Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свободные радикалы водородная

    Н — углеводород, подвергаемый окислению, точка означает недостаток одного электрона на осколке, образующем свободный радикал, В этой последовательности реакций можно выделить три стадии, характерные для цепной реакции инициирование, развитие и обрыв цепи. Окисление инициируется процессом, который приблизительно определяется как отщепление водородного атома водорода от молекулы углеводорода i H с образованием / . Полученный таким образом свободный радикал реаги  [c.287]


    Механизм такого процесса окисления можно представить схемой, приведенной на рис. 2.11. На стадии I происходит адсорбция молекулы кислорода на активном центре (обозначен звездочкой). Стадия II характеризуется превращением адсорбированной молекулы кислорода в поверхностный ион Ог и одновременным взаимодействием данной ячейки активатора с полярной молекулой углеводорода, дающего слабую водородную связь с поверхностью, в результате чего ослабляется связь водорода с углеводородным радикалом. На стадии III поверхностный ион кислорода соединяется с ядром водорода с разрывом связи Н—К. При этом образуются поверхностный комплекс [5 --ООН] и свободный радикал К, которые на стадии IV в [c.60]

    Бисульфиты медленно присоединяются к олефинам в холодном разбавленном растворе [12]. Существенное значение для реакции имеет присутствие окисляющего агента, например кислорода или нитрита. Это обстоятельство позволило предположить, что можно дать лучшее объяснение механизму реакции, применяя теорию свободных радикалов [12г], так как бисульфит можно превратить в свободный радикал действием окисляющего агента. Скорость присоединения в значительной степени зависит от концентрации водородных ионов. Этилен не реагирует с бисульфитом аммония при значении pH раствора, равнОм 4,8, тогда как для значения pH 5,9 реакция протекает с заметной скоростью. При взаимодействии бисульфита с пропиленом максимум скорости достиг ается в интервале значений pH от 5,1 до 6,1. Бисульфит присоединяется также к изобутилену, триметилэтилену, циклогексену, пинену, дипентену и стиролу. В тех случаях, когда установлено строение продуктов реакции, присоединение происходит не по правилу Марковникова. Так, из пропилена, изобутилепа и стирола получены соответственно соли пропан-1-сульфокислоты, 2-метилпро-пан-1-сульфокислоты и 1-фенилэтан-2-сульфокислоты [12г, е], В последнем примере основным продуктом реакции является 1-фенил-1-оксиэтан-2-сульфокислота в присутствии кислорода, но не других окисляющих агентов, образуется также некоторое количество 1-фенилэтилен-2-сульфокислоты [12е]. [c.107]

    Для вычисления суммарного эффекта реакции свободных радикалов с молекулами исходного углеводорода необходимо принять также во внимание число первичных, вторичных и третичных водородных атомов. Пропан, например, имеет 6 первичных и 2 вторичных водородных атома. Относительная суммарная вероятность реакции свободного радикала с первичным водородным атомом выражается цифрой (1 X 6) = 6, а со вторичным водородным атомом (2 х 2) = 4. [c.23]

    Если свободный радикал НОа- вступает главным образом в реакции разложения, а не отнятия водородного атома, то важнейшие реакции можно представить [103, 109] уравнениями  [c.195]


    Наиболее важной частью схемы является реакция, представленная уравнением (22) она поддерживает цепной характер процесса, а именно водородный атом, реагируя согласно уравнению (19), регенерирует свободный радикал НОа-. Некоторое [c.222]

    Выясним сначала, какова должна быть абсолютная скорость реакции, если исходить из механизма миграции радикальных состояний. Для того чтобы свободный радикал смог оторвать атом водорода от соседнего звена полимерной цени, он прежде всего должен переместиться на расстояние б, отделяющее его от этого звена, т. е. в среднем на расстояние 3—5 А (диаметр поперечного сечения полимерной цепи). Частота соударений данного радикала с водородными атомами, очевидно, будет [c.457]

    При реакции 1,3-диена, монофункционального соединения и гидроксильных радикалов, генерируемых из перекиси водорода закисным сульфатом железа, осуществляется одностадийный синтез ненасыщенных дикарбоновых кислот, дикетонов, гликолей и других бифункциональных соединений с длинной цепью [129]. Гидроксильные радикалы, генерируемые на стадии (1), удаляют водородный атом из монофункционального соединения с образованием радикала К- (стадия 2), который присоединяется к 1,3-диену (М), приводя к образованию нового свободного радикала, К—М. (стадия 3), который димеризуется (стадия 4)  [c.620]

    Из этих данных следует, что реакция протекает тем легче, чем меньше энергии необходимо затратить на отрыв водородного атома от молекулы углеводорода с образованием свободного радикала эта энергия тем меньше, чем устойчивее свободный радикал. Так как устойчивость радикалов уменьшается от третичных к вторичным в первичным, то и скорость хлорирования снижается, как правило, в том же порядке. [c.873]

    При воздействии свободного радикала на молекулу алкана от последней отрываются преимущественно водородные атомы алкильных групп, периферические водородные атомы более чувствительны к атаке радикала, чем связь С — С. Этан, например, образует радикал этил, но не метил  [c.506]

    Если углеводород лишается одного (или нескольких) атомов водорода, то образуется остаток, частица — углеводородный радикал " (ие следует смешивать с понятием свободного радикала ). В завпснмости от числа потерянных водородных атомов радикалы могут быть одно-, двух- и трехвалеитными. Кроме того, если в радикале свободная валентность находится у первичного атома углерода, то такой радикал называется первичным. Соответственно этому бывают вторичные (свободная валентность у вторичного атома углерода) и третичные (свободная валентность у третичного углеродного атома) радикалы  [c.46]

    Внутримолекулярная передача цепи за счет отрыва водородного атома в самом макрорадикале и перемещения его к концу цепи (где находится неспаренный электрон) с последующим разрывом С—С-связи. Этот процесс по существу представляет собой изомеризацию свободного радикала. Водород перемещается, например, от третьего к первому углеродному атому  [c.70]

    Образовавшиеся атомы хлора отличаются исключительной активностью. Восьмой электрон, необходимый для восстановления устойчивости внешней орбиты, атом хлора заимствует у хлорируемого углеводорода, например, метана. При этом водородный атом метана захватывается вместе с электроном, в результате чего образуется свободный радикал — метил. [c.32]

    Очевидно, что направление этой стадии реакции (какой из водородов отрывается радикальным реагентом) должно существенно зависеть от энергии образующегося свободного радикала. По данным О. А. Реутова [43], в молекуле изопарафина (например, изопентана) наименьшей энергией будет обладать радикал, полученный при отрыве водородного атома от третичного углерода  [c.36]

    В этой главе не упоминалось о применении магнитных изме-ний к мало устойчивым (недолговечным) свободным радика-м (например, СНз). Обыкновенная форма магнитных весов я исследования таких веществ неудобна. Однако применением то-лара-водородного метода был достигнут некоторый успех этом направлении. [c.151]

    Внутримолекулярная водородная связь, по-видимому, стабилизирует свободный радикал, поэтому в водноспиртовой среде на полярограммах имеются две одноэлектронные волны. [c.95]

    Необходимо отметить, что такие подсчеты не обеспечивают действительно удовлетворительного определения относительных вероятностей обеих реакций. Сомнительно, чтобы мог быть замещен атом водорода как таковой. Значительно вероятнее положение, что атом водорода будет удален при помощи другого свободного радикала (X VIII), так что любой суммарный энергетический расчет стадии, определяющей скорость реакции, должен включать определение энергии образования новой связи,, образуемой водородным атомом  [c.463]

    Влияние природы растворителя на спектр ЭПР может быть объяснено механизмом [136], учитывающим возникновение слабых обменных взаимодействий при столкновении молекул в растворе. При сближении двух парамагнитных частиц обменное взаимодействие между ними может вызвать нарушение фазы ларморовых вращений спинов вокруг внешнего магнитного поля. В работах [ 137 -139] показано, что в полярных растворителях ширина сверхтонких компонент меньше, а константа сверхтонкого расщепления больше, по сравнению со значениями констант в неполярных растворителях. Этот эффект приписан возникновению комплексов радикал — растворитель. Образование комплексов свободный радикал — растворитель может быть обусловлено различными причинами, в частности водородной связью [ 138]. В ряде случаев возможно также образование молекулярных комплексов с растворителем, акцепторами, ионами металлов. Последние нередко приводят к стабилизации ион-радикалов [140, 141]. Авторы [141] считают, что молекулы растворителя локализуются на полярных заместителях или гетероатомах. [c.120]


    Следующий кардинальный вопрос, возникаюхций при обсуждении механизма окисления олефинов, это судьба всех остальных, кроме аллиль-пого, свободных радикалов, возникающих в ходе реакции. Выше было предположено, что при взаимодействии свободных радикалов с олефиновой молекулой происходит отщепление водородного атома от а-углеродного атома и при этом образуется валентно-насыщенная молекула и соответствующий олефиновый радикал. Нельзя, однако, исключать из обсуждения и другую возможность, а именно присоединение свободного радикала по месту двойной связи олефина. [c.410]

    Стадии 1 и 4 должны протекать легко, так как образующийся свободный радикал стабилизируется благодаря резонансу с бензольным кольцом. Фактическая скелетная перегруппировка происходит в стадиях 2 и 3. Перемещение водородного атома, происходящее в стадии 2, должно оказывать неблагоприятное влияние, так как уничтожает этот резонанс. Образование первичного свободного радикала (стадия 2) возможно и в результате передачи водорода между фенилизопропильпым свободным радикалом и кумолом [c.78]

    Специфическая роль третичных водородных атомов в распространении карбоний-ионов отмечается в реакциях крекинга и риформинга, протекающих при высоких температурах в присутствии твердых катализаторов. Связь углерод — углерод характеризуется наличием электронной пары, поделенной между двумя углеродными атомами. В углеводороде, в котором протекает скелетная перегруппировка, должна разрываться по крайней мере одна такая связь при этом электроны могут быть поделены поровну (образование свободного радикала) или один углеродный атом сохраняет оба электрона, в то время как при другом не остается ни одного (образование иона). Энергетические барьеры для обоих этих случаев сильно различаются так, для образования двух нропильных радикалов из к-гексана требуется всего 76 ккал [69], в то время как для образования пары нропильных ионов требуется 260 ккал [67. Однако в присутствии надлежащим образом выбранного катализатора, особенно если он обладает в какой-то стенени ионной функцией, может инициироваться предварительная стадия — образование положительно заряженного иона за счет передачи протона или гидридного иона. После этого разрыв связи углерод — углерод происходит в результате образования из нестабильного карбоний-иона положительно заряженных ионных осколков и нейтральной молекулы алкена или ароматического углеводорода. [c.170]

    Общие выводы, которые можно предварительно сделать на основе ограниченного числа данных, доступных в настоящее время при свободнорадикальной полимеризации .а -дизамещенных мономеров (фактически единственным хорошо изученным мономером этого типа является метилметакрилат) для т-присоединения требуется энтальпия активации на 1 ккал/моль большая, чем для г-присоединения, но т-присоединение несколько предпочтительнее по энтропийному фактору. Для а-монозамещенных мономеров обычно предпочтительнее /--присоединение по величине изменения как энтропии [Д(Д5 ), однако, мало или равно нулю, если заместитель СМ- или ОАс-группа], так и энтальпии, хотя разность A AHf) не превышает 300 кал/моль и часто близка к пулю. Сольватация свободного радикала не имеет большого значения, поскольку конфигурация цепи, видимо, не зависит от выбора растворителя при полимеризации. (Возможно, однако, что существенное влияние может оказывать сильная водородная связь между мономером и растворителем, но экспериментально это не исследовалось). Короче говоря, единственной возможностью по вли-ять на конфигурацию при свободнорадикальной полимеризации винильных мономеров, доступной для экспериментатора, является изменение температуры. Однако даже в благоприятных случаях температура полимеризации слабо влияет на конфигурацию образующегося полимера. [c.164]

    Наличие в молекуле полимера атомов, легко отщепляемых под действием свободных радикалов, способствует протеканию процесса по этому механизму [18]. Водородные атомы, находящиеся в а-положении к боковым группам виниловых полимеров, обладают пониженной устойчивостью к действию свободных радикалов. Боковые группы часто обладают способностью резонансно стабилизировать свободный радикал, образующийся при отрыве атома водорода. Представления о механизме образования водорода при взаимодействии соседних цепей в твердой фазе подтверждаются тем, что допускают возможность непосредственной близости свободных радикалов, необходимой для образования поперечных связей. В связи с этим отпадает необходимость допущения дмиграции макрорадикалов в облученном полимере. Имеются указания [19—22] на то, что активные центры, а также свободные радикалы, обладающие избыточной энергией, обладают способностью к миграции. [c.168]

    Шварц [102] дал приемлемое качественное объяснение большого влияния структуры (например соседних метильных групп) в реакциях карбоний-ионов. Он указывает, что электронное взаимодействие между положительным зарядом и электронами, участвующими в соседних связях, значительно сильнее, чем взаимодействие между ними и свободным электроном свободного радикала. Последнее в свою очередь значительно сильнее, чем взаимодействие между связанными электронами. В ионе взаимодействие между соседними углеродными атомами намного сильнее взаимодействия между соседшаш и водородными атомами вследствие большей поляризуемости углеродных атомов. Отсюда следует, что образование третичного бутил-иона более вероятно. [c.426]

    Основываясь на данных по составу продуктов и относительным скоростям крекинга других углеводородов, содержащих различное число первичных, вторичных и третичных водородных атомов, Гринсфельдер, Водж и Гуд [37] предложили теорию, объясняющую действие катализатора. Авторы считают, что углерод реагирует с углеводородом с удалением из последнего водородного атома и что скорости отщепления первичных, вторичных и третичных водородных атомов подчиняются тем же правилам, какие были предложены Косяковым и Райсом [62] для скоростей образования соответствующих радикалов при термическом крекинге. Было высказано предположение, что при крекинге над активированным углем образовавшийся радикал связывается с поверхностью катализатора (углерода) и таким образом исключается возможность протекания цепных реакций в паровой фазе, сопровождающихся образованием обычных продуктов термического крекинга. При расщеплении радикала по р-связи образуются а-олефиновый углеводород нормального строения и первичный свободный радикал. Предполагается, что последний, получая водород с поверхности катализатора, быстро превращается в насыщенный углеводород. На основе этих простых наблюдений были объяснены скорости и продукты крекинга пяти изомерных гекса- [c.456]

    В ионной паре II. Когда в растворе присутствуют обе формы, наблюдается некоторое уширение сигнала, которое можно ис-лользовать для определения скорости их взаимопревращения, К сожалению, по спектрам ЭПР невозможно отличить мономерный свободный радикал I от его комплекса с водородной связью, и авторы не обсуждают возможность его предварительного образования. Поэтому трудно сказать, к какой стадии относятся измеренные кинетические характеристики (в частности, наблюдаемая удельная скорость порядка 10 л1 моль-сек). Однако параметры активации прямого и обратного процессов близки к соответствующим величинам, относящимся к процессам разрыва и образования сильной водородной связи [136]. Поэтому можно предполагать, что и в этом случае образование ионной пары лимитируется скоростью образования комплекса с водородной связью. [c.245]

    В этих радикалах имеется длинная углеродная цепь она может быть извитой и также образовывать изомеры. Так, 1-цетнльиый радикал может изомеризоваться с образованием свободного радикала, в котором водородная вакансия может находиться при любом атоме углерода — от 5-го до 16-го. Изомеризация Ьцетильного радикала в 2-, 3- или 4-цетильные радикалы при помощи такого механизма маловероятна из-за геометрических трудностей, Райс и Косяков принимают, что для возможности изомеризации на второй стадии разность энергий активации для внутренней передачи атома водорода между первичным и вторичным положениями равна 4000 кал/моль и, следова-тел ано, больцмановский коэффициент равен 8,87 при 922 °К. Принимая, что образуются одинаковые количества различных вторичных радикалов, в результате изомеризации радикала С д (нижний индекс указывает длину цепи радикала, верхний — положение отщепляемого водорода), можно получить  [c.74]

    Линолевая кислота и кислород присоединяются к липоксидазе, образуя определенную пространственную структуру, что позволяет кислороду стереоспецифически действовать на 13-й углеродный атом и стереоспецифически отщеплять водородный атом от 11-го атома углерода. Удаление водородного атома (или иона водорода и электрона) приводит к образованию свободного радикала у 11-го атома углерода (фиг. 84, А). [c.320]

    Анализ спектров ЭПР гидроксильных радикалов, стабилизированных Б монокристаллах льда или поликристаллических и аморфных образцах, затруднен из-за недостаточно хорошего разрешения. Кроме того, при изменении ориентации образцов во внешнем магнитном поле изменяется ширина линий и их интенсивность [871 . Электронную конфигурацию основного состояния радикала -ОН, стабилизированного в матрице воды, можно представить в виде а) 2аУ1 а) 2рх) 2 1уУ (ось г — паралелльна оси -ОН, ось у параллельна водородной связи, ось X параллельна главной оси орбитали неспаренного электрона (рис. 111.7) [73, 83, 88, 89]. На рис. Н1.7 а, Ь, с — кристаллографические оси большие кружки — атомы О, малые — атомы Н ковалентные связи показаны двойными линиями, водородные — одинарными [88]. Здесь 1(т представляет собой в основном 18-орбиталь атомарного кислорода, а 2а и За — преимущественно 2 -и 2р-орбитали кислорода в комбинации с 1х-ор-биталью водорода. В нулевом приближении изотропное сверхтонкое расщепление должно быть равно нулю, так как спиновая плотность на протоне равна нулю. Однако в результате конфигурационного и обменного взаимодействия неспаренного электрона со спаренными электронами на протоне появляется отличная от нуля спиновая плотность [83, 89]. Константа изотропного СТВ с протоном в радикале -ОН отрицательна и равна 20 30 гс. Принимая во внимание невысокую точность измерения, можно считать, что эта величина, в общем, сог.тасуется с теоретически рассчитанной для свободного радикала -ОН, равной —24,24 гс [83], а также с данными для других я-радикалов, например -СНз, -КН (я.н — 23 гс). [c.126]

    Образование обратимой или почти обратимой перекиси, способной к монбмолекулярному разложению, было бы очень благоприятно для фотосинтеза, если бы оно позволяло сохранить энергию, пропадающую при бимолекулярной дисмутации. Однако возникает вопрос о пути, которым подобные перекиси могли бы войти в цикл реакций фотосинтеза. Первичные фотохимические продукты окисления Z и.1и ОН , — вероятно, свободные радика.1ы, в которых нехва-тает одного водородного атома для прямого выделения одной молекулы кислорода должны действовать совместно четыре таких радикала, тогда как рекомбинация двух радикалов достаточна для образования половины кислородной молекулы путем дисмутации. Трудно представить механизм, согласно которому четыре радикала перенесут два кислородных атома к катализатору, образуя обратимую перекись, например, [c.303]

    Все описанные результаты исследований можно объяснить исходя из представлений о действии свободных радикалов, возникающих при радиолитическом разложении молекул воды. В растворах, не содержащих воздуха, краситель подвергается действию как Н-атомов, так и ОН-радикалов. Последние дают при этом сначала продукт частичного окисления, обладающий свойствами свободного радикала. Что касается водородных атомов, то они, по-видимому, не оказывают такого действия на краситель, поскольку при облучении 2- 10 М раствора метиленового голубого выход молекулярного водорода не превышает величины, соответствующей его образованию в качестве так называемого молекулярного продукта разложения воды [Н43]. Поэтому можно предположить, что водородные атомы осуществляют обратимое восстановление молекул красителя, образуя сначала свободные радикалы семихинона. Молекулярный кислород ингибирует этот процесс, вступая в конкуренцию с красителем за атомы водорода. Кроме того, он может окислять свободные радикалы семихинона, прежде чем они успеют диспропорционировать с образованием лейкоформы красителя. Роль свободных радикалов НОг (или О г), образующихся в такой системе, остается пока неясной. Обнаруженное здесь влияние мощности дозы получило объяснение, исходя из представлений о существовании конкуренции между рекомбинацией свободных радикалов и взаимодействием последних с молекулами красителя [D57, Н107, R32]. Однако, хотя это объяснение и не вызывает возражений, все же трудно сделать дальнейшие выводы (несмотря на ряд попыток, предпринятых в этом направлении), ввиду неясности и очевидной сложности механизма процесса. Сенсибилизация радиолитического окисления красителя, осуществляемая ионами окисного железа, может быть обусловлена частично способностью этих ионов связывать атомы водорода, подавляя тем самым процесс восстановления красителя. Отчасти она может быть проявлением эффективного окисляющего действия указанных ионов по отношению к свободным радикалам, являющимся промежуточным продуктом окисления [c.212]

    Можно ожидать, что благодаря своим парамагнитным сво ствам свободные радикалы должны катализировать орто-пар водородное превращение. Возможность использования этого пр вращения для измерения концентрации свободных радикал ясследована Швабом и Агаллидисом [65]. [c.138]

    За исключением нескольких работ, где изучался каталитический обмен алкильных радикалов на твердых контактах, обмен водородных атомов в свободных радикалах не исследовался. Можно было ожидать, что сравнительно стойкий в растворе свободный трифенилметил легко будет обменивать атомы водорода в орто-и пара-положениях с водой, так как резонанс между нормальной структурой с непарным электроном около центрального углеродного атома и девятью структурами с этим электроном около о-и р-углеродов ядер создает повышенную электронную плотность у этих положений, что должно способствовать обмену по электрофильному механизму (3), как известно, не наблюдаемому в нормальном бензольном ядре с такой слабой кислотой, как вода. Однако А. С. Фоменко и Е. А. Садовникова 12] не обнаружили никакого обмена между водой и 20%-ным раствором гексафенил этана в бензоле или в ацетоне даже за 6 дней при 100° С, хотя содержание свободного радикала в таких растворах равно около 10% от количества растворенного гексафенил этана. [c.34]


Смотреть страницы где упоминается термин Свободные радикалы водородная: [c.184]    [c.76]    [c.400]    [c.661]    [c.50]    [c.76]    [c.469]    [c.296]    [c.266]    [c.421]   
Курс теоретических основ органической химии (1959) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Свободные радикалы

Свободные радикалы ион-радикалы



© 2025 chem21.info Реклама на сайте