Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий с лантаном

    При определении в аммиачной среде в присутствии винной кислоты и фторида калия титан, ниобий, тантал, вольфрам, алюминий, лантан анализу не мешают. При определении в кислой среде анализу не мешают алюминий, магний, цинк, кадмий, кобальт, свинец, РЗЭ при отношении их количеств к количеству молибдена не более 1 1. Ионы железа (III), циркония и гафния, образующие устойчивые комплексонаты в кислой среде, определению содержания молибдена мешают. [c.175]


    Индий, алюминий, лантан, церий, цирконий [c.441]

    Описан атомно-абсорбционный метод определения 0,2— 20 мкг/мл фторида [172]. Фторид снижает абсорбционные характеристики магния в воздушно-ацетиленовых пламенах, изменение интенсивности поглощения линии магния (285,2 нм) пропорционально концентрации фторидов. Основными мешающими ионами являются сульфат и фосфат алюминий, лантан, оксалат и ацетат также мешают определению фторидов. Этот метод экспресснее двух упомянутых выше и может быть использован без предварительного отделения фторида. Один из вариантов этого метода основан на увеличении поглошения циркония в пламени оксида азота(I)—ацетилен в присутствии фторида (5—200 мкг/мл), число мешающих ионов невелико. В аналогичном методе, основанном на увеличении поглощения титана в том же пламени в присутствии фторида (40—400 мкг/мл), присутствие фосфата и сульфата не мешает определению фторида. [c.360]

    В гексагональной плотной упаковке и близкой к ней решетке кристаллизуются многие металлы, например магний, -кальций, цинк, кадмий, иттрий, а-лантан, а-таллий, титан, гафний и -хром. Гексагональную плотную упаковку имеет также твердый водород Н2. Гранецентрированную кубическую плотную упаковку образует большинство инертных газов, некоторые вращающиеся простые молекулы, например СН4 и НС1, и многие металлы, в том числе стронций, а-кальций, алюминий, -лантан, -таллий, свинец, Y-железо и никель. [c.90]

    Литий. . Натрий. Калий. . Рубидий. Цезий. . Магний. Кальций. Стронций Барий. . Алюминий Лантан.  [c.48]

    Увлажнение смешиваемых компонентов в некоторых случаях не производят. Так поступают при получении катализатора на основе доломита, закиси никеля, гидроокиси алюминия и каолинита. С указанной целью смесь этих компонентов обрабатывают слабыми растворами азотной или фтористоводородной кислоты при повышенной температуре. Полученная тестообразная масса смешивается с нитратами металлов (никель, лантан, кобальт). [c.22]

    К третьей группе относятся типические элементы (бор, алюминий), элементы подгруппы галлия (галлий, индий, таллнй) и подгруппы скандия (скандий, иттрий, лантан, актиний) к этой группе часто относят элементы семейств церия (лантаноиды) и тория (актиноиды). [c.508]

    Азот. . , Алюминий Аргон. . Барий. Бериллий. Бор. . , Бром. . Ванадий. Висмут. . Водород. Вольфрам Галлий. , Гелий. . Железо, Золото. . Индий. . Иод. . . Иридий Кадмий. Калий. . Кальций, Кислород Кобальт Кремний Криптон. Ксенон. . Лантан. . Литий. . Магний Марганец Медь. . . Молибден Мышьяк. Натрий. . Неон. . . Никель. , Олово. Осмий. . Палладий Платина Радий. Радон. Рений. Родий. . Ртуть. . Рубидий,  [c.285]


    Этот же принцип Д. И. Менделеев строго соблюдает и внутри каждой группы при расположении элементов главных подгрупп и переходных металлов. Действительно, наиболее электроположительные металлы располагаются в I группе слева от более электроотрицательных меди, серебра и золота. Во П группе щелочноземельные металлы с ярко выраженными электроположительными свойствами располагаются слева от заметно более электроотрицательных элементов подгруппы цинка. В П1 группе слева Д. И. Менделеев располагает скандий, иттрий и лантан, обладающие типичными металлическими свойствами, а справа — амфотерные, значительно более электроотрицательные элементы подгруппы бора алюминий, галлий, индий и таллий. В IV группе на том же основании подгруппа титана располагается слева от подгруппы углерода. Во всех остальных группах подгруппы переходных металлов находятся слева от неметаллических элементов главных подгрупп. [c.78]

    Восстановлением трихлоридов кальцием, натрием и литием можно получить все РЗЭ, за исключением Sm, Eu и Yb, весьма устойчивых в двухвалентном состоянии (при восстановлении их трихлоридов получают не металл, а дихлориды). Sm, Eu и Yb можно получить, восстанавливая их окислы лантаном, церием, цирконием и алюминием и одновременно дистиллируя получаемые металлы. Несмотря на близкие значения теплот образования окислов восстанавливаемых металлов и восстановителя, процесс осуществляется благодаря значительной разности в упругости паров получаемого металла и восстановителя. Самарий восстанавливают при 1400° в вакууме (10" мм рт. ст.)  [c.144]

    Металл получается в виде корки, образующейся на поверхности танталового конденсатора. Чистый самарий получается только при восстановлении лантаном. Церий и алюминий загрязняют его. Этим же методом получены при 1350° Yb и при 900° чистейший Eu [1471. [c.144]

    Некоторые металлы, в том числе титан, цирконий, гафний, лантан и лантаноиды, удобнее всего получать взаимодействием их окислов или галогенидов с более электроположительным металлом. Для этих целей часто используют натрий, калий, кальций и алюминий. Так, титан можно получить восстановлением тетрахлорида титана кальцием [c.329]

    Можно ли получить металлический лантан из окиси лантана реакцией с порошком алюминия (См. разд. 6.12.) [c.542]

    Дикетоны, содержащие. алюминий, барий, бериллий, бор, цезий, хром, кобальт, никель, железо, медь, лантан, молибден, палладий, платину, торий, титан, вольфрам, уран, ванадий, [c.322]

    Изотопический обмен и возбуждение спектров уравновешенного газа разделены. Последнее дает возможность более гибко подбирать оптимальные условия анализа, обеспечивать высокую чувствительность определений. Разработаны методики определения водорода в алюминии, титане, ванадии, хроме, железе, кобальте, никеле, меди, цинке, иттрии, цирконии, ниобии, молибдене, палладии, кадмии, лантане, празеодиме, неодиме, тантале и вольфраме. Преимущество данного варианта заключается в возможной вариации температуры и времени обмена (для разных металлов и газов от 400—500° С до 2000—2100° С и от 5— 0 мин до 2—Зч), применении ваин (железных, никелевых, кобальтовых), графитовых тиглей различной формы и других необходимых в процессе анализа изменений. [c.23]

    Азот . Актиний. Алюминий Америций Аргон. . Астат. . Барий . Бериллий Берклий Бор. . . Бром. Ванадий. Висмут Водород. Вольфрам Гадолиний Галлий Гафний Гелий. Германий Гольмий. Диспрозий Европий Железо Золото Индий Йод. Иридий. Иттербий Иттрий Кадмий. . Калий. Калифорний Кальций. Кислород Кобальт Кремний. Криптон. Ксенон Кюрий Лантан Литий. . Лютеций Магний Марганец Медь. Менделевий Молибден Мышьяк. Натрий Неодим [c.437]

    Способы получения нанесенных материалов с улучшенной термостойкостью особенно важны для катализаторов, подверженных локальным перегревам (например, метанирование) или требующих окислительной регенерации (например, прямое ол<ижение). Введение катионов является одним из способов придания термической стабильности нанесенным материалам. Например, оксид алюминия нуждается в стабилизации для предупреждения его высокотемпературного перехода в а-фор-му, при этом поверхность обычно уменьшается с 250 до 1 м /г. Если к оксиду алюминия добавить немного оксидов элементов группы II (кальций, стронций, барий) [30] или редкоземельных элементов (церий, лантан) [31] и затем прокалить при 1200" С в течение 2 ч, то получается стабильная поверхность порядка 20—100 м /г. Указанные материалы можно использовать как термически стабилизированные носители. Они нашли применение в катализаторах очистки выхлопных газов автомобилей и в каталитическом сжигании. [c.53]

    Для защиты судовых конструкций чаще всего используют алюминий с легирующими добавками, например, цинком или лантаном. Алюминиевые покрытия в сочетании с лакокрасочными покрытиями обладают высокой стойкостью в морской воде, имеют повышенную стойкость к эрозии. [c.159]

    Для комплексов катионов металлов первой группы (во внешней электронной оболочке находится 2 или 8 электронов) и для некоторых переходных металлов (с недостроенным -подуровнем) основным фактором является размер лигандов. Фторидные комплексы прочнее, чем хлоридные, а хлоридные прочнее бро-мидных и иодидных. Так, бериллий, магний, алюминий, лантан, цирконий образуют прочные фторидные комплексы (IgPi равны соответственно 4,3 1,3 6,1 2,8 8.8) устойчивость же комплексов названных элементов с хлорид-, бромид- и иодид-ионами невелика или они вообще не образуются. Из пере.ходных металлов такая же закономерность наблюдается, например, для железа и марганца устойчивость фторидных, хлоридных и бромидных комплексов этих металлов характеризуется соответственно числами 5,3 1,5 и —0,3 (железо) а также 5,5 и 0,96 (марганец). [c.256]


    В золе исследуемых фракций нефтей Таджикской депрессии нолуколичественным спектральным анализом были обнаружены следующие микроэлементы натрий, медь, серебро, берилий, магний, кальций, стронций, барий, цинк, алюминий, лантан, кремний, олово, свинец, титан, цирконий, сурьма, висмут, ванадий, хром, молибден, марганец, железо, никель. Чтобы проследить распределение по фракциям тех микроэлементов (ванадий, хром, марганец, железо, никель, медь, свинец, молибден), которые были количественно определены в самой нефти, подобное определение их производилось и во всех изученных фракциях. Как видно из таблицы, микроэлементы распределены по фракциям неравномерно. Основная масса, например ванадия, сконцентрирована в асфальтенах и спирто-бензольных смолах, а никеля — в асфальтенах и петролейноэфирных маслах (исключение составляют фракции нефти Алмасы). Соответствук>щие данные показаны па рис. 5, 6. Что касается других микроэлементов (хром, марганец, медь, свинец, молибден), то в их распределении также наблюдается определенная закономерность. [c.127]

    Натрий. . Лити11. . Кадмий Свинец. . Цинк. . . Магний. . Алюминий Лантан. . Кальций. Медь. . .  [c.373]

    Литий, рубидий, калий, це зий, радий, барий, стронций кальций, натрий, лантан, маг НИИ, плутоний, торий, непгу нпй, берилли , уран, гафни) алюминий, титан, цирконий, ва надий, марганец, ниобий, хром цинк, галлий, железо [c.40]

    Типическим (по Менделееву) элементом-метзллом П1 группы,, со свойствами которого мы будем сравнивать свойства элементов главной и побочной подгрупп этой группы, является алюминий. Его легкий аналог — бор — относится к числу элементов-неметаллов, и химия его рассматривается в другом разделе курса неорганической химии [1]. Тяжелыми аналогами алюминия, входящими в состав главной подгруппы III группы, мы будем считать скандий, иттрий, лантан и ланта-ниды — 17 элементов, объединяемых под назвзнием редкоземельные (РЗЭ). [c.49]

    Скандий применяется в качестве присадки к некоторым сплавам. Если бы были разработаны методы получения дешевого иттрия, он, как легкий металл, мог бы найти значительное применение в сплавах с алюминием для авиационной промышленности. Окись иттрия с содержанием примесей не более 1 10" % идет для изготовления итгриевых ферритов, использующихся в радиоэлектронике, в счетно-решающих устройствах и пр. Так как лантан при сгорании выделяет больше тепла, чем алюминий, он применяется в зажигательных сплавах. Соединения лантана используются для изготовления глазурей, оптического стекла, а также в виде микроэлементов, вносимых в почву для ускорения роста ряда сельскохозяйственных культур. Актиний ввиду высокой удельной а-активности не нашел какого-либо практического применения. [c.272]

    Для кальция и стронция типична гранецентрированная решетка, а для бария — кубическая объемно центрированная. В III группе алюминий кристаллизуется в гранецентрированной кубической решетке, скандий, иттрий и лантан — в плотнейшей гексагональной. У переходных металлов титана, ванадия, хрома, циркония, ниобия, молибдена, гафния, тантала, вольфрама встречаем объем-ноцентрированную кубическую решетку. Марганец железо, технеций, рутений, рений, осмий образуют гексагональные решетки, [c.284]

    Катионы 3-й аналитической группы осаждаются в щелочной среде сульфидом аммония при pH 9 в присутствии буферного раствора — смеси гидроокиси и хлорида аммония. 3-ю группу делят на две подгруппы 1) подгруппу катионов, образующих гидроокиси, и 2) подгруппу катионов, образующих сульфиды. Гидроокиси металлов получаются из сульфидов в том случае, когда растворимость гидроокиси меньше, чем растворимость сульфида данного металла. В подгруппе катионов, образующих гидроокиси, ясно заметно влияние диагонального направления в системе Менделеева. По диагоналям расположены элементы, выделяющиеся в этих условиях в виде гидроокисей а) бериллия, алюминия, титана, ниобия б) скандия, циркония, тантала, урана (VI) в) иттрия, гафния, лантана, тория вследствие сходства в свойствах с лантаном и актинием вместе с гидроокисями указанных металлов выпадают также все лантаноиды и актиноиды. Может выпасть и гидроокись магния в отсутствие иона ЫН . Выпадение в этой же подгруппе гидроокиси хрома, Сг(ОН)з, объясняется существованием электронной конфигурации. .. ёЧзК По этой же причине медь с электронной конфигурацией. .. За 1"451 попадает не в 3-ю, а в 4-ю аналитическую группу, образуя сульфид Сы5, не растворимый в кислой среде. Появление внешнего подуровня наблюдается через четыре элемента калий 5, кальций скандий s титан s ванадий хром 5 марганец s железо s кобальт 5% никель 5% медь цинк 5 Поведение ионов ванадия и марганца отличается от поведения хрома, поведение никеля и цинка — от поведения меди. [c.28]

    Начиная с III группы периодической системы, выделяются металлы подгрупп алюминия и скандия (в том числе лантаноиды и актиноиды), которые дают при осаждении сульфид-ионами гидроокиси Ме(ОН)а—бериллий, европий, иттербий Ме(ОН)з—алюминий, титан (III), хром (III), скандий, иттрий, лантан Ме(0Н)4— титан, цирконий, гафний, церий, торий, уран [МеОгЮН-ниобий, тантал. [c.187]

    Элементы III группы периодической системы Д.И.Менделеева — полные электронные аналоги (я—1)<Рп52. Скандий Зс, иттрий V, лантан Ьа и актиний Ас составляют подгруппу скандия. Основные константы скандия и его аналогов (а также бора и алюминия) приведены ниже  [c.571]

    Скандий, иттрий и лантан —элементы, родственные бору и алюминию они образуют бесцветные соединения, похожие на соответствующие соединения алюминия окислы этих соединений имеют формулы 8с20з, УгОз и ЬазОз. Ни сами элементы, ни их соединения не нашли пока достаточно широкого применения. [c.528]

    В этот же период зародилось учение о валентности (Ф. Кекуле, Ш. Вюрц и др.), стали известными иовые хим. элементы (бор, литий, кадмий, селен, кремний, бром, алюминий, иод, торий, ванадий, лантан, эрбий, тербий, диспрозий, рутеш й, ниобий), с помощью введенного в практику спектр, анализа было доказано существование цезия, рубидия, таллия и индия. Было проведено определение и уточнение атомных масс мн. хим. элементов. [c.211]

    Азот. . Алюминий Ар гои. . Барий. . Бериллий Бор. . Бром. . Ванадий. Висмут. Водород. Вольфрам Гадолиний Галлий. Гафни11. Гелий. . Германий Гольмий Диспрозий Евроний Железо Золото Индий Иод. . Иридий Иттербий Иттрий Кадми11 Калий. Кальций Кислород Кобальт. Кремний Криптон Ксенон. Лантан. Литий Лютеций Магний. Марганец Медь. . Молибден Мышьяк 11атрий.  [c.14]

    На реакционную способность спирта могут оказывать влияние и стерические факторы при сольватации иона щелочного металла, образующегося по уравнению (2). Очевидно, уменьшение сольвата-ционной способности веществ в порядке ЕЮН> шо-РгОН> >пгрет-ВиОН совпадает с уменьшением реакционной способности. Возможно, что в таких системах важную роль играют и электронные, и стерические факторы. Реакции двух- и трехвалеитиых металлов со спиртами могут протекать энергично и с выделением тепла, но для таких реакций обычно требуются катализаторы или инициаторы. Общепринятое объяснение этого явления заключается в том, что поверхность металла покрывается непроницаемой окис-ной пленкой, которая препятствует взаимодействию металла со спиртом, а инициаторы как бы очищают поверхность металла. В качестве наиболее известных примеров можно привести реакции с магнием и алюминием [1]. Для инициирования реакции с магнием обычно добавляют следы иода (ср. реакцию Гриньяра) лучше пользоваться сухим спиртом. Хорошим инициатором для алюминия является хлорид ртути(П), который, по-видимому, образует на поверхности алюминия амальгамы. Недавно Турова и др. [2] сообщили о получении этоксида бериллия реакцией этанола с бериллием в присутствии хлорида бериллия, или иода, или хлорида ртути(П). Однако попытки заставить лантан [3], церий [4] или торий [14] взаимодействовать со спиртами к успеху не Привели. [c.227]

    Этот метод является одним из наиболее удобных и распространенных для концентрирова ния плутония. В качестве носителя обычно используют лантан или никель [503]. Кроме этого, имеются данные (А. А. Чайхорский, 1953 г.) о возможности применения в качестве носителя плутония гидроокисей элементов d, Сг, А1, Мп, Fe, Со, Ве, Mg, Ti, Sn, Pb. Плутоний может быть осажден как растворами едких щелочей, так и раствором аммиака. В присутствии в растворе алюминия, свинца, цинка, солей натрия, калия и аммония плутоний легко осаждается в виде гидроокиси 20%-ным раствором едкой щелочи. При определении плутония в растворах, содержащих Са, Mg, Мп, Со, Си, Сг и др., осаждение плутония производят 20%-ным раствором аммиака. Некоторые из указанных элементов образуют в избытке аммиака растворимые соединения и тем самым не мешают соосаждению плутония. [c.278]

    Радиоактивный раствор сначала нейтрализуют аммиаком до рН=2—3 для почти полного (90—99%) соосаждения с Ре(ОН)з таких примесей, как церий, иттрий, рутений, технеций, барий, лантан и кобальт и др. Вместе с примесями на этой стадии процесса с гидроокисью железа соосаждается также около 8—9% цезия и рубидия. Основную массу лантаноидов, щелочно-земельных металлов и ЫааиаО выделяют на следующей стадии технологического процесса в результате обработки радиоактивного раствора 50%-ным водным раствором гидроокиси натрия, содержащим соду. В полученном после отделения осадка фильтрате, предварительно подкисленном серной кислотой до концентрации 0,5 моль1л и нагретом до 90° С, растворяют алюмоаммонийные квасцы до тех пор, пока их концентрация не станет равной приблизительно 240 г/л. Затем раствор охлаждают до 4—25° С, кристаллы квасцов отделяют (извлечение цезия составляет 90%) и два-три раза перекристаллизовывают из водного раствора. Полученные таким образом алюмоцезиевые квасцы, содержащие до 15 вес. 7о алюморубидиевых квасцов, растворяют в воде (100 г/л) и через нагретый до 80° С раствор пропускают насыщенный аммиаком воздух до pH = 4,5—7,0. Фильтрат, содержащий после отделения гидроокиси алюминия сульфаты цезия, рубидия и аммония, пропускают [6— 10 мл/(мин см )] через колонку с анионитом (амберлит ША = 4Ю) в гидроксильной форме для удаления сульфат-иона и других анионных примесей. Элюат упаривают почти досуха, обрабатывают соляной кислотой и снова упаривают досуха. [c.322]

    Для устранения мешающего действия умеренных количеств железа часто вводят поправку на его содержание [897]. Иногда растворы перед фотод1етрированием сильно разбавляют, что приводит к получению более точных результатов. Соли лантана восстанавливают свечение линии кальция при 4227 А в присутствии небольших количеств Fe(III) (Са Fe = 1 10) [487]. В присутствии алюминия и железа лантан не дает этого эффекта. Поскольку Fe(II) не оказывает влияния на излучение кальция, в раствор рекомендуется вводить восстановители (гидразин, гидрокспламин) [487]. При использовании внутреннего стандарта — солей стронция — частично устраняется влияние железа [914]. Наиболее распространенным способом устранения под1ех от присутствия железа служит добавление солей железа в стандартный раствор [1136]. [c.141]

    Все указанные методы получения не пригодны для выделения Sm, Ей и Yb, так как восстановление идет лишь до стадии образо-ван-ия LnXj, обладающих к тому же значительной летучестью 18161. Известен лишь один случай восстановления ЗтВгз с Ва, когда удалось получить металлический Sm в виде слитка, но выход по этой реакции очень мал, вероятно, из-за сублимации как в виде SmBfa, так и в виде металла [1544]. Поэтому эти элементы получают в виде металлов лишь при восстановлении окислов методами, объединяемыми во вторую группу. Ввиду того, что все три металла при температурах реакции обладают высокими упругостями паров, удобно переводить металлы непосредственно в дистиллят [814, 1149, 1545]. Кристаллы образ)потся либо на стенках тиглей, либо на дистилляционных колонках длиной несколько сантиметров, присоединенных к тиглям. Как видно из приложения 4, выход металла при таком проведении реакции сильно варьирует с изменением условии и существенно зависит от времени процесса. Для восстановления могут быть использованы кальций, барий, алюминий и даже лантан, причем преимущество последнего в том, что благодаря низкой летучести он не загрязняет дистиллята. Количество примесей здесь несколько больше, чем в металлах, полученных восстановлением галогенидов. [c.23]

    Систематические данные для этих электролитов несимметричного типа отсутствуют. Только в одном случае (хлористый лантан) имеются данные для достаточно разбавленных растворов, которые могут быть использованы для экстраполяции [41]. На основании результатов измерения температур замерзания были вычислены коэффициенты активности нитрата лантана [42], феррицианида калия [43], кобальтицианида калия [44] и сульфата лантана [45]. Кроме того, были сделаны изопиестические измерения упругости пара растворов хлорида лантана [46 — 48], ферроцианида калия [46], сульфата алюминия [46] и некоторых 3,1-хлоридов редкоземельных металлов [48]. Хаттокс и Де-Фриз [49] исследовали водные растворы сернокислого индия при температурах 0 — 35° при помощи элемента. .  [c.401]

    В современной технике широко используют способность церия (как и других лантанондов) модифицировать сплавы на основе железа, магния, алюминия, меди, ниобия, титана. Легирование конструкционных сталей церием значительно повышает их прочность. Здесь действие церия в целом аналогично действию лантана. Но, поскольку церий и его соединения дешевле и доступнее, чем лантан, значение церия как легирующей добавки больше, нежели лантана. [c.127]


Смотреть страницы где упоминается термин Алюминий с лантаном: [c.124]    [c.260]    [c.261]    [c.334]    [c.500]    [c.258]    [c.174]    [c.55]    [c.214]    [c.191]   
Основы общей химии Том 2 (1967) -- [ c.230 ]




ПОИСК





Смотрите так же термины и статьи:

Лантан



© 2025 chem21.info Реклама на сайте