Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фишера дегидрирования

    Образование гидразона Синтез индола по Фишеру Каталитическое дегидрирование Число стадий 2 Общий выход 55% [c.615]

    Гидрирование и дегидрирование. Катализаторы этих реакций образуют нестойкие поверхностные гидриды. Металлы переходной и платиновой групп (Ni, Fe, Со и Pt) могут ок азаться пригодными аналогично окислам или сульфидам металлов переходной группы. Данный тип реакций является чрезвычайно важным он включает такие процессы, как синтез аммиака и метанола, реакцию Фишера—Тропша, оксо-синтез, синтол-прбцесс, а также получение спиртов, альдегидов, кетонов, аминов и пищевых жиров. [c.313]


    Настоящая книга состоит из И глав. В первых двух главах автор рассматривает источники получения олефинов как побочных продуктов (при деструктивной переработке нефтяного сырья, синтезе Фишера-Тропша, коксовании углей) и как целевых продуктов (при дегидрировании парафиновых углеводородов, пиролизе газообразных и жидких парафиновых углеводородов и коксовании тяжелых нефтепродуктов). В этих главах изложены также методы получения этилена гидрированием ацетилена и получения индивидуальных олефинов дегидратацией высших спиртов. В отдельном разделе рассматриваются методы получения индивидуальных изоолефинов полимеризацией соответствующих мономеров, а также синтез олефинов с определенным положением кратной связи в молекуле. [c.5]

    Основная реакция весьма эндотермична (АЯ = +49,2 ккал на 1 моль ароматического углеводорода), а поэтому в качестве метода подвода потребного тепла при нужной температуре, согласно описанинэ, предполагается последовательное расположение двух или более реакторов. Некоторые данные, приведенные Фишером и Уэлти [2], показывают, что основной реакцией является скорее дегидрирование Св-нафтенов, чем ароматизация парафинов. В обычных условиях, при которых проводят гидроформинг, 97% метилциклогексана превращается в ароматические углеводороды. Если в тех же условиях сырьем является н-гептан, то он превращается в толуол всего на 16%, а большая его часть претерпевает интенсивное крекирование. [c.243]

    Пропан. Пропан встречается в больших количествах в природных газах, газах крекинга нефти, в газах, образующихся при перегонке нефти и синтезе бензина по Фишеру—Тропшу (см, ниже). Он может быть синтезирован из иодистого пропила или иодистого изопропила путем восстановления омедненным цинкрм. Этот углеводород го 5Ит более сильно светящимся пламенем, чем этан. Пропан является исходным продуктом для многочисленных синтезов, осуществляемых в широком масштабе в промышленности. Хлорированием его получают 1-хлор-, 2-хлор-, 1,2-дихлор- и 1,3-дихлор-пропан (см. талоидпроизводные), нитрованием — нитропарафины, исходные продукты для получения аминов. При дегидрировании пропана образуется пропилен (см. ниже), из которого в промышленности получают хлористый аллил, глицерин, изопропиловый спирт и т. д. Наконец, из пропана и пропилена путем полимеризации получают углеводороды с разветвленной углеродной цепью (2-,метилпентан, 2,3-диметилбутан и т. д ), служащие добавками к авиационному бензину (повышение октанового числа, см. стр. 87). [c.40]


    Синтетич. К. получают циклизацией дифениламина при пропускании через раскаленную трубку (р-ция 1), о,о -ди-аминодифенила в кислой среде (2), фенилгидразона циклогексанона в присут. кислых катализаторов по р-ции Фишера с послед, дегидрированием получающегося, 2,3,4-тетрагид-рокарбазола (3) термич. разложением 1-фенил-1,2,3-бензо-триазола (р-ция Гребе Ульмана), полученного диазотированием о-аминодифениламина (4) обессериванием фенотиа-зина под действием Си (5)  [c.313]

    Имеются данные [1, 6, 14—18] о промышленной и опытно-промышленной реализации в КС следующих процессов окислительного аммонолиза пропилена, гидрокрекинга нефтяного сырья, полимеризации, окисления нафталина до фталевого ангидрида, синтеза Фишера — Тропша, окисления бутилена до малеинового ангидрида и о-ксилола до изофталонитрила, получение синильной кислоты из метана и аммиака, десульфирования масел, углей и асфальтенов, получения дихлорэтана окислительным хлорированием этилена, хлорирования предельных и непредельных углеводородов, окислительного дегидрирования углеводородов, паровой и парокислородной конверсии природного газа и конверсии оксида углерода с водяным паром, синтеза аммиака. [c.271]

    Как влияют давление и температура на равновесие следующих реакций 1) дегидрирования 2) гидрирования 3)гидрокре-кинга 4) дегидроциклизации 5) поликонденсации 6) пиролиза 7) синтеза Фишера-Тронша  [c.411]

    Для получения 3-производных индолов обычно используют реакции замещения, в то время как другие соединения индольного ряда доступны лишь при синтезе кольцевой гетероциклической системы. Как и для других конденсированных с бензолом гетероциклов (см. гл. 4, разд. 4.2.1), существуют два обцщх подхода к синтезу индольного ядра на основе бензольных предшественников в первом используются производные бензола с азотсодержащим заместителем и свободным орто-положением, а во втором - соединения с находящимися в соседних положениях углерод-и азотсодержаишмн заместителями. Некоторые примеры синтеза индольного ядра (второго типа) упоминались в гл. 4, а именно внутримолекулярная конденсация (табл. 4.4) методы, основанные на циклизации, катализируемой палладием (рис. 4.10) циклизация изонитрилов (табл. 4.8) и нитренов (табл. 4.10). Сам индол может быть получен высокотемпературной циклизацией и дегидрированием 2-аминоэтилбензола или 2-аминостирола. Однако чаще индолы получают первым методом, по которому циклическая система образуется замыканием боковой азотсодержащей цепи производного бензола по свободному орто-положению. Наиболее важным и гибким методом этого типа можно назвать синтез Фишера, впервые описанный около 100 лет назад. [c.268]

    Начиная со 2-й пол. 20 в. бурно развиваются кинетич. методы исследования, происходит становление теории цепных реакций (Н. Н. Семенов), основ теории кислотно-основного (Бренстед — Лоури) и гетерог. катализа, на базе к-рых разрабатываются пром. методы дегидрирования углеводородов, в т. ч. нефтяных, с получением олефинов, бензола и его гомологов, алкилирования парафивов олефинами и др. Большое значение приобрели синтез Фишера — Тропша (восстановление окиси углерода водородом) с получением метанола и тедельных углеводородов, р-ция Дильса — Альдера, карбодиимидный синтез пептидов, методы определения последовательности аминокислот в белках. В связи с возникшей проблемой дефицита жидкого топлива огромное значение приобрела р-ция Бергиуса (гидрирование угля в жидкие углеводороды, 1912—13). [c.413]

    В этом разделе мы рассмотрим вкратце некоторые каталитические реакции, а именно синтез аммиака, синтез Фишера — Тропша, дегидрирование этилена и каталитический крекинг углеводородов. Хотя вы- [c.535]

    Синтез Фишера — Тропша. В синтезе Фишера — Тропша синтез-газ (СО -f 2Нг) под давлением от 1 до 10 атм превраш ается в углеводородную смесь, состоящую в основном из парафинов и олефинов нормального строения [8]. В этом процессе в качестве катализатора применяют главным образом кобальт оптимальная температура реакции 185—215°. Образующиеся продукты реакции нельзя непосредственно использовать в качестве высококачественного горючего, предварительно их следует подвергнуть крекингу и дегидрированию. В присутствии железного катализатора, восстановленного водородом при 650—850°, образуется смесь углеводородов в основном разветвленного строения. [c.564]

    Кроме этилена, в газах полукоксования, особенно в газах, получаемых в печах с внешним обогревом, содержится небольшое количество пропилена и высших олефинов. Значительно большее количество их может быть получено из коксового газа, из газов, образующихся при крекинге смолы, масел и особенно нефти, и, наконец, из газов, выделяющихся в некоторых синтезах по Фишеру—Тропшу. Особенно богаты непредельными углеводородами остаточные газы процесса гидрогенизации, проводимого под давлением водорода, и процесса гидроформинга—ароматизации. Олефины можно также получать каталитическим дегидрированием или крекингом газообразных насыщенных углеводородов. В ГДР наилучшим источником такого сырья являются газы гидрогенизации. [c.224]


    Р. Робинсон 111] предположил, что нефтяные залежи образовались из первичных (primordial) УВ (для которых не отмечено преобладания нечетных молекул), возникших в результате каталитического дегидрирования продуктов неорганического происхождения по процессу Фишера-Тропша под воздействием других геохимических процессов они видоизменились и позднее смешались с биогенными У В. [c.191]

    При дегидрировании углеводородов на катализаторах Фишера—Тропша акцептором водорода выступает двуокись углерода, которая превращается в окись углерода [141]. Предложено [142] также использовать окись или двуокись углерода в смеси с водяным паром. Тепло, выделяющееся при этих превращениях, по-видимому, компенсирует затраты энергии, необходимой для эндотермической реакции дегидрирования. Отмечают [143], что СОг лучше, чем воздух, регенерирует катализаторы окислительного дегидрирования, состоящие из окислов металлов II группы. [c.69]

    Обнаруженные на ранних стадиях исследования примеры отравления относятся главным образом к активности платины в реакции окисления п сходных реакциях (превращение двуокиси серы в трехокись, реакция образования воды из гремучего газа, разложение перекиси водорода), но основное применение эта группа металлов находит, пожалуй, в реакциях гидрирования. Действительно, большинство из современных работ по отравлению было проведено в связи с эти.м типом реакци11. Металлы вертикальной группы никель, палладий и платина, особенно важны благодаря их высокой общей активности и вследствие широкого применения их как для гидрирования, так и для дегидрирования. Меньшая активность кобальта и особенно меди сообщает этим элементам особые свойства, которые иногда полезны. Так, наиболее мягкое действие меди как катализатора гидрирования часто допускает выделение промежуточных продуктов, а применение меди вместо никеля для дегидрирования при высоких температурах обычно приводит к меньшему образованию продуктов разложения далее, кобальт (подобно никелю и, в меньшей степени, железу) является эффективным катализатором в специальном случае синтеза жидких углеводородов путем конденсационной гидрогенизации окиси углерода по методу Фишера—Тропша. Основное использование железо находит, однако, в синтезе аммиака, представляющем реакцию, близкую к гидрированию. Все эти процессы очень чувствительны к отравлению. Серебро и золото имеют незначительную активность для обычного гидрирования и поэтому в табл. 1 поставлены в скобки однако они использовались как эффективные катализаторы в особом случае восстановления нитробензола водородом до анилина [1], при окислительном дегидрировании метилового спирта до формальдегида. Вместо серебра можно использовать медь. [c.101]

    Методы ароматизации природного и крекинг-газа успешно разрабатываются, и последним нововведением является использование индивидуальных углеводородов. Так, н-гептан превращается с 90% выходом в толуол при дегидрировании над окисями алюминия, хрома и молибдена. Толуол с выходом 51—57% получается в так называемом Британском процессе при использовании н-гептана (выделенного из масла Фишер-Тропша) и хромового кислотного катализатора, нанесенного на активный глинозем. При применении любого процесса ароматизации превращение никогда не проходит нацело, и ароматические углеводороды должны быть отделены от неароматических. Лишь затем производят выделение индивидуальных веществ. Обычно применяют фракционную перегонку, азеотроп ную перегонку с использованием метанола, метилэтил-кетона 5 или фенола в качестве переносчика и химическую очи стку. Применяется также комбинация фракционной и азеотропной разгонки и кислотной обработки. Ароматические соединения могут быть отделены в виде комплекса с жидким фтороводородом, содер- [c.62]

    Метод исследования. Во втором периоде исследования делались попытки выяснить строение сложных молекул стеринов и желчных кислот на основании изучения различных продуктов окисления наиболее плодотворные работы в этой области связаны с именами Борше, Дильса, Маут-нера, Шенка, Виланда и Виндауса. Выдающимися исследованиями явились работа Виндауса по холестерину (1903 г.) и работа Виланда в области желчных кислот, начатая в 1912 г. Многочисленные исследования, проводившиеся как в Геттингене, так и в Фрейбурге и Мюнхене, велись сначала независимо друг от друга но метод, избранный для разрешения поставленной задачи, был один и тот же — изучение продуктов расщепления. Попытки подойти к разрешению проблемы путем синтеза веществ, близких к этим сложным природным продуктам, исключались не столько из-за необходимости разработки сложных синтетических методов, сколько из-за отсутствия характерных свойств, которыми можно было бы руководствоваться при проведении подобной работы. Фишеру удалось исследовать красящие вещества крови синтетическим путем только потому, что порфнрины обладают в высшей степени характерными спектрами поглощения, которыми можно было руководствоваться для проверки правильности направления синтеза. Для бесцветных и, большей частью, насыщенных желчных кислот и стеринов подобный метод был неприменим. Способ ароматизации этих веществ путем дегидрирования был, повидимому, неоднократно испытан и дал отрицательные результаты, так как дегидрирование связано с чрезвычайными экспериментальными затруднениями. Когда, наконец, в 1927 г. процесс этот был успешно доведен до конца, полученные результаты явились очень важным звеном в цепи уже имевшихся доказательств (см. ниже). [c.123]

    Дальнейшее окисление кетотрикарбоновой кислоты IX приводит к образованию трикарбоновой кислоты X, уже ранее полученной при расщеплении пиродезоксибилиановой кислоты. Тот факт , что одна из трех карбоксильных групп этой кислоты может быть этерифицирована диазометаном, но не образует эфира по методу Фишера, доказывает, что она соединена с четвертичным атомом углерода следовательно, метильная группа должна находиться при С или при С . Основываясь на стереохимических свойствах данной кислоты и тех продуктов, из которых она получается, Виланд и Дане привели более точное, нО сложное доказательство того, что метильная группа находится при ig. Окончательный выбор между этими двумя возможными положениями был сделан на основании результатов дегидрирования, при помощи которого было установлено также и место присоединения боковой цепи желчных кислот. Эти работы будут рассмотрены ниже. В цитированной работе Виланд и Дане наблюдали, что кислота X образует ангидрид лишь в результате перегруппировки (в цис-кислоту) и, следовательно, кольца С и D в исходном соединении соединены между собой в трансположении. [c.143]

    Эритрофлеиновая кислота легко этерифицируется по Фишеру в ней имеются одна гидроксильная групаа, одна метоксильная группа и легко насыщающаяся при гидрировании двойная связь, сопряженная с карбоксильной группой 221 гп[1. (1де4,2). При дегидрировании селеном эта кислота (с низким выходом) превращается в 1,7,8-триметилфенантрен. [c.584]

    В патенте [46 [ предлагается готовить активные и стабильные катализаторы для процессов гидрирования, дегидрирования, дегидратации спиртов, синтеза NHg и синтеза по Фишеру—Тропшу. Для этого цеолит типа NaX заряжают одним или несколькими металлами подгруппы Fe, (Fe, Со, Ni) ионным обменом цеолита с раствором соли указанного металла, раствором аминокомплекса или в инертной атмосфере н идким соединением металла (карбонил, гидрокарбонил или ацетилацетонат). Затем ме- [c.387]

    Практически не дает преимуществ. Повышение давления газообразного ацетилена выше одной атмосферы при температурах, требуемых для реакции конденсации, может привести к опасным взрывам. Однако имеется патент,по которому ацетилен, если он растворен в инертном масле, может быть превращен с большим выходом в жидкие углеводороды под давлением от IО до 200 атмосфер в присутствии таких катализаторов, как мелкораздробленное железо или бромистый магний. Роль катализатора при процессе конденсации ацетилена несколько трудно определима. Часто продолжительность его действия очень мала вследствие обволакивания углеродом, практически всегда осаждающимся при термической конденсации ацетилена при температурах от 650° и выше, в отсутствии таких активных разбавителей, как водород или водяной газ. Этотуглерод влияет на ход реакции и в некоторых случаях накапливается в таких количествах, что закупоривает реакционную трубку. Зелинский [31] утверждает, что наполнение трубки активированным углем снижает опасность вспышки и отложения углерода, а также повышает при температуре 600—650° содержание бензола в конечном продукте. Ики и Огура [32] нашли, что разница в каталитическом действии активированного угля, кокса и каолина при температурах 600°и выше невелика. Ковач и Трико [22] не смогли обнаружить специфического влияния активированного угля и нашли, что окись алюминия, кварц, фарфор, пемза и куски кирпича одинаково эффективны при оптимальной температуре 650 , после того как покроются углеродом в результате разложения ацетилена. Фишер, Бангерт и Пихлер [24 полагают, что выделившийся углерод действует как катализатор на полимеризацию ацетилена при 600—650. Этот же факт отмечает и Фужио [27]. Берль и Гофман [26] считают, что более пористые формы углерода способствуют разложению ацетилена, а более плотные—превращению его в жидкие продукты. Металлы, являющиеся промоторами реакций гидрирования и дегидрирования, [c.225]


Смотреть страницы где упоминается термин Фишера дегидрирования: [c.13]    [c.150]    [c.413]    [c.254]    [c.75]    [c.119]    [c.377]    [c.85]    [c.13]    [c.11]    [c.85]    [c.41]   
Основы органической химии (2007) -- [ c.23 , c.59 , c.174 , c.291 , c.574 ]




ПОИСК





Смотрите так же термины и статьи:

Фишер



© 2025 chem21.info Реклама на сайте