют гидроокисью бария и оставляют охлаждаться. Выкристаллизовавшийся перйодат бария промывают несколько раз декантацией горячей водой (каждый раз перемешивая кристаллы) и затем промывают на воронке Бюхнера. Если соль окрашивает пламя горелки в желтый цвет, ее снова кипятят с раствором азотнокислого бария в присутствии азотной кислоты, как было указано выше. [c.165]

    Для выполнения полного анализа применяют, три метода перевода силикатов в растворимое состояние, а именно разложение соляной или азотной кислотами, сплавление с карбонатом натрия и разло кение фтористоводородной кислотой. [c.142]


    А. Препараты висмута (около 0,05 г иона висмута) взбалтывают с 3 мл разведенной хлористоводородной кислоты и фильтруют. К фильтрату прибавляют 1 мл раствора сульфида натрия или сероводорода образуется коричневато-черный осадок, растворимый при прибавлении равного объема концентрированной азотной кислоты. [c.160]

    Упаривание реакционной смеси досуха и экстрагирование остатка спиртом позволяет отделить это соединение от неорганических солей. Бариевая соль хлорметансульфокислоты получена окислением хлорметилтиоцианата дымящей азотной кислотой и последующей обработкой реакционной смеси едким барием. Натриевая соль очень легко растворима в воде, растворимость бариевой соли значительно меньще. Свободная кислота, повидимому, не выделена в чистом состоянии, но в виде очень концентрированного раствора она описана [68] как сиропообразная жидкость, обладающая сильно выраженными кислотными свойствами. При 200" натриевая соль хлорметансульфокислоты реагирует с олеиновокислым натрием и другими солями жирных кислот [696], образуя продукт, пригодный для применения в качестве детергента или смачивающего агента  [c.118]

    АзгЗз И АзгЗа растворимы в водных растворах аммиака, гидроксидов, карбонатов и сульфидов калия, натрия или аммония с образованием тиосолей и в азотной кислоте с образованием мышьяковой и серной кислот  [c.78]

    Растворимость Ва504 в воде очень мала — 1 10 моль/л (не растворяется в соляной и азотной кислотах), растворимость ЫаС1, напротив, велика — 5,8 моль/л, следовательно, сульфат бария в 5,8/0,00001 = 580 000 раз менее растворим, чем хлорид натрия. [c.47]

    Бромид серебра и иодид серебра получают аналогично хлориду серебра. AgBr светло-желтый. Agi — желтый. Бромид серебра плохо растворим в аммиаке, иодид серебра не растворим в нем. Ag l, кроме раствора аммиака, растворим в растворе тиосульфата натрия, хлоридов щелочных металлов, цианида калия и роданида калия. Хлорид, бромид и иодид серебра не растворимы в разбавленной азотной кислоте. Бромид и иодид серебра растворимы в растворах тиосульфата натрия и цианида калия  [c.180]

    При сливании растворов хлорида натрия и нитрата серебра выпадает белый осадок Ag l (соли натрия и азотной кислоты растворимы в воде). В молекулярной форме уравнения стрелка вииз указывает на вещсство, выпадающее в осадок  [c.230]

    Сульфиды металлов растворяются в кислотах-окислителях (например,, в азотной кислоте). Сульфиды мышьяка (III) и (V) растворяются в водном растворе аммиака и карбонате аммония с образованием тио- и окситиосолей. Сульфиды мышьяка (III) и (V), сурьмы(III) и (V) и олова(IV) растворимы в щелочи и карбонате натрия с образованием тио- и окситиосолей. Сульфиды мышьяка(П1) и (V), сурь-мы(1П) и (V), олова(П) и (IV) и растворимы в полисульфиде аммония с образованием тиосолей, при этом полисульфид аммония является окислителем для мышьяка(1П), сурьмы(П1) и олова(И). Все эти сульфиды, кроме сульфида олова (И), растворяются и в сульфиде аммония с образованием соответствующих тиосолей. Эти свойства используют для отделения мышьяка, сурьмы и олова от сульфидов других катионов. [c.560]

    Стеароловая кислота легко получается в настоящее время путем дегидробромирования метилового эфира дибромолеиновой кислоты, протекающего под действием амида натрия в жидком аммиаке (см. том I 6.4). Так как отсутствие понижения температуры плавления смешанных проб кислот этого типа не является окончательным доказательством их идентичности, Арно сравнил растворимость ряда солей обеих кислот и убедился в том, что кислоты различны. В 1902 г. он опубликовал работу, в которой сообщил, что при окислении тарировой кислоты перманганатом в щелочной среде или азотной кислотой образуются адипиновая и лауриновая кислоты  [c.615]

    При анализе растворимых роданидов соль растворяется в воде, и осторожно прибавляемся раствор брома в азотной кислоте до тех пор, пока месь не станет красной. Затем смесь кипятят несколько минут и, наконец, выпаривают досуха, после прибавки небольшого количества раствора хлористого натрия для предотвращения возможной потери серной кислоты от улетучивания. Остаток смачивается соляной кислотой и снова аыпаривается досуха для разрушения азотной кислоты. В заключение он извлекается водой, подкисляется соляной кислотой, фильтруется, и сера осаждается хлористым барием. [c.87]

    Подлииность препарата устанавливают реакциями на ион серебра (образуется белый осат,ок прп действии соляной кислоты нли натрия хлорида, н " растворимый в азотно кислоте, легко растворимый в аммиаке  [c.94]

    Амииохинол — аморфный желтый порошок, -i. пл. 196—198 (с разл.), растворимый в Воде, не растворим в спирте, эфире, ацетоне. С йодидом иалня дает бледно-желтый студенистый осадок. После разложения амиио-хинола раствором едкого натра н извлечения основания эфиром в водном растворе фосфат-ион определяют по образованию желтого осадка с молнб-датом аммония в присутствитг азотной кислоты н нитрата аммония. Галоген определяют пробои Бейльштейна. [c.370]

    Для выделения азотистой кислоты из нитрита натрия обычно применяют соляную кислоту, хотя серная и азотные кислоты тоже пригодны для этой цели. Количество кислоты может изменяться от сте-хиометрического до большого избытка концентрированной кислоты, в зависимости от растворимости гидразида и легкости образования вторичного гидразида. Часто применялась уксусная кислота [214—217], особенно в случае соединений, чувствительных к действию минеральных кислот, но при этом увеличивается вероятность образования вторичных гидразидов. Гидразиды изоксазол-5-карбоновой [218] и цитр-аконовой [218, 219] кислот в уксуснокислой среде превращаются во вторичные гидразиды, но в минеральной кислоте образуются Азиды. При действии нитрита натрия и уксусной кислоты на гидразиды беп-зоилглициласпаргиновой [97], глутаровой [220] и К-нитрозоиминоди-уксусной [221] кислот не происходит никакой заметной реакции, но при добавлении минеральной кислоты азиды выпадают в осадок. [c.352]

    Несколько позднее англичанин Скотт-Арчер разработал способ изготовления коллоидных фотоматериалов, в котором на стеклянную пластинку наносили слой эмульсии из коллоксилина (эфира целлюлозы) и азотной кислоты примерного состава [СеНуОг (ОЫОг) з] п в смеси со спиртом, в которую вводились растворимые в спирте бромид и иодид натрия. После частичного испарения растворителя пластинка также помещалась в раствор AgNOз и в результате в слое эмульсии образовывался однородный слой, содержащий смесь мелкодисперсных светочувствительных кристаллов бромида и иодида серебра. [c.183]

    Фосфиды. Свойства фосфидов марганца приведены в табл. 9 [569]. ]Ионофосфид марганца получают иагреванпем смеси красного фосфора и возогнанного в вакууме электролитического марганца, а МпаР п МпР — электролизом расплавов, содержаш,их МП2О3 и фосфат натрия. Фосфиды марганца растворяются в азотной кислоте п царской водке, причем растворимость увеличивается с уменьшением содержания в них фосфора. [c.21]

    Обычным методом получения нитратов рубидия и цезия является реакция нейтрализации их гидроокисей и карбонатов разбавленной азотной кислотой с последующим упариванием раствора досуха и нагреванием сухого остатка до плавления [93]. Нитрат цезия, благодаря меньшей растворимости в воде по сравнению с нитратами калия и особенно рубидия, может быть в значительной степени очищен от примесей этих элементов методом фракционированной кристаллизации [117, 302, 303]. Изучение поведения примесей калия и цезия при кристаллизации из воды нитрата рубидия показало, что коэффициент сокристаллизации (/)ц) примеси калия в интервале температур от О до 50° С больше единицы 0 = 6,2 при 25° О., в то же время для цезия [290] Оа = 0,74 при 25° С, и, таким образом, кристаллизация нитрата рубидия приводит к уменьшению в нем содержания примеси цезия и увеличению примеси калия. В присутствии ацетона величина возрастает до 0,95 [290]. Удаление некоторых примесей (железа, меди, свинца, натрия, калия и рубидия) из нитрата цезия можно произвести последовательной обработкой водного раствора технического продукта сначала 3%-ным водным раствором диэтилдитиокарбамата натрия при pH = 8, а затем активированным углем. Фильтрат упаривают до начала кристаллизации, а выделившиеся кристаллы подверг.ают. Трехкратной перекристаллизации. Наиболее эффективным методом получения особо чистых нитратов является кристаллизация анион-талогенаатов, в частности трехкратная кристаллизация дихлорио-Даатов Ме[1(С1)2] с последующей обработкой продукта азотной Жислотой [117, 304]. Для получения нитрата цезия без примеси ру- Йидия предложен также метод зонной плавки [305]. [c.125]

    Для растворения окиси тория используют азотную кислоту, содержащую небольшое количество (0,01—0,05Л1) плавиковой кислоты или фторосиликата натрия [1804, 1873]. При сплавлении с карбонатами щелочных металлов ТЬОг не разлагается. При действии горячей плавиковой кислоты или газообразного фтористого водорода при 250—700° ТЬОг переходит во фто-)ид — ТЬр4 [1553]. Растворимость окиси тория в воде при 25° 189] менее, чем 0,00002 г ТЬОг в 1 л воды (примерно 7. 10-8 М л). [c.27]


Смотреть страницы где упоминается термин Растворимость в азотной кислоте натрия: [c.50]    [c.209]    [c.60]    [c.200]    [c.84]    [c.205]    [c.59]    [c.289]    [c.204]    [c.396]    [c.381]    [c.86]    [c.127]    [c.115]    [c.139]    [c.148]    [c.324]    [c.187]   
Инженерный справочник по технологии неорганических веществ Графики и номограммы Издание 2 (1975) -- [ c.276 ]




ПОИСК





Смотрите так же термины и статьи:

Азотная натрия

Растворимость в кислотах



© 2025 chem21.info Реклама на сайте