Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород бензохинона

    Для предотвращения полимеризации при хранении и транспортировке мономерных материалов в них вводят небольшие количества гидрохинона последний давно известен и широко применяется в качестве ингибитора полимеризации. Ингибирующее действие гидрохинона проявляется только в присутствии небольших количеств кислорода или перекисей, и поэтому практически ингибитором следует называть продукт реакции гидрохинона с кислородом—бензохинон. [c.43]


    Отсюда следует, что метилметакрилат действует аналогично таким типичным акцепторам, как кислород, бензохинон, а ви-нилацетат в этих условиях инертен и не взаимодействует с макрорадикалами. [c.146]

    При обработке природного каучука на вальцах в присутствии воздуха небольшие количества кислорода реагируют с каучуком с обрывом молекулярных цепей, что сопровождается уменьшением среднего молекулярного веса и соответственно понижением вязкости. Этого изменения но наблюдается или же оно происходит в очень ограниченной степени, если вальцевать каучук в атмосфере азота [3, 39]. Под воздействием разрывного усилия, приложенного к жесткому каучуку, молекулы моя но разрывать при обычной температуре. Осколки полимера могут вновь соединяться, в присутствии же кислорода они соединяются с последним. В атмосфере азота бензохинон и некоторые другие вещества также присоединяются к каучуку, при этом снижаются средние значения молекулярного веса и вязкости. [c.217]

    Ароматические углеводороды вследствие своей резонансной характеристики более устойчивы к иррадиации [772, 773], но с ними могут индуцироваться химические реакции. Таким образом, обработка Х-лучами нейтральных водных растворов бензола, насьщенного кислородом, дает фенол, пирокатехин-хинол, пара-бензохинон, альдегид и следы дифенила. В этом случае молекулярный кислород, но-видимому, принимает участие в реакциях радикалов [774]. Можно заметить для сравнения в водном растворе, содержанием кислород и этилен, гамма-лучи вызывают цепные реакции, которые образуют альдегиды с меньшим содержанием спиртов, кислоты, перекиси водорода и других перекисей. Для альдегидов выход в молекулах на 100 эе был около 200 [775]. Подобным же образом индуцируется гамма-лучами хлорирование более низких ароматических соединений таких, как бензол, толуол, ксилол и мезитилен однако бензол устойчив [776]. Как для бензола, так и для толуола хлорирование пропорционально квадратному корню интенсивности излучения это применимо и к присоединению, и к замещению [777 ]. Изучалось также и влияние радиации на асфальты [778]. Изменения, по-видимому, в отличие от вызываемых продувкой воздухом, линеарны по времени и проходят с небольшой скоростью. [c.152]

    Скорость реакции уменьшается или реакция полностью подавляется в присутствии веществ, улавливающих свободные радикалы, например оксида азота (V), молекулярного кислорода или бензохинона. Эти вещества называют ингибиторами. [c.56]


    Связи С...О. На рис. 15 в качестве примера изображена структура комплексов, образуюш,ихся вследствие слабого химического взаимодействия между кислородом карбонильной группы одной из молекул тетрахлор-л-бензохинона и углеродом карбонильной группы другой молекулы. [c.87]

    Другие хиноны. Описанный выше хинон правильнее назвать л-бензохиноном. Существует ряд других хинонов, в которых атомы кислорода находятся в пара- или орто-положении. Так, при осторожном окислении пирокатехина получается о-бензохинон-  [c.461]

    Аналогично и гидрохинон переходит в д-бензохинон, промежуточно возникающий семихинон можно зафиксировать в щелочной среде Эта реакция особенно хорошо протекает как аутоокисление (кислород воздуха, пятиокись ванадия) [c.29]

    Особенно перспективным было изучение окисления аиа-базина кислородом воздуха. В последнее время этот способ окисления все шире начинает применяться в органической химии. Для примера можно привести работу Баррет относительно каталитического окисления бензола воздухом при температуре 300—350° в присутствии пятиокиси ванадия. При этом получаются бензохинон и малеиновая кислота. [c.58]

    Эти реакции являются наглядным примером дестабилизации ароматических систем фенольными гидроксилами. Аналогично разрушает ароматическую я-систему атом кислорода в процессе окисления орто- и пара-диоксибензолов в о/ /ио-и иаро-бензохиноны  [c.442]

    Поляризация я-системы атомами кислорода в пара- и ор/ио-хинонах различна. Об этом свидетельствуют различные хромофорные свойства обоих соединений. п-Бензохинон желтого цвета, тогда как ор/ио-бензохинон имеет красную окраску. Следовательно, сопряженная я-система о-бензохинона поляризована сильнее, чем п-бензохинона. Из теории цветности хорошо известно, что у многих ареновых систем, в том числе трифенилметановых, переход бензольных я-хромофоров в хиноидные в процессе тех или иных хи- [c.477]

    Молекула 1,4-бензохинона имеет плоское строение. Все атомы углерода и кислорода в ней находятся в 5р -гибридном состоянии. [c.186]

    Если в растворе (стр. 285) присутствует хинон (например, /г-бензохинон, фенантренхинон) [271], то некоторые из этих реакций могут протекать в отсутствие кислорода. В этих случаях в продуктах реакции обнаруживаются соответствующие гидрохиноны. [c.278]

    При количественных исследованиях эти акцепторы радикалов значительно удобнее, чем кислород, так как их концентрацию в полимере можно легко контролировать кроме того, применение этих соединений автоматически устраняет усложняющий эффект термоокислительной реакции при более высоких температурах. Влияние концентрации бензохинона на горячую и холодную пластикацию в атмосфере кислорода и азота показано на рис. 39. Скорость горячей пластикации постепенно уменьшается с увеличением концентрации ингибитора, как этого и следовало ожидать для цепной радикальной реакции, а скорость пластикации на холоду возрастает в полном согласии с рассмотренной выше теорией однако выше определенной концентрации наблюдается обратный эффект, что связано, согласно Пайку и Уотсону, с протеканием процессов сшивания , конкурирующих с деструкцией. [c.92]

    Численные значения всех основных величин, характеризующих сопряженные и ароматические молекулы, удобно представить в виде молекулярной диаграммы. На такой диаграмме порядки связей пишутся вдоль связей, результирующий заряд каждого атома (в единицах заряда электрона) указывается вблизи атома, а свободная валентность изображается стрелкой, как отмечалось в предыдущем разделе. В качестве примера на рис. 9.18 приведены молекулярные диаграммы для молекул бензола (а), нафталина (б), анилина (е) и бензохинона (г). Атомам азота и кислорода в двух гетероциклических молеку- [c.291]

    Кислород играет важную роль в разрушении каучука прп вальцевании. В нормальных условиях падение вязкости как функция температуры вальцевания проходит через минимум при темнературе. около 100°. Ускоренное разрушение каучука при температурах выше 100° проявляет все черты окислительной деструкции. Например, ингибиторы замедляют падение вязкости. Однако разрушение при температурах ниже 100° с понижением температуры увеличивается (т. е. скорость реакции имеет отрицательный температурный коэффициент), а ингибиторы не уменьшают разрушения. Эйринг и Кацман [365] предположили, что при холодном вальцевании происходит механический разрыв первичных связей, в результате чего образуются радикалы, стабилизирующиеся кислородом. Без кислорода такой распад ничтожен. Вероятно, это объясняется рекомбинацией радикалов. Позже Уотсон [366] показал, что такая картина деструкции при холодном вальцевании в основном правильна. Так, в отсутствии кислорода ингибиторы проявляют в процессе разрушения такое же действие, как и кислород. Бензохинон и тиофенол обладают приблизительно такой же эффективностью, как и кислород одиако многие другие соединения менее эффективны (фенол, например, почти не способен к обрыву цепей). [c.309]

    Реакции, относящиеся к группе А, по-видимому, более древние в эволюционном отношении. В клетках с анаэробным обменом протекают только такие реакции, а в аэробных клетках именно они производят большую часть энергии. Простые каталитические реакции дегидрирования были, вероятно, с самого начала присущи древним живым формам, возникшим задолго до появления кислорода в земной атмосфере. Важная роль дегидрирования в биохимических процессах впервые была отмечена Виландом (20-е годы) Вилапд основывался в своих выводах на исследованиях, в которых было показано, что коллоидный палладий действует как катализатор реакций дегидрирования (переносчик водорода) при окислении разнообразных органических соединений акцептором А, например молекулярным кислородом, бензохиноном, метиленовым синим и т. д. [c.368]


    Кроме того, существенным может быть еще одно обстоятельство/Некоторые бифункциональные акцепторы, например кислород, бензохинон и другие, могут 0браз01вывать стабильный свободный макрорадикал, который, рекомбинируя с другим макрорадикалом, дает стабильный фрагмент — обрывок исходной макромолекулы, включающий авено акцептора в основную цепь. Это в значительной степени отражается на гибкости осколков макромолекул, составляющих продукты деструкции, а следовательно, и на всех свойствах, связанных с гибкостью цепи. Следует учитывать и возможность миграции неспаренного электрона с образованием новой функциональной группы на значительном удалении от места разрыва цепи. Здесь обращается внимание только на факт неизбежного возникновения новых концевых групп, а их природа, зависимость ее от характера среды и т. п. подробно рассматриваются ниже. [c.65]

    Однако чистый бис- хлорметил)оксациклобутан при облучении при —30° образовывал полимер [21, 36[. При 0° и мощности дозы 57 ООО рад/мин выход равнялся 17% на 1 Мрад [59]. Как и в случае изобутилена, скорость полимеризации уменьшалась с увеличением дозы и молекулярный вес также уменьшался с увеличением степени превращения. Это наводит на мысль о конкурентном образовании ингибитора. Для этой системы характерен ряд особенностей, общих для процессов полимеризации в твердой фазе. При 0° скорость превращения мономера, подвергнутого медленной кристаллизации при 0°, на 50% больше, чем мономера, быстро охлажденного до —196°. В интервале температур от —78 до 18,5° (температура плавления мономера) энергия активации реакции равна 3 ккал/моль, но в жидкой фазе скорость превращения ничтожно мала. При 0° кислород, бензохинон, дифенилпикрилгидразил, гидрохинон и вода не влияли на скорость полимеризации. Добавки 10% парафина, к-бутиламина или диметилсульфокси-да несколько замедляли реакцию, но это, вероятнее всего, связано с ухудшением условий кристаллизации мономера [59]. Рентгеноструктурный анализ показал, что при применении мономера в виде монокристалла структура образующегося кристаллического полимера отражала структуру мономера [91]. Поскольку бис-(хлорметил)оксациклобутан не полимеризуется под действием радикальных инициаторов, нет сомнений в том, что радиационная полимеризация его протекает по катионному механизму. [c.551]

    Особо следует остановиться на предельно допустимых концентрациях примесей титана в каучуках. Этот вопрос имеет большое практическое значение, так как большинство катализаторов стереоспецифической полимеризации содержат в своем составе трехвалентный титан. Известно, что окисление трехвалентного титана проходит через стадию образования свободных радикалов. При окислении трехвалентного титана кислородом наблюдается деструкция полибутадиена и полиизопрена [43]. В этой же работе было показано, что многие антиоксиданты, применяемые для стабилизации каучуков, не оказывают ингибирующего действия на процесс деструкции, вызываемый окислением трехвалентного титана кислородом. В этом случае ингибиторами являются такие соединения, как нитробензол, азобензол, бензохинон (которые, как известно, окисляют трехвалентный титан в четырехвалентный) или дифенилпикрилгидрозил, образующий с треххлористым титаном нерастворимый комплекс, выпадаюп1,ип в осадок. Совокупность данных по влиянию титана на стабильность полибутадиена и полиизопрена позволяет считать, что предельно допустимая концентрация этого металла лежит близко к 0,01% (масс.). Для каучуков, имеющих в основной цепи полярные заместители (например, для нитрильных каучуков) предельно допустимые концентрации примесей металлов переменной валентности могут быть несколько более высокими (это не относится к примеси железа). [c.632]

    Способность гидроксиалкилпероксидных радикалов восстанавливать была доказана кинетически при окислении изопропа-нола с бензохиноном [215]. По зависимости скорости инициированного окисления от парциального давления кислорода было установлено, что с бензохиноном реагируют и алкильные и пероксидные радикалы окисляющегося спирта. [c.118]

    Цепи могут обрываться также при взаимодействии радикалов с ингибиторами. В качестве ингибиторов могут использоваться малоактивные стабильные свободные радикалы, например дифе-нилпикрилгидразил, Ы-оксидные радикалы, которые сами не инициируют полимеризацию, но рекомбинируют или диспропорциони-руют с растущими радикалами. Ингибиторами могут служить также вещества, молекулы которых, взаимодействуя с активными радикалами, насыщают их свободные валентности, а сами превращаются в малоактивные радикалы. К числу последних относятся хиноны (например, бензохинон, дурохинон), ароматические ди- и тринитросоединения (динитробензол, тринитробензол), молекулярный кислород, сера и др. Ингибиторами могут быть также соединения металлов переменной валентности (соли трехвалентного железа, двухвалентной меди и др.), которые обрывают растущие цепи за счет окислительно-восстановительных реакций. Часто ингибиторы вводят в мономер для предотвращения их преждевременной полимеризации. Поэтому перед полимеризацией каждый мономер необходимо тщательно очищать от примесей и добавленного ингибитора. [c.11]

    Путем взаимоде 1ствия радикалов с ингибитором, которым могут быть а) малоактивные свободные радикалы, не инициирующие полимеризацию, но способные рекомбинировать (или диспро-порционировать) с растущим радикалом б) молекулы, которые, взаимодействуя, насыщают свободные валентности радикалов, а сами превращаются в малоактивные радикалы. Так действуют многие хиноны (бензохинон), ароматические ди- и тринитросоединения, молекулярный кислород, соединения металлов переменной степени окисления (соли Ре +, u + и др.). Здесь ингибирование сводится к передаче электрона  [c.387]

    В присутствии кислорода такие фенолы, как гидрохинон и п-этоксифенол, исключительно эффективно ингибируют полимеризацию стирола, поскольку фенолы обычно активны именно в отношении перекисных радикалов. Бензохинон и его производные предотвращают термополимеризацию стирола (создавая значительный период индукции) и в отсутствие кислорода, даже при наличии сильного радикального инициатора азобисизобутирони-трила. [c.174]

    Окисление фенолов. Фенолы весьма легко окисляются даже кислородом воздуха. При этом вначале образуется свободный феноксильный радикал flHsO, который быстро превращается в различные более сложные продукты окисления. Прн окислении фенола сильными окислителями, кроме углерода, связанного с гидроксилом, окисляется и другой атом углерода, находящийся в /1-положении к гидроксилу, и образуется бензохинон (подробиее о хинонах см. стр. 286)  [c.278]

    Наиболее сильно искаженные додеказамещенные порфирины (10) были нами получены конденсацией альдегидов с 3,4-дизамещенными пирролами (11), причем методы их синтеза мало отличаются от таковых для наиболее известных синтетических лезо-тетрафенилпорфиринов. Это две известные модификации метода конденсация пиррола с альдегидом в кипящем растворителе, содержащем кислоту в присутствии кислорода воздуха (А) или конденсация под действием кислотного катализатора в мягких условиях до порфириногена (12) с последующим его окислением производными бензохинона (Б) (схема 4, табл. 4) В отличие от порфириногенов ряда тетрафенилпорфина, додеказамещенные порфириногены 12 достаточно устойчивы к окислению, что позволяет выделять их в чистом виде и хранить. [c.370]

    О Аг (80г Н)2- Таким образом они содержат две 80аК-группы вместо хинонного кислорода. Из соединений этого рода известны бензохинон-дисульфон (П1) и 1, 4-нафтохинондисульфон (IV). Получаются они конденсацией хинонов с этилмеркаптанами и окислением получающихся промежуточных продуктов, отвечающих формуле I или II [c.543]

    Окисление органических соединений чаще всего осуществляется при помощи следующих окислителей кислорода воздуха, перманганата калия, хромовой смеси (получаемой растворением бихромата калия или натрия в серной кислоте), хромового ангидрида, азотной кислоты, озона, двуокиси свинца, окиси серебра, трет-бу-тилата алюминия и др. Действие окислителя на органическое соединение зависит от характера окисляемого вещества и от химической природы самого окислителя. Так, например, при окислении анилина хромовой смесью образуется бензохинон бертолетовой солью или хромпиком в присутствии катализатора (соли ванадия, меди или железа)—анилиновый черный (красител сложного строения) перманганатом калия в нейтральной среде — азобензол, в щелочной — нитробензол хлорноватой кислотой — /г-аминофе-нол  [c.182]

    Убихиноны (коферменты О, коэнзимы О) — группа соединений, осуществляющих транспорт электронов от субстрата к кислороду и составляющих дыхательную цепь. В основе убихинонов лежит ядро бензохинона, содержащего у группу -СН3. у 5 и -ОСН3  [c.303]

    Аналогично тому как больишнство радикалов способны к отщеплению атомов водорода, не удивительно, что триплеты также могут реагировать таким путем. Отщепление водорода карбонильными соединениями в триплетном состоянии, как и можно было ожидать, особенно облегчено, так как атом кислорода в триплетном состоянии карбонила является электрононедостаточным и должен вести себя подобно электрофильному алкокси-радикалу. Облучение бензохинона в присутствии различных доноров водорода позволяет определить относительные скорости отщепления водорода, которые оказались симбатны скоростям, полученным при использовании трет-бутокси-радикала. В табл. 6.1 приведены данные, иллюстрирующие это положение. [c.74]

    При облучении бензохинона РЬ2С=0 в изопропиловом спирте при температуре 25° С светом с длиной волны 3660 А получаются Р1]2С(0Н)—(0Н)СРЬ2 с квантовым вых,одом 0,93 и ацетон с квантовым выходом 0,92. При наличии в системе растворенного кислорода квантовый выход ацетона не меняется, а бензопинакола падает до 0. Предложите механизм для этой реакции [И].  [c.76]

    Влияние бензохинона на скорость пластикации натурального каучука в атмосфере азота и яа воздухе иллюстрирует рис. 93. Как видно из рисунка, наиболее активным акцептором является кислород. Присутствие бензохинона наряду с кислородом ие оказывает существенного влияния на скорость пластикации, свидетельствуя об отсутствии аддитивн0 сти действия акцепторов. В среде азота бензохиион как акцептор показывает высокую активность. Предполагается, что бензохиион, взаимодействуя с макрорадикалами, образует относительно более стабильный радикал  [c.124]

    Виланд [47, 48] считает акцепторами водорода не типичные кислородсодержащие окисляюнще вещества, а вещества, способные специфично принимать водород, например, хинон, производные хинона и метиленовую синьку. Некоторые акцепторы водорода (гидрохинон, гидразобензол, дигидронафталин и дигидро-антрацен в присутствии палладиевой черни) можно окислять в дегидрогенизован-ные соединения в отсутствии воздуха. Установлено, что органические соединения, содержащие гидроксильные группы или аминогруппы, т. е. такие вещества, как углеводы, оксикислоты, фенолы и аминокислоты или анилин, превращаются в продукты окисления такими дегидрогенизационными катализаторами, как палладиевая или платиновая чернь в отсутствии кислорода, но в присутствии хинона или метиленовой синьки. Для соединений, не содержаищх легко отщепляющихся водородных атомов, Виланд предполагает дегидрогенизацию их водородсодержащих форм. Таким образом, например, превращение альдегидов в кислоты должно происходить в процессе дегидрогенизации альдегидгидратов. Окислять альдегиды в кислоты можно также без кислорода в присутствии бензохинона или метиленовой синьки как акцепторов водорода. Таким образом, окисление окиси углерода в муравьиную кислоту должно проходить через гидрат окиси углерода окисление сернистого газа —через сернистую кислоту. [c.575]


Смотреть страницы где упоминается термин Кислород бензохинона: [c.124]    [c.88]    [c.88]    [c.95]    [c.548]    [c.266]    [c.267]    [c.107]    [c.424]    [c.478]    [c.478]    [c.304]    [c.340]    [c.97]    [c.69]    [c.26]   
Изотопы в органической химии (1961) -- [ c.316 ]




ПОИСК





Смотрите так же термины и статьи:

Бензохинон

Бензохинон обмен кислорода



© 2025 chem21.info Реклама на сайте