Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галогенирование ароматических соединений галогенам

    В лабораторной практике важнее прямое галогенирование ароматических углеводородов как в ядре, так и в боковой цепи. Здесь также найдены закономерности, о которых будет сказано ниже (стр. 89). Хлор и бром вводятся в общем без затруднений в данном случае при содействии переносчиков. Наоборот, иод действует замещающе только при вполне определенных условиях, когда образующийся при реакции иодистый водород удаляется окислением или связывается каким-либо иным путем. Элементарный фтор на органические вещества обычно действует разрушающе, так что фторпроизводные, за малыми исключениями, могут получаться только обходным путем. Кроме самих галогенов, иногда применяются соединения, содержащие галоген, как, например,пятихлористый фосфор, пятихлористая сурьма, хлористый сульфурил. [c.84]


    Алкилирование. Алкилирование ароматических соединений обычно проводят галоген алкилами в присутствии хлорида алюминия. Эта реакция известна под названием алкилирования по Фриделю — Крафтсу. Роль катализатора в этой реакции в основном та же, что и при реакции галогенирования, — он продуцирует положительно заряженный карбониевый ион  [c.226]

    Непрямое галогенирование — замеш,ение гидроксильной группы галогеном, замещение кислорода в карбонильных соединениях и диазогруппы в ароматических соединениях на галоген. [c.58]

    Если две электроноакцепторные группы расположены в орто-или гаа/7а-положении по отношению друг к другу, галогенирование может приводить к замещению одной из этих дезактивирующих групп, особенно нитрогруппы (пример б.З). В некоторых случаях можно проводить меркурирование ароматического соединения с последующим замещением ртути галогеном. Этот метод обычно дает трудно разделимую смесь изомеров [83], но его можно эффективно использовать для замещения карбоксильных групп в ароматических дикарбоновых кислотах (разд. В.9). [c.459]

    Существует совокупность реакций, в которых атом водорода ароматического кольца или иногда галоген, сульфо- или нитрогруппа замещаются другими атомами или группами при этом наблюдается однотипное влияние структурных факторов на реакционную способность ароматического соединения. К этой совокупности относятся реакции Фриделя — Крафтса, изотопный обмен водорода, сульфирование, большинство реакций нитрования, некоторые реакции галогенирования [и, наконец, азосочетание . Так как, по-видимому, во всех реакциях происходит вытеснение одной электронодефицитной частицы другой, такие реакции называют электрофильным ароматическим замещением Ингольд обозначал их Зе- [c.222]

    Согласно этому механизму, электростатическое влияние ароматического соединения на атакующий галоген выражено сравнительно мало, напротив, высокая поляризуемость ароматического соединения весьма значительно способствует реакции. Различие между электрически заряженным нитроний-катионом и электронейтральным хлором, выражаемое величинами, приведенными в табл. 72, вновь проявляется также при сравнении молекулярного галогена с галоген-катионами (см. ниже). В общем переходное состояние при галогенировании молекулярным галогеном напоминает скорее а-комплекс, чем я-комплекс, а переходное состояние при атаке ионной единицы — скорее я-комплекс, чем а-комплекс, как будет подробнее рассмотрено ниже. [c.437]


    Галогенированием называется реакция замещения атома водорода в ароматическом соединении атомом галогена. В зависимости от природы галогена процесс называется хлорированием, бромированием или иодированием. Реакция галогенирования может быть выражена общей схемой АгН + Хз -> АгХ + НХ, где X обозначает галоген [c.57]

    В качестве катализаторов галогенирования в ароматическое кольцо чаще всего используют хлорид железа (П1), иод, серную кислоту аналогично действуют хлорид алюминия, титана (IY"), сурьмы и ряд других соединений. Все эти катализаторы необходимы для получения из галогенов электрофильных частиц, которое, возможно, идет по схеме  [c.103]

    Как уже указано, кроме галогенов реагентами галогенирования в ароматическое кольцо являются также гипогалогениты, галоге-намины, галогенамиды и другие соединения, содержащие положительно поляризованный галоген  [c.172]

    Непрямое галогенирование — замещение на галоген гидроксильной группы, кислорода в карбонильнйх соединениях и диазогруппы в ароматических соединениях. [c.64]

    Галогенированне ароматических соединений галоген-катионом получило название реакции БИРКЕНБАХА — ГУБО — УОТЕРСА  [c.94]

    Галогенирование ароматических соединений, имеющих- электроотрицательные группы, происходит медленно и дает преимущественно мета-тоыер. Поэтому для его осуществления необходимы более жесткие условия, например более высокие температуры, и(или) более сильные электрофильные катализаторы, такие, как сульфат серебра и галоген в серной кислоте [80]. При наличии заместителей, оттягивающих электроны от кольца за счет резонанса, получаемые побочные продукты всегда содержат большее количество орто-, чем /га/ а-изомера, поскольку fiapa-положение дезактивируется в большей степени. Существенным вкладом в осуществление реакции л ета-галогенирования явилось понимание необходимости добавления более одного эквивалента катализатора, л-ак как при этом изменяется характер оказываемого заместителем влияния и, кроме того, первый эквивалент катализатора расходуется на образование комплекса. Поэтому неизрасходованный избыток катализатора служит для промотирования галогенирования. Таким способом легко [c.458]

    Основные научные исследования относятся к структурной органической химии и органическому синтезу. Разработал (1871) метод синтеза олефиновых углеводородов отщеплением элементов хлористого водорода цинковой пылью от галоидных алкилов. Синтезировал дифенилметаи (1871), о-нитроани-лии (1872). Изучил (1875) механизм галогенирования фенолов и анилина. Впервые получил (1898) 2,3-дихлорциклогептен-2-дион -1,4. Открыл носящие его имя реакции замещения галогенов на нитрогруппу (1900), расщепления пиридинового цикла (1904), получения гем-замещенных циклогексадиенонов (1906). Синтезировал и исследовал ароматические соединения серы создал (1911) способ синтеза суль-фенилгалогеиидов. Совместно с А. Н. Поповым в лаборатории Кекуле сформулировал (1872) правило, согласно которому окисление гомологов бензола начинается с углеродного атома, непосредственно связанного с бензольным кольцом, [22, 40] [c.552]

    Галогенирование ароматических соединений катализируется многими кислотами Льюиса типа галогенидов металлов, а также самими галогенами [20]. Бромирование аренов под действием молекулярного брома, а также брома в присутствии пода подчиняется кинетическим уравнениям вида [c.182]

    Галогенирование ароматических соединений. Введение атома галогена в ароматическое ядро представляет собой одну из наиболее важных реакций как в промышленности, так и в лабораторной практике. Этому замещению благоприятствуют электронодонорные группы (—R, —OR, —NRj и т. п.), которые ориентируют входящий галоген в орто- и пара-положения в ароматическом кольце. жега-Ориентирующие электроноакцепторные группы (—NO2, —SO3H, — OOR и т. п.) тормозят реакцию. Эта реакция применима и к ароматическим гетероциклам, она легко идет с тиофеном и фураном, но пиридин реагирует намного труднее. [c.288]

    Многие соединения, содержащие галоген в боковой цепи, можно синтезировать по реакциям, используемым для синтеза алкилгалогенидов (см. 1, табл. 11-12) однако существует ряд методов, пригодных только для получения арилметилгалогенидов. Наиболее важные из них — свободнорадикальное галогенирование алкилбензолов (см. ниже) и хлорметилирование ароматических соединений (разд. 26-4,А). [c.337]

    Галогенирование ароматических углеводородов. Галогениро вание ароматических углеводородов осуществляют, как правило непосредственно действием галогенов — хлора, брома, иода и реже фтора. Однако для этой цели могут быть использованы также некоторые галогенсодержащие соединения — галогенсодержащие карбоновые кислоты, галогепангидриды кислот, галогенпро-изводные фосфора. [c.262]

    Далее, положительный галоген образуется особенно легко в присутствии уже упомянутых переносчиков галогена (галогени-дсв альоминия и железа). Здесь следует еще назвать только смесь перхлората серебра с галогенами, которая в присутствии надхлорной кислоты представляет собой хорошо действующее галогенирующее средство для ароматических соеди нений. Положительный галоген должен, как катион, подвергаться, в частности. электростатическому влиянию ароматического соединения. Таким образом, нужно в первую очередь рассматривать электронную плотность, а зате . поляризуемость, т. е. в этом случае следует ожидать сходства скорее с нитрованием, чем с галогенированием молекулярным галогеном. [c.438]


    Из данных табл. 78 видно, что при галогенировании молекулярным бромом или хлором, как и следовало ожидать, степень орго-замещення весьма объемистым бромом меньше, чем хлором. В противоположность соответствующим галоген-катионам, для которых имеет место в принципе одинаковый ход, различие между обоими галогенами значительно больше. Это объясняется упомянутой выше (стр. 469) более тесной связью молекулярного галогена с ароматическим соединением в переходном состоянии следовательно, пространственные эффекты должны проявляться сильнее, чем в переходном состоянии реакции с ионным галогеном, которое большее приближается к л-комплексу. Неожиданно малое значеш е для протоннро-вания посредством HF/BF3 позволяет предполагать, что в качестве истинного реагента нужно рассматривать комплекс HF с ВРз. [c.472]

    Значения для галогенирования положительно заряженным бромом и хлором неожиданно высоки и в настоящее время еще не могут быть удовлетворительно объяснены. Вероятно, уже индуктивный эффект метильной группы + ) ориентирует катион галогена в я-комплексе в сторону орто-положения, так что окончательно а-связь может возникнуть там без предварительного перераспределения. В противоположность этому индуктивное влияние на электронейтральиые молекулярные галогены, разумеется, значительно слабее. Они требуют более сильной поддержки посредством эффекта поляризуемости ароматического соединения, который особенно значителен в пара-поло-жении. По указанным причинам соотношение орто1пара для галогенирования молекулярным галогеном обратно соотношению [c.473]

    Прочность связи галогена в галогенированных ароматических углеводородах сильно зависит от их строения. Связь С—галоген в них имеет значительно меньшую полярность, чем в галогенпроизводных алканов. В результате связанный с галогеном углерод ароматического ядра менее положителен, атака на него нуклеофильных реагентов затруднена и атом галогена, связанный с атомом углерода бензольного ядра, не отщепляется ни щелочью (водной или спиртовой), ни спиртовым раствором нитрата серебра. Столь малая реакционная способность галогена сближает галогенпроизводные этого типа (например, хлорбензол) с соединениями жирного ряда, содержащими галоген у атома углерода, связанного с другим атомом углерода двойной связью, например с хлористым винилом СН2 = СНС1. [c.198]

    Замещение в а-положении на галоген затрудняет катализируемую кислотой енолизацию, так что дальнейшее замещение прогрессивно замедляется. В результате удается вводить один, два или три атома галогена, просто применяя в качестве реагента один, два или три моля галогена. Однако при галогенировании, катализируемом основанием, замещение на галоген увеличивает скорость последующего галогенирования, так что часто образуются тригалогенкетоны при этом в присутствии основания обычно происходит гидролиз тригалогенкетона, приводящий к соответствующей карбоновой кислоте (галоформная реакция) [схема (76)]. Таким образом, ацетилирование ароматических соединений с последующей галоформной реакцией служат удобным методом введения карбоксильной группы в ароматическое кольцо метод дает неудовлетворительные результаты только при наличии групп NOj и ОН [179]. [c.821]

    Галогенирование ароматических углеводородов систематически изучалось Н. Н. Ворожцовым и сотр., разработавшими непрерывный метод так называемого многократного хлорирования бензола, нри котором за счет рециркуляции достигались наиболее выгодные соотношения хлорбензола и полихлорбензолов. А. Н. Плановский и В. С. Хайлов установили математические закономерности работы проточной технологической системы по этому методу [9, с. 391]. При изучении кинетики реакций галогени-ровапия Е. А. Шилов определил активность различных агентов галогенирования. Ю. С. Залкинд и Б. М. Михайлов с сотр. исследовали галогенирование конденсированных ародтатических соединений с помощью диоксандибромида. [c.83]

    Для ароматических соединений характерна легкость образования в самых различных реакциях, устойчивость к действию окислителей, трудное протекание реакций присоединения по кратным связям, легкость замещения водорода различными группами в реакциях электрофильного замещения (нитрования, сульфирования, галогенирования, ацилирования, алкилирования, меркурирова-ния и т. д.). Характерными свойствами обладают и некоторые заместители в ароматических системах проявляет кислые свойства ароматический гидроксил, ослаблена основность аминогруппы, обладают устойчивостью и способны к реакциям азосочетания диазосоединения, мало реакционноспособен галоген в ядре и др. [c.293]

    Известны, конечно, и многие другие работы, посвященные исследованию кинетики электрофильного замещения в ароматическом кольце, в частности кинетики галогенирования активированных ароматических соединений, таких, как фенолы и анилины. Последние реакции часто усложняются влиянием pH и концентрации галоген-ионов на равновесия между различными галогенирующими частицами и различными формами ароматических молекул. Лищь в редких случаях проводилось непосредственное исследование влияния роли оснований на реакцию переноса протона. Однако общирная информация о механизме этих реакций была получена из данных по изотопным эффектам, которые будут рассмотрены в гл. 12. [c.226]

    Отрицательный знак константы реакции указывает на то, что электронодонорные заместители в ароматическом ядре способствуют галогенированию. Поэтому часто считают, что атакующие галоген-радикалы, несмотря на их формальную электронейтральность, обладают электрофильным характером и атакуют преимущественно положения с повышенной электронной плотностью. Несмотря на это, приведенные константы реакции говорят за это допущение только условно, так как для хлор-радикала (несомненно самого сильного электроотрицательного реагента) должна была бы наблюдаться самая сильная зависимость от полярных влияний заместителей в ядре. Однако мы уже видели в предыдущей главе, что большее (меньщее) значение константы реакции всегда соответствует высокой (низкой) селективности реакции (см. стр. 471). Так, богатый энергией хлор-радикал может отрывать водородный радикал в экзотермичной реакции у самых стабильных углеводородов (например, метана) самостоятельно, без существенного содействия углеводорода, В случае бром-радикала такая реакция уже невозможна, поэтому бромированию должны, содействовать эффекты в субстрате, которые дают возможность образующемуся радикальному электрону делокализоваться на большей части молекулы (аллильная и бензильная системы). Именно это и выражается приведенными константами реакции. Согласно этим данным, бромирование Ы-бромсукцинимидом является особенно селективным. Следовательно, N-бpoм yкцинимидoм могут быть пробромированы практически лишь столь легко превращающиеся Б радикалы системы, как аллильные и бензильные соединения. [c.537]

    Соглашаясь с первой половиной этой формулировки, т. е. с симметричностью строения молекулы нафталина, Ауверс [Lieb. Ann. 430, 245 (1923)] категорически возражает против второй, т. е. против чисто ароматической природы нафталина. Он указывает, что сам Вайнберг в своих мотохимических выкладках вывел заключение о различии движений С-атомов в нафталине и бензоле. Тоже следует из изучения продуктов их замещения в то время как, например, введение галогенов в нафталин сильно понижает его экзальтации, при галогенировании бензола они, наоборот, возрастают, хотя и слабо. Поэтому если считать бензол и его дериваты соединениями вполне ароматического характера, то нафталин и подобные ему вещества можно было бы назвать даже полуароматическими . Во всяком случае, надо принять, что ароматический характер неодинаково сильно выражен в отдельных циклических соединениях, и что нафталин является ароматическим соединением более низкого порядка, чем бензол. [c.33]

    Агентами галогенирования здесь могут быть различные галогенсодержащие вещества, в которых галоген вследствие поляризации может стать положительным по отношению к остальной части молекулы. При наличии в молекуле ароматического соединения значительного отрицательного заряда у определенных атомов углерода возможно галогенирование и менее активными реагентами. В ряде случаев, например при бромировании натриевой соли лг-анизосульфокислоты бромнова-тистой кислотой, бронирующим агентом является катион брома. При этом образующиеся в присутствии соляной и бромистоводородной кислот молекулярный бром или хлористый бром действуют независимо. При бромировании натриевой соли лг-анизосульфокислоты в водной среде имеет место параллельное бромирование четырьмя различными агентами (Вг+, Br l, Вг2, ВгОН). [c.392]

    Высокомолекулярные кремнийорганические соединения, содержащие галогенированные ароматические углеводородные радика лы, наоборот, являются термостойкими и обладают повышенной химической стойкостью по отношению к действию агрессивных сред. Это объясняется, с одной стороны, тем, что атомы галогенов входящие в ароматические углеводородные радикалы, отличаютс5 относительной неподвижностью и индиферентны к действию гидролизующих агентов, а с другой,—тем, что галогены в ароматических углеводородах не оказывают заметного влияния на проч ность связи углеводородных радикалов с атомами кремния. [c.162]

    Наибольшее внимание было уделено фторуксусныад кислотам, их галогеноцроизводным, а также функциональным производным. При получении фторированных кислот исходят из галогенированных эфиров или других функциональны1х производных (свободные кислоты в реакциях обмена не применяют) и заменяют в них галоген на фтор. Фторированные уксусные кислоты образуются также при окислении фторолефинов или ароматических соединений. [c.132]

    Методы определения нафталинсульфокислот. Общий метод определения нафталинсульфокислот основывается на галогени-ровании ароматического ядра (см. раздел 1У-Г гл. 11). Описано несколько таких макрометодов. Некоторые соединения можно титровать потенциометрически раствором иода или бромата калия в присутствии бромида Другим способом выполнения метода, основанного на галогенировании, является обработка образца известным избытком бромид-броматной смеси и иодометрическое титрование избытка брома Аминонафталинсульфокислоты можно определять диазотированием и сочетанием Эти методы можно приспособить для анализа в микромасштабе. Однако нельзя забывать, что ими можно пользоваться только в случае известных соединений. [c.313]


Смотреть страницы где упоминается термин Галогенирование ароматических соединений галогенам: [c.285]    [c.85]    [c.59]    [c.59]    [c.192]    [c.494]    [c.60]    [c.474]    [c.60]    [c.83]    [c.85]    [c.26]    [c.399]    [c.268]   
Основы органической химии Ч 2 (1968) -- [ c.2 , c.129 , c.133 , c.135 , c.154 , c.156 , c.163 , c.178 , c.210 , c.214 , c.230 , c.236 , c.301 , c.303 , c.304 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматическое галогенирование



© 2025 chem21.info Реклама на сайте